
Technische Universität Wien SS 2015
Fakultät für Informatik Exercise 1

Assist. Prof. Florian Zuleger Thursday, 26 March 2015
Assist. Prof. Georg Weissenbacher

Yulia Demyanova, Mag.
Moritz Sinn, M.Sc.

Exercises on Semantics of Programming Languages

Solutions are to be handed in at the lecture on April 13th. Later submissions
will not be accepted.

Exercise 1 Determinism of Big-step Semantics (5 Points)

Consider the Big-step semantics of the While language as defined in the lecture.
Prove the following theorem from the lecture:

If ⟨C, s⟩ ⇓ s1 and ⟨C, s⟩ ⇓ s2 then s1 = s2.

Hint: Use rule-based induction.

Exercise 2 Properties of Small-step Semantics (5 Points)

Proof the following theorems from the lecture:

a) If ⟨C1;C2, s⟩ →k s′ then there exists a state s′′ and natural numbers k1 and k2 s.t.
⟨C1; s⟩ →k1 s′′ and ⟨C2; s′′⟩ →k2 s′ where k1 + k2 = k.

b) If ⟨C1, s⟩ →k s′ then ⟨C1;C2, s⟩ →k
⟨C2, s′⟩.

c) Does b) also hold the other way around? I.e., does ⟨C1, s⟩ →k s′ follow from ⟨C1;C2, s⟩ →k

⟨C2, s′⟩? Prove or disprove.

Exercise 3 Equivalence of Small-step and Big-step Semantics (5 Points)

Consider the definition of Small-step semantics given in the lecture and the following
alternative rule for the while-construct:

s-while
⟨while b do C,s⟩→⟨if b then (C; while b do C) else skip,s⟩

Let JCKS′ be defined as:

JCKS′ = {
s′ if ⟨C, s⟩ →∗ s′ using s-while instead of s-while.t and s-while.f
� otherwise

Proof that JCKS′ = JCKB. You may cite appropriate parts of the proof for JCKS = JCKB
given in the lecture.



Exercise 4 Small-step Semantics of Arithmetic Expressions (5 Points)

In Exercise 1 from the repetition sheet (dated 26th of March)(*) Big-step semantics of
arithmetic expressions are defined, i.e., by the specified rules a given arithmetic expres-
sion is evaluated to an integer in one step. We give an example:

Consider the state s = {x↦ 5, y ↦ 3, z ↦ 4}. With the definition of →Aexp in (*) it holds
that ⟨(x + y) + z, s⟩ →Aexp 12.

We now want to define Small-step semantics of arithmetic expressions by a derivation
relation ⟨e, s⟩ →AS γ where γ is either of the form ⟨e′, s⟩ or n where n is a numeral. If
γ is of form ⟨e′, s⟩ then the evaluation of e in state s is not completed and the partial
evaluation is expressd by the intermediate configuration ⟨e′, s⟩. If γ is of form n then e
was evaluated to n in s.

E.g., instead of evaluating ⟨(x + y) + z, s⟩ directly to its final value 12 in s, this expression
is evaluated as follows:
⟨(x + y) + z, s⟩ →AS ⟨(5 + y) + z, s⟩ →AS ⟨(5 + 3) + z, s⟩ →AS ⟨8 + z, s⟩ →AS ⟨8 + 4, s⟩ →AS 12

a) Define Small-step semantics of arithmetic expressions by defining the derivation re-
lation ⟨e, s⟩ →AS γ appropriately. It is sufficient to consider the addition operator +
since the operators ∗ and − can be handled accordingly.

b) Extend the definition of Small-step semantics of the WHILE language given in the
lecture s.t. arithmetic expressions are evaluated stepwise (by →AS) in assignments.
I.e., given an assignment x ∶= e where e is an arithmetic expression, e shall first be
evaluated stepwise to a numeral before the state is finaly updated in order to handle
the assignment.


