Data & Pre-Processing

Numerical Data: Discrete / Continuous

Categorical Data: Nominal / Ordinal

Data Analysis: min, max, quantiles, median, mean, stddev, outliers,
correlation matrix (dependency of features each other)
Pre-Processing: delete/impute, discretize (grouping e.g. by age),
scaling; re-label (small—0), one-hot-encode, drop unimportant feat.
Standardization (z-score) z; = “=*4, where T; = ‘71| Yo,
Minkowski Distance: d(a,b) = (327", |a; — bi|?)"/”
Levenshtein (Edit) Distance: Min number of edits required.

Core Concepts of Machine Learning

Instance space X, Label space). Dataset S =
((1,11), s (TmyYm)) € (X x P)™. Model h : X — Y. Loss
function £. Data space D.

Supervised Learning: Minimize Empirical risk Rg =
LS L(h, (x5,y:)). In other words h* € argmin;, ¢4 (Rs(h)).
Classification: Is goat or sheep? Loss = 0 if x = y else Loss = 1.
Regression: How does it weigh? Loss = (h(z) — y)2.

True risk: Rp = E(,) p[L(h, (z,y))]

Gradient descent: Walk down slope, 1 learning rate, V f gradient.
Underfitting: High bias, low variance.

Overfitting: Low bias, high variance.

Regularization: Add penalty to loss for high complexity, L1 (when
few features important) and L2 (when all features important).

Basic Algorithms |
L' by wi(wy, - ,wy)

Gradient VL: VL(wy, - ,w,) =

E’ by wn(wh tee »wn)
Linear model: h(z) = wy - x + wp. Optimal (closed form) solution:

Sy (i —) (yi — 9)

wy = wo =Y — WiT
B NOE L
Polynomial model: h(z) = Y% _, wxz". To fit use
17 11
; x1)T 2y 2l
w = (XX)_1Xy, where X = , e.8.
(x)T 1P P
Multiple Polynomial model: h(z) = Y7 _, wlzk + wy. Fit is the
afy o Ty
same as Polynomial model, but (z*)7 = | : o
k k
Tla " Lind

Basic Algorithms Il
Linear Classifier: h(z) = sign(z? - a —b), or tanh instead of sign.
. . —b
Solve the same as linear regression, but use w = { a }
Perceptron Algorithm: |Initialize wg = 0. For each x;: If
sign(W_1X;) # Yit Wi = W1 + UiX;.
Logistic Regression: p(z) = o(wl'x), o(2) =
risk Rg(w) = 31" log(1 + exp(—yw’x;)).
Decision Tree: Disjunctive Normal Form over features (e.g. (x1 A
—22) V -+). Train by choosing split (feature=true | feature=false)
with least impurity I. Stopping: Depth limit, min samples per leaf,
or pure node.
Ensemble Methods: Multiple models, classify with majority voting.
Bagging: Split training data for each model. E.g. Random Forest.
Boosting: Train second model on errors made by first model.

1 ..
e Use empirical

Experiment Design & Evaluation

Hyperparameter: model parameter (e.g. tree depth, #leaves).
Grid Search: Search for optimal Hyperparam. in grid exhaustively.
Random Search: Randomly try out Hyperparam. n times.
Random Seed: Not a Hyperparam.. Set to fixed value.

Dataset splitting: Train, Validation (for Hyperparameters), Test
» Holdout: Split e.g. 80% Train, 10% Val, 10% Test.

» k-fold: Split k£ parts, one part Test, rest Train. Train k models.

= Stratification: Equally distribute labels across splits.

Regression Metrics (Loss): Mean Average Error, (Root) Mean

Squared Error.

TP+TN TP TP . Pre.-Rec.
Acc. TPFTN+FP+FN Pre. 75 7p Rec. TP+FN F12- 5oire
Baseline model: Dummy model to compare trained model to.

ML Theory & PAC Learning

Hypothesis Class H: Class of all possible hypotheses.

i.i.d. Assumption: Independent identically distributed samples.
Realizability: Does a perfect i in H exist.

‘H PAC-Learnable: JAlgorithm A, error at most &, prob ¢ to
fail satisfying min error, min required samples "sample complexity”
m(e,8) = L(n(|H]) + In(1/5)).

‘H shatters X if all labellings of X have a correct h € H.
Vapnik-Chervonenkis (vc) Dimension: Size of largest X, where H
shatters X. vc(H) < log, |H|.

If ve(H) = d < oo then m(e,d) < O(L(dIn(1/e) + In(1/9)).

SVM & Kernel Methods

Support Vector Machine (SVM): computes Hyperplane, based on
support vectors.

Hyperplane: Defined by w’xz = b, for z; € support vectors we can
calculate y;(w”z; +b) = 1. Margin v = 1/||w||.

Kernel Function: Computes similarity between two data points, can
be used as new "dimension”.
Positive Semi-Definite: Ve :
' = (2,9, 2).

Probabilistic ML

Bayesian Inference: Let © be hypothesis, X' be data.
Likelihood Prior

c'Ac > 0. Calculate by using

P(X|©) P(©) P(X|©)P(0)
]%(6/@ Y Pe-epe=0) P@)
osterior o

Marginal Likelihood (Evidence)
Max Likelihood Est.: 6}, ; = arg max, P(X |0 = 0)
E.g. P(Tails|A) = 0.1, P(Tails|B) = 0.9, therefore MLE = 0.9.
Max A Posteriori Est.: 0}, ,, = argmax, P(X|0 = 0)P(© = 0)
E.g. P(Tails|A) = 0.1, P(Tails|B) = 0.9, P(A) = 0.99, P(B) =
0.01 therefore M AP = 0.99 % 0.1 = 0.099
Factorized Probability Distribution Example with X5 depends on
X1, X3 depends on X5, X, depends on Xs:
P(X1,X2,X35,X4) = P(X;) - P(X2]X7) - P(X35]|X2) - P(X4]|X2)

Dim. Reduction & Distance Algorithms
Principal Component Analysis (PCA): Reduce number of di-

mensions, by projecting data X onto direction w. Maximize vari-
7.

ance Var(Xw) < Minimize reconstruction error || X — Xww
w = eigenvector of C' with largest eigenvalue, C' = ﬁXTX.
Random Projection (Johnson-Lindenstrauss): faster than PCA,
but some error expected

t-SNE: alt. to PCA, but non-(linear, deterministic, parameter-free),
tries to preserve similar data points being close to each other.
k-NN: Classify point based on majority class of k nearest neighbors.
k-Means: lteratively find k clusters with least distance from center.
Spectral Clustering: Works on non-circular shapes, unlike k-Means.
Hierarchical Clustering: Tree of clusters, arbitrary # of clusters.

Deep Neural Networks

Multi-layer perceptron (MLP): Stacking of multiple perceptrons.
L = # of layers. a} = node i in layer I. w} ; = weight from node j
in layer [to node i in layer [+1. s' = pre-activation vector in layer
I. a' =activation vector in layer I. W' weights of layer [. b! = bias.
Activation Function: Non-linear function ¢ = non-linear network.
al = o(s!) = o(W'tal 1), sé = iaé_lwigl. o e.g. tanh, RelU.
Universal Approx. Theorem: Network with >1 hidden layer, non-
linear activation can approximate continuous function [0, 1]™ — [0, 1].
Forward Pass: Calculation of output nodes based on input nodes.
Backpropagation: Minimize Loss £(§,y). Error at layer [is d'.

1 = WHTS © o'(s!=1) (®... component wise multiplication).

Gradient VW' = §!(a!=1)T, gradient of bias Vb! = 4'.
Example with 1 hidden layer:
VW2, = 6%(a))T. VW = §1(a®)T = (W2)T52 @ o' (s1))(a®)T

new

Bias and Fairness in Al

Fairness through Unawareness: removing protected attribute A
fails because proxies (e.g., ZIP code) correlate with A.

1. Statistical Parity (Naive): Assign labels at equal rate to groups.
Con: If different groups have different rates, fails.

2. Calibration: Outcome independent of group given score.
Con: Error distribution can differ.

3. Error Rate Balance: Equal error rates across groups.
Con: Cannot be combined with calibration.

4. Individual Fairness: Treat similar individuals similarly (measure
their distance in the data, risk proportional to distance).
Con: Difficult to define distance measures.

Reinforcement Learning

An Agent interacts with an Environment. At time step ¢, agent ob-
serves State S;, selects Action A; based on Policy 7, and receives
Reward R;.; and a new state S;;; from the environment.

State: Representation of the current situation of the environment.
Action: The decision or move made by the agent.

Reward: Scalar feedback indicating immediate success of an action.
Policy: A mapping (function) from states to actions (or probabilities
of actions) defining the agent’s behavior.

Return (G;): The cumulative sum of discounted future rewards, de-
fined as Gy = > e g V¥ Resit1-

Discount Factor (vy): A value € [0,1] that determines the impor-
tance of future rewards compared to immediate rewards.

Value Function: The expected return starting from a state (and
action) following a specific policy.

Goal: The objective is to find an optimal policy 7 that maximizes
the expected value of the return E;[G¢|S: = s].

