Ausarbeitung - AIC

Questions taken from VoWi. Questions in German but answers in English - since
the lecture is in English ©

WebServices und CORBA and Hand von mindestens 4
Dimensionen vergleichen

WebService Corba
Coupling Loosely coupled Very tight coupled
Parameter passing Value only Reference and Value
Service Discovery UDDI or alternatives Naming service
Location/Addressing URL Object reference
Data model SOAP message exchange | Object Model
3 Eigenschaften von Services allgemein +

Unterschied/Gemeinsamkeiten von Software Services und
Real World Services

Generally - what is a service: A service is a software application that provides
some, usually more complex, functionality to a variety of clients. A service may
be used by different applications, either by other services or by mobile
applications. A service is published -> discovered -> invoked.
A Service generally:
Is coarse grained: it usually receives more complex parameters (e.g. XML
file) to process - not like a method in java that only receives some
parameters.
Is self contained: No dependencies to other services
Has a standardized interface.
Is easy to use - little integration needed.
Is context independent.
SW Services (SWS) and Real World Services (RWS):
SWS should extend/implement RWS especially in a business process (I don’t
really understand this ******* s]lides).

* 5 Vorteile, die (theoretisch) durch die Benutzung von
WebServices eintreten sollen benennen und erkldren. Mind.
2 kommerziell und mind. 2 technisch.

Technical benefits:
More reuse: Due to the loose coupling and the usage of standards
it is very easy to reuse WebServices in a variety of other applications.
Easy maintenance: Since other applications do not know about the
actual implementation, the Service can be modified without any problems
for the client - just the interface needs to stay the same.

Business benefits:
Increased business agility: Finding the right service is easier, if one isn’t
Satisfied with a service/provider it is easy to change the service. Easier to
include new functionality into own products/applications.
Low integration costs: Integrating Services is easy -> costs are low.
Technology/Vendor dependency is reduced.

__

Die drei grundlegenden Technologien von WebServices und
deren Interaktionen erkldren. (SOAP, WSDL, UDDI)

WSDL
Specification

WSDL
Specification

Service
Requestor

SOAP: A XML based messaging Protocol used for communication between client
and provider.

WSDL (Web Service Description Language): XML based language to describe a
web service. Each WS Description consists of two parts - the abstract and the
concrete part.

UDDI: A registry service where service providers can register their services.
Service clients then query the UDDI Registry, search for a suitable service and
invoke the service.

Services are described using WSDL, accessed through SOAP and

Was ist BPEL und dessen Grundziige erkladren. Besonderes
Augenmerk auf exception handling.

Business Process Execution Language for Web Services.
Through BPEL larger web services can be created from smaller ones. BPEL is
basically just a language that groups existing web services together in order to
model a business process. BPEL is mostly intended for Orchestration but with
some support for Choreography. BPEL defines:

* Activities

* Messages

* Partners

* Data

* Fault handling
Exception Handling: Each Activity exists inside a scope - such a scope is a
behavioral context (probably like in python or java and any other decent
programming language) - variables existing in a scope are visible only inside this
scope (as I said- like in python). Additionally a scope contains several handlers
(fault handlers, event handlers). Exception -> try-catch-throw semantics. Per
Scope several fault handlers can be defined.

Orchestration: Everything is guided by a central instance that guides the
execution. In the case of modeling a business process via web services, the
business process itself is the central instance.

Choreography: Every web service knows exactly what to do - not central
instance or the like is necessary. Used for business collaboration.

__

Correlation = Mapping messages to specific instances. It is of course possible to
create more instances of a BPEL service (just one instance would be quite
useless). Since the composed services remain the same, it is necessary to map the
messages, sent to the services, to a specific instance of the BPEL service. This is
done with message correlation. An correlation set defines which part of a
message is used for correlation e.g. first and second name could be used for
correlation. A correlation set can even be associated to a pair of messages -> this
pair then consist of answer and response.

WS-CDL erklaren, dabei besonders auf Unterschiede 2zu WS-
BPEL eingehen

WS-CDL (Web Service - Choreography Description Language) is a declarative
language to define interaction patters i.e. it specifies the interaction between

web services in B2B scenarios if no central authority can be defined. Description
for me: If two companies work together in some way, it is hard to define a central
authority. The two business partners are still somehow competitors and none of
them want’s the other one to be the central authority. Of course it would be
possible to get a third party in, but that would be too expensive for both ©

WS-CDL WS-BPEL

Intended for choreography - designed | Intended for orchestration - limited

to complement WS-BPEL choreography support.

Not Executable (just declarative) Executable

Global View (companies working | Since it is focused on orchestration -

together). BPEL models business processes as
seen from the outside. View on one
entity (one process in one company)

1) Resource drive: Rest is completely resource drive - all operations are
focused on resources. There are no special Activities/Methods to e.g.
calculate the sum of two stored values. Both values have to be retrieved,
summed up and the result has to be stored.

2) Rest s stateless: Each request is self-contained.

3) Naming: Every resource is accessible via a defined unique name.

4) Layering: It is easy to add a new layer e.g. a proxy. Since Rest consists only
of HTTP requests it is of course possible to insert all kinds of additional
“layers” like firewalls, proxies, load balancer,

5) Uniform interface: Every resource is accessed via the same interface.

2 Technologien um REST-Services 2zu beschreiben aufzadhlen
und beschreiben

To be honest - it is not really necessary to describe a Rest Service since the
HATEOAS principle says that knowing one URL should be enough to discover the
whole rest webservice. Since there is no real machine readable format to
discover a rest service we need some description stuff. Of course hardly anyone
uses this description mechanisms.

WSDL 2.0 - The second Version of WSDL allows the description of Rest Services.
This description is done in the same way a SOAP Service is described - therefore
a unified description of SOAP and REST Web services is possible. There is even
some tool support. BUT WSDL 2.0 has very limited expressiveness for Rest
Services and the description is not very REST like (there are still operations and
messages used).

WADL: The Web Application Description Language is used especially to describe

REST services. It is XML based but simpler then WSDL 2.0. It defines resources
and not operations (very rest like). WADL has 4 basic constructs: Grammar,
Resource, Methods, Representation.

The is just one real tool for WADL (sun jersey) and hardly anyone makes use of
WADL.

Unterschied/Gemeinsamkeiten von Service Composition und
Mashup

Mashup describes the integration of several services to one new service that
should be more then just the sum of both. Mashup focuses very much on existing
data and how to make this data more useful e.g. support weather data from
mountains with geographical data to develop a service that warns people
currently climbing a mountain. Mashups are usually “easy” to build and easy to
use. Mashup uses of course data driven communication - mostly REST.

With composition usually business processes are implemented and mostly SOAP
services are used. The slides even say that composited services are mostly
intended for many users while mashups are intended only for a few users.

Btw: The development process of mashups is often adh-hoc and the one of
composition mostly structured/planned.
Recap: Composition = boring business logic, mashup = might be fun.

SCA beschreiben, dabei besonders auf Components,
Composites und Services eingehen

SCA = Service Component Architecture

[s a methodology to describe components and how these components interact
with each other. It describes a model on how to compose SOA applications.
Therefore SOA is the idea/topic and SCA a possibility to implement a concrete
SOA. A Web service is a building block of a SCA, but to create an SCA not only
web services may be used.

Components: The concrete implementation of an application. Components offer
their functions as services.

Composites: A composite is the unit of deployment of an SCA and holds services.
[t contains on ore more components.

Services: Services are abstractions from a concrete implementation.

UDDI erkldren - wie funktioniert das Dynamic Binding von
UDDT

UDDI (Universal Description, Discovery and Integration)

UDDI is a universal and flexible discovery service for Web services. A Web
service can be registered in UDDI and clients can search the UDDI for suitable
services.

Dynamic binding:

A Service’s public interface is published as a tModel in a UDDI. A developer
implements his application with this interface. At execution time the application
queries the UDDI for die tModel key and then gets information to actually bin to
the service. The service of course uses the published interface.

——

Die 5 Alternativen von UDDI, die in der Vorlesung
vorgestellt wurden benennen und erkldren + Beispiel.

1) Service Portals: Classical website where one can “register” a service.
People can search the Website manually for proper services. The Problem
is that there are no standards to create such a portal therefore it is hard to
parse such portals automatically.xmethods

2) Service Search Engine: Like the service portal, just that the search engine
actively crawls the web for services and lists them. Example: seekda

3) P2P Service Register. Like a classical service register, just that it is
distributed over all member. Classical P2P concept - information about
available services are shared across all users.

4) Dynamic registers like VRESCo. Like UDDI but with a lot more features
like QoS, dynamic binding, richer metadatsa, ...

5) Manual/direct exchange of service information.

