
Data & Pre-Processing
Numerical Data: Discrete / Continuous
Categorical Data: Nominal / Ordinal
Data Analysis: min, max, quantiles, median, mean, stddev, outliers,
correlation matrix (dependency of features each other)
Pre-Processing: delete/impute, discretize (grouping e.g. by age),
scaling; re-label (small→0), one-hot-encode, drop unimportant feat.
Standardization (z-score) x′

j = xj−x̄j

σ , where x̄j = 1
|X|

∑
xj

Minkowski Distance: d(a, b) = (
∑m

i=1 |ai − bi|p)1/p

Levenshtein (Edit) Distance: Min number of edits required.
Core Concepts of Machine Learning
Instance space X, Label space Y. Dataset S =
((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m. Model h : X → Y. Loss
function L. Data space D.
Supervised Learning: Minimize Empirical risk RS =
1
m

∑m
i=1 L(h, (xi, yi)). In other words h∗ ∈ argminh∈H(RS(h)).

Classification: Is goat or sheep? Loss = 0 if x = y else Loss = 1.
Regression: How does it weigh? Loss = (h(x) − y)2.
True risk: RD = E(x,y)∼D[L(h, (x, y))]
Gradient descent: Walk down slope, η learning rate, ∇f gradient.
Underfitting: High bias, low variance.
Overfitting: Low bias, high variance.
Regularization: Add penalty to loss for high complexity, L1 (when
few features important) and L2 (when all features important).
Basic Algorithms I

Gradient ∇L: ∇L(w1, · · · , wn) =

L′ by w1(w1, · · · , wn)
...

L′ by wn(w1, · · · , wn)


Linear model: h(x) = w1 · x + w0. Optimal (closed form) solution:

w1 =
∑m

i=1(xi − x̄)(yi − ȳ)∑m
i=1(xi − x̄)2 , w0 = ȳ − w1x̄

Polynomial model: h(x) =
∑p

k=0 wkxk. To fit use

w = (XXT )−1Xy, where X =


1T

(x1)T

...
(xp)T

 , e.g.


1 1

x1
1 x2

1

...
x1

p x2
p


Multiple Polynomial model: h(x) =

∑p
k=1 wT

k xk + w0. Fit is the

same as Polynomial model, but (xk)T =

xk
11 · · · xk

m1
... . . . ...

xk
1d · · · xk

md


Basic Algorithms II
Linear Classifier: h(x) = sign(xT · a − b), or tanh instead of sign.
Solve the same as linear regression, but use w =

[
−b
a

]
.

Perceptron Algorithm: Initialize w0 = 0. For each xi: If
sign(wT

i−1xi) ̸= yi: wi = wi−1 + yixi.
Logistic Regression: p(x) = σ(wT x), σ(z) = 1

1+e−z . Use empirical
risk RS(w) =

∑m
i=1 log(1 + exp(−yiwT xi)).

Decision Tree: Disjunctive Normal Form over features (e.g. (x1 ∧
¬x2) ∨ · · · ). Train by choosing split (feature=true | feature=false)
with least impurity I. Stopping: Depth limit, min samples per leaf,
or pure node.
Ensemble Methods: Multiple models, classify with majority voting.
Bagging: Split training data for each model. E.g. Random Forest.
Boosting: Train second model on errors made by first model.
Experiment Design & Evaluation
Hyperparameter: model parameter (e.g. tree depth, #leaves).
Grid Search: Search for optimal Hyperparam. in grid exhaustively.
Random Search: Randomly try out Hyperparam. n times.
Random Seed: Not a Hyperparam.. Set to fixed value.
Dataset splitting: Train, Validation (for Hyperparameters), Test
• Holdout: Split e.g. 80% Train, 10% Val, 10% Test.
• k-fold: Split k parts, one part Test, rest Train. Train k models.

• Stratification: Equally distribute labels across splits.
Regression Metrics (Loss): Mean Average Error, (Root) Mean
Squared Error.
Acc. T P +T N

T P +T N+F P +F N Pre. T P
T P +F P Rec. T P

T P +F N F1 2 · Pre.·Rec.
Pre.+Rec.

Baseline model: Dummy model to compare trained model to.
ML Theory & PAC Learning
Hypothesis Class H: Class of all possible hypotheses.
i.i.d. Assumption: Independent identically distributed samples.
Realizability: Does a perfect h in H exist.
H PAC-Learnable: ∃Algorithm A, error at most ε, prob δ to
fail satisfying min error, min required samples ”sample complexity”
m(ε, δ) ≥ 1

ε (ln(|H|) + ln(1/δ)).
H shatters X if all labellings of X have a correct h ∈ H.
Vapnik-Chervonenkis (vc) Dimension: Size of largest X, where H
shatters X. vc(H) ≤ log2 |H|.
If vc(H) = d < ∞ then m(ε, δ) ≤ O( 1

ε (d ln(1/ε) + ln(1/δ)).

SVM & Kernel Methods
Support Vector Machine (SVM): computes Hyperplane, based on
support vectors.
Hyperplane: Defined by wT x = b, for xi ∈ support vectors we can
calculate yi(wT xi + b) = 1. Margin γ = 1/||w||.
Kernel Function: Computes similarity between two data points, can
be used as new ”dimension”.
Positive Semi-Definite: ∀c : cT Ac ≥ 0. Calculate by using
cT = (x, y, z).
Probabilistic ML
Bayesian Inference: Let Θ be hypothesis, X be data.

P (Θ|X )︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (X |Θ)

Prior︷ ︸︸ ︷
P (Θ)∑

θ′

P (X |Θ = θ′)P (Θ = θ′)︸ ︷︷ ︸
Marginal Likelihood (Evidence)

= P (X |Θ)P (Θ)
P (X )

Max Likelihood Est.: θ∗
MLE = arg maxθ P (X |Θ = θ)

E.g. P (Tails|A) = 0.1, P (Tails|B) = 0.9, therefore MLE = 0.9.
Max A Posteriori Est.: θ∗

MAP = arg maxθ P (X |Θ = θ)P (Θ = θ)
E.g. P (Tails|A) = 0.1, P (Tails|B) = 0.9, P (A) = 0.99, P (B) =
0.01 therefore MAP = 0.99 ∗ 0.1 = 0.099
Factorized Probability Distribution Example with X2 depends on
X1, X3 depends on X2, X4 depends on X2:
P (X1, X2, X3, X4) = P (X1) · P (X2|X1) · P (X3|X2) · P (X4|X2)
Dim. Reduction & Distance Algorithms
Principal Component Analysis (PCA): Reduce number of di-
mensions, by projecting data X onto direction w. Maximize vari-
ance Var(Xw) ⇔ Minimize reconstruction error ||X − XwwT ||2.
w = eigenvector of C with largest eigenvalue, C = 1

n−1 XT X.
Random Projection (Johnson-Lindenstrauss): faster than PCA,
but some error expected
t-SNE: alt. to PCA, but non-(linear, deterministic, parameter-free),
tries to preserve similar data points being close to each other.
k-NN: Classify point based on majority class of k nearest neighbors.
k-Means: Iteratively find k clusters with least distance from center.
Spectral Clustering: Works on non-circular shapes, unlike k-Means.
Hierarchical Clustering: Tree of clusters, arbitrary # of clusters.
Deep Neural Networks
Multi-layer perceptron (MLP): Stacking of multiple perceptrons.
L = # of layers. al

i = node i in layer l. wl
i,j = weight from node j

in layer l to node i in layer l + 1. sl = pre-activation vector in layer
l. al =activation vector in layer l. W l weights of layer l. bl = bias.
Activation Function: Non-linear function σ ⇒ non-linear network.
al = σ(sl) = σ(W l−1al−1). sl

j =
∑

i al−1
i wl−1

i,j . σ e.g. tanh, ReLU.
Universal Approx. Theorem: Network with >1 hidden layer, non-
linear activation can approximate continuous function [0, 1]n → [0, 1].
Forward Pass: Calculation of output nodes based on input nodes.
Backpropagation: Minimize Loss L(ŷ, y). Error at layer l is δl.
δl−1 = (W l)T δl ⊙ σ′(sl−1) (⊙... component wise multiplication).
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Gradient ∇W l = δl(al−1)T , gradient of bias ∇bl = δl.
Example with 1 hidden layer:
∇W 2

new = δ2(a1)T . ∇W 1 = δ1(a0)T = ((W 2)T δ2 ⊙ σ′(s1))(a0)T

Bias and Fairness in AI
Fairness through Unawareness: removing protected attribute A
fails because proxies (e.g., ZIP code) correlate with A.
1. Statistical Parity (Näıve): Assign labels at equal rate to groups.
Con: If different groups have different rates, fails.
2. Calibration: Outcome independent of group given score.
Con: Error distribution can differ.
3. Error Rate Balance: Equal error rates across groups.
Con: Cannot be combined with calibration.
4. Individual Fairness: Treat similar individuals similarly (measure
their distance in the data, risk proportional to distance).
Con: Difficult to define distance measures.

Reinforcement Learning
An Agent interacts with an Environment. At time step t, agent ob-
serves State St, selects Action At based on Policy π, and receives
Reward Rt+1 and a new state St+1 from the environment.
State: Representation of the current situation of the environment.
Action: The decision or move made by the agent.
Reward: Scalar feedback indicating immediate success of an action.
Policy: A mapping (function) from states to actions (or probabilities
of actions) defining the agent’s behavior.
Return (Gt): The cumulative sum of discounted future rewards, de-
fined as Gt =

∑∞
k=0 γkRt+k+1.

Discount Factor (γ): A value ∈ [0, 1] that determines the impor-
tance of future rewards compared to immediate rewards.
Value Function: The expected return starting from a state (and
action) following a specific policy.
Goal: The objective is to find an optimal policy π that maximizes
the expected value of the return Eπ[Gt|St = s].
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