
ASE VU Exercise 1
Duedate: November 8, 2023

Florian Freitag

Exercise 1: Abstract Interpretation - Parity Domain
Consider the parity domain which has abstract elements {⊥, 𝐸𝑣𝑒𝑛, 𝑂𝑑𝑑, ⊤} where 𝐸𝑣𝑒𝑛 is the
set of all even integers including 0 and 𝑂𝑑𝑑 is the set of all odd integers.

Using the parity domain, design abstract transformers for the statements and expressions in
the function 𝑓 below and define a join operator. Then perform Abstract Interpretation on 𝑓 .
To this end construct the (abstract) control flow graph, where the nodes are the abstract states
and the edges are the statements of 𝑓 . Finally establish that the asserted condition holds.

0
1
2
3
4
5
6
7
8
9
10
11
12

void f(int n) {
 int p = 13;
 int m = 101;
 if (n % 2 == 0) {
 if (m > 0) {
 p = p + n;
 m = m - 1;
 goto 4;
 }
 }
 p = p - 1;
 assert p % 2 == 0;
}

Solution:
First, lets define our join operator ▿:

⊥ ▿ {⊥, 𝐸𝑣𝑒𝑛, 𝑂𝑑𝑑, ⊤} =⊥
⊤ ▿ {𝐸𝑣𝑒𝑛, 𝑂𝑑𝑑, ⊤} = ⊤

𝐸𝑣𝑒𝑛 ▿ 𝑂𝑑𝑑 = ⊤
𝐸𝑣𝑒𝑛 ▿ 𝐸𝑣𝑒𝑛 = 𝐸𝑣𝑒𝑛
𝑂𝑑𝑑 ▿ 𝑂𝑑𝑑 = 𝑂𝑑𝑑

This definition doesn’t cover all cases, however since this operator is comutative all possible
cases can be derived by switching the operands.

Next, let’s define the + and − operation for the abstract transformer. Since both operations
behave the same we will define them once and note them wiht the ± operator. Even though it
may seem strage at first but the ± operations are comutative in this domain.

⊥ ±{⊥, 𝐸𝑣𝑒𝑛, 𝑂𝑑𝑑, ⊤} =⊥
⊤ ± {𝐸𝑣𝑒𝑛, 𝑂𝑑𝑑, ⊤} = ⊤

𝐸𝑣𝑒𝑛 ± 𝐸𝑣𝑒𝑛 = 𝐸𝑣𝑒𝑛
𝑂𝑑𝑑 ± 𝑂𝑑𝑑 = 𝐸𝑣𝑒𝑛

𝐸𝑣𝑒𝑛 ± 𝑂𝑑𝑑 = 𝑂𝑑𝑑

1

flo
So this could also be a table

flo
The operator should be the u with corners

Finally we can use the transformer to interpret the program and verify the condition in line 11:

𝑝𝑐 = 0 𝑛 =⊥ 𝑚 =⊥ 𝑝 =⊥
↓

𝟶: 𝚒𝚗𝚝 𝚗
↓

𝑝𝑐 = 1 𝑛 = ⊤ 𝑚 =⊥ 𝑝 =⊥
↓

𝟷: 𝚒𝚗𝚝 𝚙 = 𝟷𝟹
↓

𝑝𝑐 = 2 𝑛 = ⊤ 𝑚 =⊥ 𝑝 = 𝑂𝑑𝑑
↓

𝟸: 𝚒𝚗𝚝 𝚖 = 𝟷𝟶𝟷
↓

𝑝𝑐 = 3 𝑛 = ⊤ 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑
↓

𝟹: 𝚒𝚏 (𝚗 % 𝟸 == 𝟶)
↓

(𝑝𝑐 = 4 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑) (𝑝𝑐 = 10 𝑛 = 𝑂𝑑𝑑 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑)
↘

𝟺: 𝚒𝚏 (𝚖 > 𝟶)
↓

(𝑝𝑐 = 5 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑) (𝑝𝑐 = 10 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑)
↘

𝟻: 𝚙 = 𝚙 + 𝚗
↓

𝑝𝑐 = 6 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑
↓

𝟼: 𝚖 = 𝚖 - 𝟷
↓

𝑝𝑐 = 7 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝐸𝑣𝑒𝑛 𝑝 = 𝑂𝑑𝑑
↓

𝟽: 𝚐𝚘𝚝𝚘 𝟺
↘

(𝑝𝑐 = 4 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝑂𝑑𝑑 𝑝 = 𝑂𝑑𝑑) (𝑝𝑐 = 4 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = 𝐸𝑣𝑒𝑛 𝑝 = 𝑂𝑑𝑑)
↘ ↙
Join

↓
𝑝𝑐 = 4 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑

↓

continued on next page…

2

↓
𝟺: 𝚒𝚏 (𝚖 > 𝟶)

↓
(𝑝𝑐 = 5 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑) (𝑝𝑐 = 10 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑)

↘
𝟻: 𝚙 = 𝚙 + 𝚗

↓
𝑝𝑐 = 6 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑

↓
𝟼: 𝚖 = 𝚖 - 𝟷

↓
𝑝𝑐 = 7 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑

↓
𝟽: 𝚐𝚘𝚝𝚘 𝟺

↓
𝑝𝑐 = 4 𝑛 = 𝐸𝑣𝑒𝑛 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑

⎝
⎜⎜
⎜⎜
⎜⎛

𝑝𝑐 = 10
𝑛 = 𝑂𝑑𝑑
𝑚 = 𝑂𝑑𝑑
𝑝 = 𝑂𝑑𝑑⎠

⎟⎟
⎟⎟
⎟⎞

⎝
⎜⎜
⎜⎜
⎜⎛

𝑝𝑐 = 10
𝑛 = 𝐸𝑣𝑒𝑛
𝑚 = 𝑂𝑑𝑑
𝑝 = 𝑂𝑑𝑑 ⎠

⎟⎟
⎟⎟
⎟⎞

⎝
⎜⎜
⎜⎜
⎜⎛

𝑝𝑐 = 10
𝑛 = 𝐸𝑣𝑒𝑛
𝑚 = ⊤
𝑝 = 𝑂𝑑𝑑 ⎠

⎟⎟
⎟⎟
⎟⎞

↘ ↓ ↙
Join

↓
𝑝𝑐 = 10 𝑛 = ⊤ 𝑚 = ⊤ 𝑝 = 𝑂𝑑𝑑

↓
𝟷𝟶: 𝚙 - 𝟷

↓
𝑝𝑐 = 11 𝑛 = ⊤ 𝑚 = ⊤ 𝑝 = 𝐸𝑣𝑒𝑛

With that we can see that the assertion on line 11 always holds. The final states of the inter-
pretation are:

𝑝𝑐 0 1 2 3 4 5 6 7 8 − 10 11

𝑛 ⊥ ⊤ ⊤ ⊤ 𝐸𝑣𝑒𝑛 𝐸𝑣𝑒𝑛 𝐸𝑣𝑒𝑛 𝐸𝑣𝑒𝑛 ⊤ ⊤

𝑚 ⊥ ⊥ ⊥ 𝑂𝑑𝑑 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

𝑝 ⊥ ⊥ 𝑂𝑑𝑑 𝑂𝑑𝑑 𝑂𝑑𝑑 𝑂𝑑𝑑 𝑂𝑑𝑑 𝑂𝑑𝑑 𝑂𝑑𝑑 𝐸𝑣𝑒𝑛

3

Exercise 2: Abstract Interpretation - Comparison of Domains
Give either a program that can be verified with an abstract interpreter using the parity domain
but not with the interval domain or show that such a program cannot exist. Repeat this exer-
cise, but use the sign domain and the interval domain respectively.

Solution:

0
1
2
3
4
5
6
7
8

void p1(int n) {
 int a = 0;
 if (n > 0) {
 n = n - 1;
 a = a + 2;
 goto 2;
 }
 assert a % 2 == 0;
}

Program p1 can be verfied with the parity domain and it is easy to see that a, once initialized
to 𝐸𝑣𝑒𝑛 would remain that state over rest of the interpretation. In the interval domain a would
be widend to [0, +∞] and would therefore use the relevant information that a remains even.

For the sign domain and interval domain, no such program can be found as the interval domain
can express all states of the sign domain and many more. For example we could come up with
a mapping from the sign domain to the interval domain:

⊥⇒⊥
⊤ ⇒ [−∞, +∞]
− ⇒ [< 0, < 0]
+ ⇒ [> 0, > 0]
0 ⇒ [0, 0]

In contrast no such mapping would be possible from the parity domain to the interval domain,
even though the interval domain is infinite and the parity is not.

4

flo
Maybe state infinity here than just
smaller zero

Exercise 3: Abstract Interpretation - Interval Domain
Consider again the function Foo from the lecture:

0
1
2
3
4
5
6
7
8
9

void Foo(int i) {
 int x = 5;
 int y = 7;
 if (i >= 0) {
 y = y + 1;
 i = i − 1;
 goto 3;
 }
 assert 0 <= y − x;
}

Give a modified interval domain 𝐼𝑁𝑇 ′ s.t. an Abstract Interpreter using 𝐼𝑁𝑇 ′ verifies Foo
without using widening. Similarily to the previous example, give the (abstract) control flow
graph of the Abstract Interpretation run.

After that give a new program 𝑃 with an asserted property that cannot be verified with an
Abstract Interpreter that uses 𝐼𝑁𝑇 ′ but can be verified with an Abstract Interpreter using the
standard interval domain from the lecture. Again you are not allowed to use widening.

Solution:
Extending the Interval domain by a new atom 𝑔5 indicating that a bound is greater than five
leads to the following control flow:

𝑝𝑐 = 0 𝑖 =⊥ 𝑥 =⊥ 𝑦 =⊥
↓

𝟶: 𝚒𝚗𝚝 𝚒
↓

𝑝𝑐 = 1 𝑖 = [−∞, +∞] 𝑥 =⊥ 𝑦 =⊥
↓

𝟷: 𝚒𝚗𝚝 𝚡 = 𝟻
↓

𝑝𝑐 = 2 𝑖 = [−∞, +∞] 𝑥 = [5, 5] 𝑦 =⊥
↓

𝟸: 𝚒𝚗𝚝 𝚢 = 𝟽
↓

𝑝𝑐 = 3 𝑖 = [−∞, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]
↓

𝟹: 𝚒𝚏 (𝚒 >= 𝟶)
↓

(𝑝𝑐 = 4 𝑖 = [0, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]) (𝑝𝑐 = 8 𝑖 = [−∞, −1] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5])
↘

𝟺: 𝚢 = 𝚢 + 𝟷
↓

continued on the next page…

5

flo
So the others have listed
all the possible values
listed instead of extending
it. But the basic idea
is the same

↓
𝑝𝑐 = 5 𝑖 = [0, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]

↓
𝟻: 𝚒 = 𝚒 - 𝟷

↓
𝑝𝑐 = 6 𝑖 = [−1, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]

↓
𝟼: 𝚐𝚘𝚝𝚘 𝟹

↘
(𝑝𝑐 = 3 𝑖 = [−∞, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]) (𝑝𝑐 = 3 𝑖 = [−1, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5])

↘ ↙
Join

↓
𝑝𝑐 = 3 𝑖 = [−∞, +∞] 𝑥 = [5, 5] 𝑦 = [𝑔5, 𝑔5]

The only time we reach line 8 y is greater than 5 and x is exaclty 5 therefore the assertion will
always hold true.

Now, let’s consider the following program P:

0
1
2
3
4
5
6
7

void P(int n) {
 a = 2;
 if (n >= 0) {
 n = n - 1;
 a = a - 1;
 }
 assert a < 3;
}

With our modified domain 𝐼𝑁𝑇 ′ it is not possible to verify the program as the interpretation
would not terminate. This is because in each iteration of the loop a would get a new interval
(with both barries lower by one as than before) and the interpretation would never reach a
fixed point. The newly inserted atom 𝑔5 doesn’t help in that case.

With the domain from the lecture where widening is allowed the program can be verified as a
would ultimatly get the interval [−∞, 2] which is always less than 3.

6

flo
So my solution here doesn’t work because the normal
Interval domain because we were not allowed to use
widening even with the Interval domain.

However, my domain is just not good enough for this subexercise.

Exercise 4: Abstract Interpretation - Soundness of Abstractions
Consider imperative programs defined over integer variables with the following instructions:
declare 𝑣, assign 𝑣 𝑒, mod3 𝑣 and assert 𝑣. We call 𝑣, 𝑣1, 𝑣2 integer variables and 𝑒 an ex-
pression, where 𝑒 follows the syntax (𝑣 + 𝑐1) or (𝑣1 + 𝑣2) or (𝑐1 + 𝑐2) and 𝑐1, 𝑐2 ∈ ℤ.
The semantics of this programming language follows closely the semantics of the programming
language C (assuming C uses mathematical integers, so no overflows occur). We have the fol-
lowing correspondence:

declare 𝑣 ⇒ int 𝑣
assign 𝑣 𝑒 ⇒ 𝑣 = 𝑒
mod3 𝑣 ⇒ 𝑣 = 𝑣 % 3
assert 𝑣 ⇒ assert (𝑣 ! = 0)

Now that we defined the semantics of our programming language, let’s define the abstract se-
mantics. In the following we use the abstract domain 𝒟 = {⊥, ̇0, @, ○, ⊤}. Our abstract state is
now either a mapping 𝛼 from all program variables to their abstract value in 𝒟 or the special
error state 𝐸𝑟𝑟 :

𝛼(𝑣) =

⎩{
{{
⎨
{{
{⎧⊥ if v is not declared

̇0 if 𝑣 = 0
@ if 𝑣%3 = 0 and 0 < 𝑣 < 1000
○ if 𝑣%3 ≠ 0
⊤ otherwise

We extend 𝛼 s.t. it also computes the abstract value for constants and the abstract value for
a (declared) expression. In the table below you can see the abstract value associated to expres-
sions depending on the abstract values of their two operands.

+ ̇0 @ ○ ⊤
̇0 ̇0 @ ⊤ ⊤

@ @ ⊤ ○ ⊤

○ ⊤ ○ ○ ⊤

⊤ ⊤ ⊤ ⊤ ⊤

The abstract transformers defined in the following describe how statements of our programming
language affect the abstract states. Let’s define 𝑓[𝑎 ↦ 𝑏] as a function 𝑓 ′ with 𝑓 ′(𝑎) = 𝑏 and
𝑓 ′(𝑥) = 𝑓(𝑥) for all 𝑥 ≠ 𝑎.

𝛼 →
 assign 𝑣𝑒

𝛼[𝑣 ↦ 𝛼(𝑒)]

𝛼 →
 declare 𝑣

𝛼[𝑣 ↦ ⊤]

𝛼 →
mod 3𝑣

⎩{
{⎨
{{
⎧𝛼 if 𝛼(𝑣) = ○

𝛼[𝑣 ↦ ̇0] if 𝛼(𝑣) = @
𝛼[𝑣 ↦ ⊤] otherwise

𝛼 →
 assert 𝑣

{𝛼 if 𝛼(𝑣) ∈ {@, ○}
𝐸𝑟𝑟 otherwise

7

flo

flo

flo
This is the unsound part

flo

Show that the above defined abstraction is unsound by giving a program 𝑃 in our programming
language which would yield an error (a failing assertion) with the concrete semantics but for
which the Abstract Interpretation terminates in a state different from the state 𝐸𝑟𝑟. Provide
all intermediate abstract states that are constructed when performing Abstract Interpretation
on 𝑃 .

Solution:
Consider the follwing program P:

0
1
2
3
4

declare a // int a;
assign a (1 + 1) // a = 1 + 1;
assign a (a + 1) // a = a + 1;
mod3 a // a = a % 3;
assert a // assert (a != 0);

It is obvious that the program would fail the assertion as the first three lines set a to 3, which
then get’s set to 0 be the modular operator and violates the assertion.

However, the abstract interpretation does not exit with Err. As a side note 1 evaluates to the
abstract state ○ and ○ + ○ = ○.

𝛼 = {𝑎 :⊥}
↓

𝟶: 𝚍𝚎𝚌𝚕𝚊𝚛𝚎 𝚊
↓

𝛼 = {𝑎 : ⊤}
↓

𝟷: 𝚊𝚜𝚜𝚒𝚐𝚗 𝚊 𝟷+𝟷
↓

𝛼 = {𝑎 : ○}
↓

𝟸: 𝚊𝚜𝚜𝚒𝚐𝚗 𝚊 𝚊+𝟷
↓

𝛼 = {𝑎 : ○}
↓

𝟹: 𝚖𝚘𝚍𝟹 𝚊
↓

𝛼 = {𝑎 : ○}
↓

𝟺: 𝚊𝚜𝚜𝚎𝚛𝚝 𝚊
↓

𝛼 = {𝑎 : ○}

8

flo
Both assigns could be merged to:
assign a (1 + 2)

Exercise 5: Abstract Interpretation - Bounded Model Checking
Consider the C function below and try to verify it by performing Bounded Model Checking. Use
a loop unrolling bound of 2 and perform every step of Bounded Model Checking up until the
Bit-Blasting step. Would a SAT solver invoked by the Bounded Model Checker finally output
𝑆𝐴𝑇 or 𝑈𝑁𝑆𝐴𝑇 ? In case it would output 𝑆𝐴𝑇 , give a satisfying assignment of the integer
variables in the constraints constructed. In case it would output UNSAT, explain why such an
assignment cannot exist. What can we learn from the output of the SAT solver about the safety
of the program?

0
1
2
3
4
5
6
7
8
9

void sum(unsigned int n){
 unsigned int i = 0;
 unsigned int s = 0;
 if (n < 10000) {
 while(++i < 5) {
 s += n;
 }
 }
 assert(s <= 5 * n);
}

Solution:
After simplifying controllflow and loop unrolling we get the following adaptation:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void sum(n){
 i = 0;
 s = 0;
 if (n < 10000) {
 i = i + 1;
 if (i < 5) {
 s = s + n;
 i = i + 1;
 if (i < 5) {
 s = s + n;
 i = i + 1;
 assume (i >= 5)
 }
 }
 }

 assert(s <= 5 * n);
}

continued on the next page…

9

This is now easily convertable to the following SSA:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void sum(n0){
 i0 = 0;
 s0 = 0;
 if (n0 < 10000) {
 i1 = i0 + 1;
 if (i1 < 5) {
 s1 = s0 + n0;
 i2 = i1 + 1;
 if (i2 < 5) {
 s2 = s1 + n0;
 i3 = i2 + 1;
 assume (i3 >= 5)
 }
 }
 }

 assert(s2 <= 5 * n0);
}

And finally we can convert it to the following constraints:

𝑖0 = 0 ∧
𝑠0 = 0 ∧
𝑖1 = 𝑖0 + 1 ∧
𝑠1 = 𝑠0 + 𝑛0 ∧
𝑖2 = 𝑖1 + 1 ∧
𝑠2 = 𝑠1 + 𝑛0 ∧
𝑖3 = 𝑖2 + 1 ∧
𝑠2 > 5 ∗ 𝑛0

The SAT solver would output UNSAT which we can see by expanding 𝑠2 in the last subcon-
straint:

𝑠2 > 5 ∗ 𝑛0

𝑠1 + 𝑛0 > 5 ∗ 𝑛0

𝑠0 + 𝑛0 + 𝑛0 > 5 ∗ 𝑛0

0 + 𝑛0 + 𝑛0 > 5 ∗ 𝑛0

Obviously 2 ∗ 𝑛0 > 5 ∗ 𝑛0 is never true.

10

flo
<- The s2 here is wrong we need to merge all s0, s1 and s2 into one

	Exercise 1: Abstract Interpretation - Parity Domain
	Solution:

	Exercise 2: Abstract Interpretation - Comparison of Domains
	Solution:

	Exercise 3: Abstract Interpretation - Interval Domain
	Solution:

	Exercise 4: Abstract Interpretation - Soundness of Abstractions
	Solution:

	Exercise 5: Abstract Interpretation - Bounded Model Checking
	Solution:

