Blackboard Exercises (Summer Term 2012)

This document contains the exercises from the lecture's first logic part which were solved at the blackboard.

1 Recap: How to prove "A iff B"?

Usually, the proof is split into two parts, namely to show " $A \Longrightarrow B$ " and " $B \Longrightarrow A$ " (sometimes written as " $A \longleftarrow B$ "). There are at least two principal possibilities to show " $A \Longrightarrow B$ ". In the first one, we assume A and derive B (possibly using other lemmata, theorems, etc.). In the second possibility, we assume $\neg B$ and derive $\neg A$. The correctness of the latter approach follows from the correctness of the former together with the fact that $(A \to B)$ and $(\neg B \to \neg A)$ are logically equivalent.

2 Show that \forall distribution is correct (student's question)

We show that $((\forall x \phi(x)) \land (\forall x \psi(x))) \equiv (\forall x (\phi(x) \land \psi(x)))$ holds. We show that each model of the right formula is also a model of the left formula and vice versa.

 \Longrightarrow : Let U be an arbitrary domain and I_{α} an arbitrary model of $(\forall x \phi(x)) \land (\forall x \psi(x))$. Then

```
I_{\alpha} \models (\forall x \, \phi(x)) \land (\forall x \, \psi(x)) iff I_{\alpha} \models \forall x \, \phi(x) \text{ and } I_{\alpha} \models \forall x \, \psi(x) iff I_{\alpha} \models \phi(c) \text{ for all } c \in U \text{ and } I_{\alpha} \models \psi(d) \text{ for all } d \in U
```

Hence, ϕ and ψ hold exactly for the same elements under I_{α} and therefore $I_{\alpha} \models \phi(c) \land \psi(c)$ holds for all $c \in U$. Finally, $I_{\alpha} \models \forall x (\phi(x) \land \psi(x))$ holds by the semantics of \forall .

⇐ : Similar to the first direction.

3 Proof of the Deduction Theorem

In the lecture, we discussed the following theorem:

$$\varphi \models \psi$$
 if and only if $\models \varphi \rightarrow \psi$.

The proof for the propositional variant is as follows.

 \implies : Assume $\not\models \varphi \to \psi$. Then there exists an interpretation I with $I \not\models \varphi \to \psi$, i.e., $I \models \varphi$ and $I \not\models \psi$ by the semantics of \to . But then $I \in Mod(\varphi)$, $I \not\in Mod(\psi)$ and $Mod(\varphi) \not\subseteq Mod(\psi)$. Therefore $\varphi \not\models \psi$ holds.

 \Leftarrow : Assume $\varphi \not\models \psi$. Then, $Mod(\varphi) \not\subseteq Mod(\psi)$ and there exists an interpretation I with $I \in Mod(\varphi)$ and $I \not\in Mod(\psi)$. Therefore $I \models \varphi$, but $I \not\models \psi$. Hence $I \not\models \varphi \to \psi$.

What has to be changed in the above proof for the first-order variant of the deduction theorem?