Problem Set 2

Problem 2.1 Show that if x is Cauchy distributed with parameter α , then y = 1/x is Cauchy distributed with parameter $1/\alpha$.

Problem 2.2 Define a random variable by $y = \sin(x)$, where x is uniform distributed between $-\pi$ and $+\pi$. Calculate and sketch the pdf of y.

Problem 2.3 Let $x \sim \mathcal{N}(\mu_x, \sigma_x^2)$ be a Gaussian random variable with mean $\mu_x = 4$ and variance $\sigma_x^2 = 5$.

- a) Calculate the probability that x is in the interval [-2, 3].
- b) A random variable y is obtained from x via the clipping operation $g(\cdot)$ as follows:

$$\mathbf{y} = g(\mathbf{x}) = \begin{cases} a, & \mathbf{x} \le 2 \\ \mathbf{x}, & 2 < \mathbf{x} < 6 \\ b, & \mathbf{x} \ge 6 \end{cases}$$

Find expressions for a and b such that the mean square error $E\{(x-y)^2\}$ is minimized and evaluate these expressions numerically. Find and sketch the pdf of y.

c) The random variable y is now quantized (binned) with Q levels (bins) yielding a new random variable z, i.e.,

$$z = q(y) = k$$
 if $y \in [g_{k-1}, g_k] \subset \mathbb{R}, k = 1, 2, ..., Q$,

where g_i denotes the *i*th quantization boundary and $g_0 = -\infty$, $g_Q = \infty$. For Q = 3, find the remaining g_i such that $p_z(z) = 1/Q$.

Problem 2.4 The characteristic function for a zero-mean Gaussian random variable x is

$$\Phi_{\mathsf{x}}(\omega) = e^{-\sigma_{\mathsf{x}}^2 \omega^2/2}.$$

Calculate all moments $m_{\mathsf{x}}^{(n)}$ of x using $\Phi_{\mathsf{x}}(\omega)$ as function of n and σ_{x} .

Hint:
$$e^u = \sum_{k=0}^{\infty} \frac{u^k}{k!}$$