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What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions.
▶ We proved our programs correct (inductive invariants).
▶ We learned how to derive test-cases by hand.
▶ Coverage criteria. How “good” is our test-suite?



So far: Testing is a manual process

Driven by
▶ Requirements and specification
▶ Assumptions about program behaviour (equivalence classes!)

Can’t we automate the generation of test cases?
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Automating Test-Case Generation: A (Discouraging) Example

int power (int x,

int y)

{
int r = y * y;

return r;

}

→ →

x y r

0 0 0
1 1 1
2 2 4
4 4 16
5 5 25

. . .

Can you spot the problem?
▶ How are the return values generated?

▶ Solution: let’s get them from the specification!
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Model-based Test Case Generation

▶ Idea: derive test-cases from a model
▶ The model captures requirements at a more abstract level
▶ The model is not necessarily executable
▶ The model must be easier to understand (more abstract)



Model-based Test Case Generation
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(Abstract)
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Model-based Test Case Generation

Common modelling languages:
▶ Unified Modeling Language (UML)

▶ + Object Constraint Language (OCL)

▶ Finite State Machines
▶ Matlab/Simulink
▶ SCADE/Esterel
▶ . . .



Modelling Languages

▶ Component diagrams in UML
▶ Illustrates architecture

C/C++
Front-end

CFG

Symbolic
Simulator

SSA

Decision
Procedure

Test-Case Generator



Modelling Languages

▶ Class diagrams in UML
▶ Specifies class interfaces and relations

tc generator

+generate(...)

uml generator

fsm generator1
1

▶ Neither component nor class diagrams specify behaviour!
▶ Needed for test-case generation!
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Modelling Languages

Activity diagrams
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]

▶ Describes possible sequences of events
▶ Can be used to derive abstract test-cases
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▶ Start, parse, find path, generate test-case, check coverage,
coverage achieved, done.
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Model-based Test Case Generation

Challenge: Abstraction level

▶ We generated an abstract test-case
▶ How can we map it to a concrete test-case?

▶ Implementation may have more details
▶ Is there even a corresponding concrete test-case? (feasibility)
▶ How can we test the outcome?
▶ Can we provide any coverage guarantees (for

implementation)?

Why not?

Maybe we can choose a less abstract modelling language?
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Automating Test-Case Generation: A (Discouraging) Example

▶ Simulink enables code generation

▶ Can you spot the problem?
▶ What are we testing here?
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Automating Test-Case Generation: A Cautious Tale

Don’t . . .
▶ extract test-cases (def

=input+output) from implementation
▶ apply test-cases extracted from model to generated code
▶ let coverage criteria drive your test-case generation

Why?
▶ coverage becomes meaningless as a stopping criterion



Automating Test-Case Generation: A Cautious Tale

Don’t . . .
▶ extract test-cases (def

=input+output) from implementation
▶ apply test-cases extracted from model to generated code
▶ let coverage criteria drive your test-case generation Why?

▶ coverage becomes meaningless as a stopping criterion



A Case for Automated Test-Case Generation?

▶ Are there meaningful applications of TCG?

▶ Can we “decouple” TCG from the specification?

▶ Assertions are partial specifications
▶ Constrain behaviour of program

▶ Bug hunt! (Assertion violations, crashes. . . )
▶ Find inputs that crash the system
▶ No outputs required
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Generate Inputs that Make System Crash

Inputs that result in
▶ buffer overflows

▶ assert (i < len); ... a[i]

▶ division by zero

▶ assert (y != 0); ... x/y

▶ invalid pointer dereferences

▶ assert (p != NULL); ... *p

▶ assertion violations
▶ . . .

Assertions are the most general mechanism in this list
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Assertion Violations

When does an assertion assert(P); fail?
▶ if P evaluates to false
▶ depends on values of variables, heap, . . .

(program state)

How do we evaluate P?
▶ As specified by language definition
▶ Remember lecture on assertions
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Expressions (ISO/IEC 14882:2011, §5)

▶ e.g., syntax for multiplicative expressions:

multiplicative-expression:
pm-expression (e.g., a variable)
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

▶ semantics (meaning) of multiplicative operators:
▶ “3 The binary * operator indicates multiplication”
▶ “4 The binary / operator yields the quotient, and the binary %

operator yields the remainder from the division of the first
expression by the second. If the second operand of / or % is
zero the behavior is undefined. [. . . ]”



Assertion Violations

What’s going to happen next?

heap

stack

a = { 1.0, 3.1, 5.2 }

pc int i = 1;

static data: pi = 3.14

code: assert(a[i]>pi)



Assertion Violations

▶ There are many conceivable states violating that assertion
▶ We only need to find one!

assertion pi i a

(a[i]>pi) 3.14 0 { 0.1, 5.2, 3.14 }
(a[i]>pi) 3.14 2 { 1.0, 3.1, 1.2 }

. . .



Assertion Violations

A bit of terminology:
▶ An expression P is satisfiable if there exists a valuation of its

variables that makes it true.
▶ An expression P is unsatisfiable if there exists no valuation of

its variables that makes it true.

A brief quiz: satisfiable or unsatisfiable?

1. (a > b) && (y == a)

2. (a > b) && (a + b == 0)

3. ((a + b) % 2 == 0) && (b & 1) && (a == 0)

4. (a != b) || (a == b)

▶ What’s special about this one?
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Assertion Violations

This can get trickier! (e.g., bit-vector arithmetic)

((x!=y)||(x&2)==2)&&(y==z+z)&&(x==(z<<1))&&((z&1)==0)

▶ (z&1)==0, therefore (z<<1)&2==0
▶ It follows that x&2==0

▶ y==z+z, therefore y==z<<1
▶ It follows that x==y

▶ Therefore, the disjunction ((x!=y)||(x&2)==2) is false
▶ Expression is unsatisfiable
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Satisfiable or not?

▶ Manual analysis of these examples is tedious
▶ There are automated decision procedures for satisfiability
▶ e.g., the Satisfiability Modulo Theory (SMT) solver Z3

▶ https://github.com/Z3Prover/z3
▶ (there’ll be a separate lecture on SMT solvers)

https://github.com/Z3Prover/z3


Satisfiable or not? – Z3

▶ Unfortunately, Z3 doesn’t speak C++
▶ Need to translate our input
▶ Front end simplicity over “linguistic convenience”
▶ Uses polish notation, i.e., (+ 3 4) instead of 3 + 4
▶ Tutorial on

https://github.com/Z3Prover/z3/wiki#background

https://github.com/Z3Prover/z3/wiki#background


Z3 Crash Course

▶ Variables need to be declared and typed:
▶ (declare-const p Bool)
▶ (declare-const q Bool)

(“variables” in Z3 are constants/null-ary functions)
▶ We can add “assertions” over declared variables

▶ (assert (or p q))

▶ We can check satisfiability
▶ (check-sat)

▶ We can ask for a model
▶ (get-model)



Satisfiable or not? Let’s ask Z3

(declare-const p Bool)

(declare-const q Bool)

(assert (or p q))

(check-sat)

(get-model)

And the answer is:

sat

(model

(define-fun q () Bool

false)

(define-fun p () Bool

true)

)



Satisfiable or not? Let’s ask Z3

The answer is:

sat

(model

(define-fun q () Bool

false)

(define-fun p () Bool

true)

)

▶ Remember: Variables are constants/null-ary functions
▶ A null-ary function has no parameters
▶ Returns a value
▶ In this context, just like a variable



Satisfiable or not? Let’s ask Z3

(declare-const p Bool)

(declare-const q Bool)

(assert (and (or p q) (and (not p) (not q))))

(check-sat)

▶ And the answer is . . .unsat



Types and Theories supported by SMT-Solvers

▶ SMT-Solvers/Z3 can do more than just propositional logic
▶ Arithmetic
▶ “Uninterpreted” functions
▶ Arrays
▶ Bit-Vectors
▶ . . .



Bit-Vectors in SMT

▶ Binary and hexadecimal constants:
▶ #b0100

(this is decimal 4)

▶ #x0a

(this is decimal 10)

▶ Declare “variables” of type bit-vector:
▶ (declare-const x ( BitVec 16))
▶ (declare-const y ( BitVec 16))

▶ Bit-vector operations
▶ (bvadd x #x0001) denotes x + 1
▶ (bvsub x y) denotes x − y
▶ (bvneg x) denotes −x
▶ (bvmul x y) denotes x ∗ y
▶ (bvshl x #x0001) denotes x << 1 (shift-left)
▶ . . .
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Satisfiable or not?

(declare-const x (_ BitVec 16))

(declare-const y (_ BitVec 16))

(declare-const z (_ BitVec 16))

(assert

(and

(or

(not (= x y))

(= (bvand x #x0002) #x0002)

)

(= y (bvadd z z))

(= x (bvshl z #x0001))

(= (bvand z #x0001) #x0000)

)

)

(check-sat)



Back to Assertion Violations

SMT solvers enable us to guess a state that violates assertion!

assert (a[i]>pi);

▶ i=0, pi=3.14, a={0.0} satisfies !(a[i]>pi)

▶ Can the program be in that state when assertion is reached?

const float pi = 3.14;

float a[] = {4.0, 4.0};

int i = 0;

assert (a[i]>pi);

(pi=3.14)
(a[0]=4.0)&&(a[1]=4.0))
(i=0)
!(a[i]>pi)
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Can the Assertion Be Violated?

▶ Is

(pi==3.14)&&(a[0]==4.0)&&(a[1]==4.0)&&(i==0)

&&!(a[i]>pi)

satisfiable?

▶ No!



Can the Assertion Be Violated?

▶ Is

(pi==3.14)&&(a[0]==4.0)&&(a[1]==4.0)&&(i==0)

&&!(a[i]>pi)

satisfiable?
▶ No!



Can the Assertion Be Violated?

▶ What about the following program?
▶ Let i be an uninitialised variable (or user input)

int i;

const float pi = 3.14;

float a[] = {1.0, 5.0};

assert (a[i]>pi);

(i=?)
(pi=3.14)
(a[0]=1.0)&&(a[1]=5.0))
!(a[i]>pi)

▶ i’s value is “undetermined”
▶ Could be any int value

▶ Assertion violated if we choose i to be 0
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Symbolic vs. Concrete Values

▶ Concrete values:
Actual values a variable or data-structure could take during
execution, e.g., 1, 2, −3.14, true, “Hello world”, . . .

▶ Symbolic values:
Placeholder values (undetermined values), representing, for
instance, user input



Symbolic vs. Concrete Values

▶ Let’s use x0 to denote symbolic values of x
▶ Which input value makes the following function fail?

int foo(int x)

{

int y = x + 1;

assert (y!=0);

return (x/y);

}

x 7→ x0

y 7→ x0 + 1

!

(x0 + 1 ̸= 0)

▶ Representation of an equivalence class of executions
▶ for all possible values of x (represented by x0)

▶ Can we make this “symbolic” execution fail?

▶ Ask the SMT solver whether !(x0 + 1 ̸= 0) is satisfiable
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Symbolic Executions

▶ What happens if we encounter conditions?

void bar(int x)

{

int y = x + 1;

if (x > -1)

y = y + 1;

assert (y!=0);

}

x 7→ x0

y 7→ x0 + 1
(x0 > −1)
y 7→ x0 + 2

!

(x0 + 2 ̸= 0)

▶ All conditions along the path must be satisfied
▶ Ask the SMT solver whether

(x0 > −1)&&!(x0 + 2 ̸= 0)
is satisfiable
▶ It is not! Path is safe
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Symbolic Executions

▶ What if we take the else-branch?

void bar(int x)

{

int y = x + 1;

if (x > -1)

y = y + 1;

assert (y!=0);

}

x 7→ x0

y 7→ x0 + 1
(x0 ≤ −1)

!

(x0 + 1 ̸= 0)

▶ All conditions along the path must be satisfied
▶ Ask the SMT solver whether

(x0 ≤ −1)&&!(x0 + 1 ̸= 0)
is satisfiable
▶ It is (x0 = −1), therefore assertion can be violated
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Symbolic Executions

➀ Perform symbolic execution of path
➁ At any assertion:

▶ ask SMT solver for input assignment violating it



Symbolic Execution Trees

int baz(int x)

{

if (x>0)

x = x + 1;

if (x>5)

x = x - 1;

return x;

}

x 7→ x0

[x0 > 0] [x0 ≤ 0]

[x0 ≤ 5]x 7→ x0 + 1 [x0 > 5]

return x0

[x0 + 1 ≤ 5][x0 + 1 > 5]

x 7→ x0 return x0 + 1

return x0

Explore paths; search for reachable assertions
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return x0

[x0 + 1 ≤ 5][x0 + 1 > 5]
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return x0

▶ Some paths are infeasible
▶ Some conditions are implied (e.g., (x0 ≤ 0) ⇒ (x0 ≤ 5))
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Optimisations

▶ Infeasible paths don’t need to be explored further
▶ Reduces number of paths

▶ Implied conditions can be dropped
▶ Makes problem for SMT solver easier

▶ Two different concerns:

Path explosion Constraint solving
(will address this now) (see lectures end of April)
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Optimisations

▶ How many paths in this function:

for (int i = 0; i < N; i++)

{

char ch = getchar ();

if (ch == ’ ’)

space ++;

else

other ++;

}

▶ Naı̈ve exploration quickly becomes a problem!

▶ Solution: search heuristics!
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Optimisations: Search Heuristics

Search heuristics:
▶ Breadth-First Search (BFS)
▶ Depth-First Search (DFS)
▶ Coverage-optimised search (Best-First)

▶ “best” paths increase coverage

▶ Random selection/expansion



Search Heuristics: BFS

▶ Don’t explore paths of length k + 1 before all paths of length k
are explored

1

2 3

4 6

987

10

12

11

5

x 7→ x0

[x0 > 0] [x0 ≤ 0]

[x0 ≤ 5]x 7→ x0 + 1 [x0 > 5]

return x0

[x0 + 1 ≤ 5][x0 + 1 > 5]

x 7→ x0 return x0 + 1

return x0



Search Heuristics: DFS

▶ Follow path to the end before you explore a new one
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x 7→ x0

[x0 > 0] [x0 ≤ 0]

[x0 ≤ 5]x 7→ x0 + 1 [x0 > 5]

return x0

[x0 + 1 ≤ 5][x0 + 1 > 5]

x 7→ x0 return x0 + 1

return x0



Search Heuristics: Coverage-based

Which (incomplete) path in the search tree do we expand next?
▶ Expand path “close” to an uncovered instruction
▶ Favour paths that recently visited new code



Search Heuristics: Random

Which (incomplete) path in the search tree do we expand next?
▶ Randomly choose one
▶ “Shorter paths” have higher probability

▶ Avoids starvation (e.g., symbolic loop)

x 7→ x0

[x0 > 0] [x0 ≤ 0]

[x0 ≤ 5]x 7→ x0 + 1
0.5

0.250.125 0.125



Search Heuristics

▶ Can also apply a combination of search heuristics
▶ e.g., multiple heuristics in round-robin fashion
▶ implemented by KLEE (http://klee.llvm.org)

http://klee.llvm.org


Other Optimisations

▶ Eliminate redundant paths
▶ paths that reach same program location with same constraints



Other Optimisations

▶ Merge paths
▶ merge paths that reach same program location
▶ covered in more detail towards the end of the course



Applications of TCG: Checking Contracts

▶ We used TCG to detect assertion violations
▶ Therefore, can also be used to check contract!

float sqrt (float x);

pre: x ≥ 0
post: |result2 − x| < ε

➀ Generate new test-case from implementation

➁ Check whether input satisfies pre-condition

➂ If yes, check whether output satisfies post-condition



Applications of TCG

▶ Alternatively, we can as an oracle for correct output
▶ The oracle could be

▶ a less efficient (but correct) implementation
▶ an executable specification
▶ . . .

➀ Generate new test-case from implementation

➁ Run oracle with the generated input

➂ Compare output of oracle and implementation



Summary

▶ Automated test case generation is feasible
▶ But dangerous if applied naı̈vely

▶ Outputs must be derived from specification
▶ Should not be driven by coverage!
▶ However, can be applied if outputs are not needed

(e.g., crash detection, assertion violations)


