2021W Geometry for Computer Science

Exercise sheet B

Exercise 1. Given real constants r, p, consider the curve $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ defined by

$$
\gamma(t)=(r \cos (t), r \sin (t), p t)
$$

1. Determine the length of γ;
2. Determine a unit-speed reparametrization of γ.

Exercise 2. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ be a unit-speed curve, and let n be the principal normal vector of γ. Given $u \in \mathbb{R}$, consider the curve $\alpha:[0,1] \rightarrow \mathbb{R}^{3}$ parametrized by

$$
\alpha(t)=\gamma(t)+u n(t)
$$

Is α a regular curve?

Exercise 3. Consider the paraboloid \mathcal{P} of equation $z=x^{2}+y^{2}$. Determine a regular parametrization of \mathcal{P} and compute the coefficients of the first fundamental form of your parametrization.

Exercise 4. Let $\mathbb{S}^{2}(r)$ be the sphere of radius r centered at the origin. Show that the normal curvature of any curve in $\mathbb{S}^{2}(r)$ is $\pm 1 / r$.

