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Exercise 1 Determinism of Big-step Semantics (5 Points)

Consider the Big-step semantics of the While language as defined in the lecture.
Prove the following theorem from the lecture:

If ⟨C, s⟩ ⇓ s1 and ⟨C, s⟩ ⇓ s2 then s1 = s2.

Hint: Use rule-based induction.

Exercise 2 Properties of Small-step Semantics (5 Points)

Proof the following theorems from the lecture:

a) If ⟨C1;C2, s⟩ →k s′ then there exists a state s′′ and natural numbers k1 and k2 s.t.
⟨C1; s⟩ →k1 s′′ and ⟨C2; s′′⟩ →k2 s′ where k1 + k2 = k.

b) If ⟨C1, s⟩ →k s′ then ⟨C1;C2, s⟩ →k
⟨C2, s′⟩.

c) Does b) also hold the other way around? I.e., does ⟨C1, s⟩ →k s′ follow from ⟨C1;C2, s⟩ →k

⟨C2, s′⟩? Prove or disprove.

Exercise 3 Equivalence of Small-step and Big-step Semantics (5 Points)

Consider the definition of Small-step semantics given in the lecture and the following
alternative rule for the while-construct:

s-while
⟨while b do C,s⟩→⟨if b then (C; while b do C) else skip,s⟩

Let JCKS′ be defined as:

JCKS′ = {
s′ if ⟨C, s⟩ →∗ s′ using s-while instead of s-while.t and s-while.f
� otherwise

Proof that JCKS′ = JCKB. You may cite appropriate parts of the proof for JCKS = JCKB
given in the lecture.



Exercise 4 Small-step Semantics of Arithmetic Expressions (5 Points)

In Exercise 1 from the repetition sheet (dated 26th of March)(*) Big-step semantics of
arithmetic expressions are defined, i.e., by the specified rules a given arithmetic expres-
sion is evaluated to an integer in one step. We give an example:

Consider the state s = {x↦ 5, y ↦ 3, z ↦ 4}. With the definition of →Aexp in (*) it holds
that ⟨(x + y) + z, s⟩ →Aexp 12.

We now want to define Small-step semantics of arithmetic expressions by a derivation
relation ⟨e, s⟩ →AS γ where γ is either of the form ⟨e′, s⟩ or n where n is a numeral. If
γ is of form ⟨e′, s⟩ then the evaluation of e in state s is not completed and the partial
evaluation is expressd by the intermediate configuration ⟨e′, s⟩. If γ is of form n then e
was evaluated to n in s.

E.g., instead of evaluating ⟨(x + y) + z, s⟩ directly to its final value 12 in s, this expression
is evaluated as follows:
⟨(x + y) + z, s⟩ →AS ⟨(5 + y) + z, s⟩ →AS ⟨(5 + 3) + z, s⟩ →AS ⟨8 + z, s⟩ →AS ⟨8 + 4, s⟩ →AS 12

a) Define Small-step semantics of arithmetic expressions by defining the derivation re-
lation ⟨e, s⟩ →AS γ appropriately. It is sufficient to consider the addition operator +
since the operators ∗ and − can be handled accordingly.

b) Extend the definition of Small-step semantics of the WHILE language given in the
lecture s.t. arithmetic expressions are evaluated stepwise (by →AS) in assignments.
I.e., given an assignment x ∶= e where e is an arithmetic expression, e shall first be
evaluated stepwise to a numeral before the state is finaly updated in order to handle
the assignment.


