2021W Geometry for Computer Science

Exercise sheet B

Exercise 1. Given real constants r, p, consider the curve $\gamma \colon [0, 1] \to \mathbb{R}^3$ defined by

$$\gamma(t) = (r\cos(t), r\sin(t), pt).$$

- 1. Determine the length of γ ;
- 2. Determine a unit-speed reparametrization of γ .

Exercise 2. Let $\gamma: [0,1] \to \mathbb{R}^3$ be a unit-speed curve, and let *n* be the principal normal vector of γ . Given $u \in \mathbb{R}$, consider the curve $\alpha: [0,1] \to \mathbb{R}^3$ parametrized by

$$\alpha(t) = \gamma(t) + un(t).$$

Is α a regular curve?

Exercise 3. Consider the paraboloid \mathcal{P} of equation $z = x^2 + y^2$. Determine a regular parametrization of \mathcal{P} and compute the coefficients of the first fundamental form of your parametrization.

Exercise 4. Let $\mathbb{S}^2(r)$ be the sphere of radius r centered at the origin. Show that the normal curvature of any curve in $\mathbb{S}^2(r)$ is $\pm 1/r$.