
Distributed Systems

Prof. Dr. Schahram Dustdar
Distributed Systems Group

TU Wien

dustdar@dsg.tuwien.ac.at
dsg.tuwien.ac.at

Outline

1. History
2. What is a distributed system?
3. Key concepts and design goals
4. Architectural styles

DS WS 2019 2

Lecture Material

• Slides available for download, but not sufficient for
self-study! Please read on…

DS WS 2019 3

Recommended additional reading

DS WS 2019 4

Prerequisites

• Data structures and algorithms (sequential)
• Operating systems / Systems programming
• Software engineering concepts
• Object-oriented programming

• For the lab: Java’s support for modularity
(packages and interfaces), object orientation,
exceptions, distribution (RMI), code mobility
(applets, class loader), and concurrency
(threads and synchronization)

DS WS 2019 5

OVERVIEW AND
INTRODUCTION

DS WS 2019 6

Evolution

• Until 1985 large and expensive stand-alone
computers

• Powerful microprocessors (price/performance
gain 1012 in 50 years)

• High-speed computer networks (LAN/WAN)
-> composition of computing systems of large

numbers of computers connected by a
highspeed network increase

DS WS 2019 7

The complete Internet 1969

DS WS 2019 8

Vint Cerf

Robert E.
Kahn

Part of the US Internet 1980

DS WS 2019 9

Part of a network today

DS WS 2019 10

Growth of the Internet

DS WS 2019 11

12

Internet of Things

50 000 000 000
Internet-connected devices until 2020

13

Verteilte Systeme

14

Verteilte Systeme

15

Verteilte Systeme

16

Verteilte Systeme

Evolution of Distribution technologies

• Mainframe computers
• Workstations and local networks
• Client-server systems
• Internet-scale systems and WWW
• Sensor/actor networks in automation
• Mobile, ad-hoc, and adaptive systems
• Pervasive (ubiquitous) systems
• Today, less than 2% of processors go into

personal computers!

DS WS 2019 17

Definition of a Distributed System (1)

A collection of
independent computers
that appears to its users

as a single coherent
system.

DS WS 2019 18

A collection of autonomous
computers linked by a computer

network and supported by software
that enables the collection to

operate as an integrated facility.

Definition of a Distributed System (2)

DS WS 2019 19

You know you have one
when the crash of a computer

you have never heard of
stops you from getting any
work done. (Leslie Lamport)

Definition of a Distributed System (3)

DS WS 2019 20

Types of Distributed Systems (1)

• Object/component based (CORBA, EJB, COM)
• File based (NFS)
• Document based (WWW, Lotus Notes)
• Coordination (or event-) based (Jini,

JavaSpaces, publish/subscribe, P2P)
• Resource oriented (GRID, Cloud, P2P, MANET)
• Service oriented (Web services, Cloud, P2P)

DS WS 2019 21

• Distributed Computing (cluster, GRID, cloud)

• Distributed Information Systems (EAI, TP, SOA)

• Distributed Pervasive (often P2P, UPnP in
home systems, sensor networks, ...)

Types of Distributed Systems (2)

DS WS 2019 22

Concepts of Distributed Systems

• Communication
• Concurrency and operating system support

(competitive, cooperative)
• Naming and discovery
• Synchronization and agreement
• Consistency and replication
• Fault-tolerance
• Security

DS WS 2019 23

KEY CONCEPTS AND DESIGN
GOALS

DS WS 2019 24

Why distribute at all?

• Connecting users to resources and services
 Basic function of a distributed system

• Dependability and Security
 Availability, Fault tolerance, Intrusion Tolerance,

...
• Performance

 Latency, throughput, ...

Otherwise: Don’t distribute, its far more complex hence
expensive, error-prone, ...

DS WS 2019 25

Design goals in Distributed Systems

• Resource sharing (collaborative, competitive)
• Transparency
• Hiding internal structure, complexity

• Openness
• Portability, interoperability, ...

• Services provided by standard rules
• Scalability
• Ability to expand the system easily
• Concurrency

• inherently parallel (not just simulated)

• Fault Tolerance (FT), availability

DS WS 2019 26

The 8 Fallacies of Distributed
Computing

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Essentially everyone, when they first build a distributed application, makes the above
eight assumptions. All prove to be false in the long run and all cause big trouble and
painful learning experiences. (Peter Deutsch)

DS WS 2019 27

Connecting Users and Services

• Access and share (remote) resources
• Economics and policies
• Collaboration by information exchange
• Communication (Convergence, VoIP)
• Groupware and virtual organizations
• Electronic and mobile commerce
• Sensor/actor networks in automation and

pervasive computing (fine grained distribution)
• May compromise security (tamper proof HW)

and privacy (tracking, spam)
DS WS 2019 28

Quality of Service (QoS)

• QoS is a concept with which clients can indicate
the level of service (SLA) they require

Examples:
• For real-time voice communication, the client

prefers reliable delivery times over guaranteed
delivery

• In financial applications, a client may prefer
encrypted communication in favor of faster
communication

• You can’t have it all -> Trade-offs!
DS WS 2019 29

Transparency

• Concept: Hide different aspects of distribution
from the client. It is the ultimate goal of many
distributed systems.

• It can be achieved by providing lower-level
(system) services (i.e. use another layer).

• The client uses these services instead of
hardcoding the information.

• The service layer provides a service with a
certain Quality of Service.

DS WS 2019 30

Transparency in a Distributed System

Different forms of transparency in a distributed system (ISO, 1995).

Transparency:
Information Hiding Applied to Distributed Systems

DS WS 2019 31

Transparency

Access
Transparency

Location
Transparency

Mobility
Transparency

Replication
Transparency

Scaling
Transparency

Performance
Transparency

Concurrency
Transparency

Failure
Transparency

(ANSA and ISO RM-ODP)
DS WS 2019 32

Degree of Transparency

• Not blindly try to hide every aspect of distribution
• Performance transparency difficult (LAN/WAN)
• Trade-off transparency/performance

Failure masking
Replica consistency

• Transparency is an important goal, but has to be
considered together with all other non-functional
requirements and with respect to particular demands

DS WS 2019 33

Openness

• Offer services according to standard rules (syntax and
semantics: format, contents, and meaning)

• Formalized in protocols
• Interfaces (IDL): semantics often informal

Complete Interoperability: Communication between
processes

Neutral Portability: Different implementations of interface
• Flexibility: composition, configuration, replacement,

extensibility (CBSE)

DS WS 2019 34

Separating Policy from Mechanism

• Granularity: objects vs. applications?

• Component interaction and composition standards
(instead of closed/monolithic)

• E.g. Web browser provides facility to store cached
documents, but caching policy can be plugged in
arbitrarily (parameters or algorithmic).

DS WS 2019 35

Achieving openness

Web examples

• Different Web servers and Web browsers interoperate

• New browsers may be introduced to work with existing
servers (and vice versa)

• Plugin interface allows new services to be added

DS WS 2019 36

Scalability

• A distributed system’s ability to grow to meet
increasing demands along several dimensions:
1. Size (users and resources)
2. Geographically (topologically)
3. Administratively (independent organizations/domains)

• System remains effective
• System and application software should not need to

change
• Trade-Off scalability/security

DS WS 2019 37

Scalability Challenges (size)

• Controlling the cost of physical resources: The
quantity required should be O(n)

• Controlling the performance loss: In hierarchical
system should be no worse than O(log n)
• O(log N) basically means time goes up linearly while the n goes up exponentially.

So if it takes 1second to compute 10 elements, it will take 2 seconds to
compute 100 elements, 3 seconds to compute 1000 elements, and so on.

• Preventing software resources running out, but over-
compensation may be even worse: e.g., Internet
Addresses or Oracle7 2TB restriction

• Avoiding performance bottlenecks (centralized
services, data, or algorithms)
DS WS 2019 38

Performance Bottlenecks

Examples of scalability limitations with respect to size.

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book, central DNS

Centralized algorithms Doing routing based on complete information

DS WS 2019 39

Decentralized Algorithms

1. No machine has complete system state
information

2. Machines make decisions based only on local
(surrounding) information

3. Failure of one machine does not ruin the
algorithm (no single point of failure)

4. No implicit assumption that a global clock
exists

DS WS 2019 40

Geographical Scalability

• LAN:
Synchronous communication
Fast
Broadcast
Highly reliable

• WAN:
Asynchronous communication
Slow
Point to point (e.g. problems with location service)
Unreliable

DS WS 2019 41

Administrative Scalability

• Conflicting policies (e.g., tel. number portability):
1. Resource usage
2. Billing
3. Management
4. Security: Protection between the administrative

domains – trusted domains – enforced limitations

DS WS 2019 42

Scaling Techniques

• Hiding communication latencies
Asynchronous communication (batch processing,

parallel applications)
Reduce overall communication (HMI)

• Distribution
Hierarchies, domains, zones, … split

• Replication:
Availability, load balance, reduce communication
Caching: proximity, client decision
Consistency issues may adverse scalability!

DS WS 2019 43

Scaling Techniques (2)

1.4

The difference between letting:

(a) a server or (b) a client check forms as they are being filled

DS WS 2019 44

Scaling Techniques (3)

1.5

An example of dividing the DNS name space into zones.
DS WS 2019 45

ARCHITECTURAL STYLES

DS WS 2019 46

Dealing with complexity

• Abstraction (and modeling)
• Client, server, service
• Interface versus implementation

• Information hiding (encapsulation)
• Interface design

• Separation of concerns
• Layering (filesystem example: bytes, disc blocks,

files)
• Client and server
• Components (granularity issues)

DS WS 2019 47

Communication models

• Multiprocessors: shared memory (requires
protection against concurrent access)

• Multicomputers: message passing
• Synchronization in shared memory:

• Semaphores (atomic mutex variable)
• Monitors — an abstract data type whose operations may

be invoked by concurrent threads; different invocations
are synchronized

• Synchronization in multicomputers: blocking in
message passing

DS WS 2019 48

Architectural Styles (1)

Important styles of architecture for
distributed systems

• Layered architectures
• Object-based architectures
• Data-centered architectures
• Event-based architectures

DS WS 2019 49

Architectural Styles (2)

The layered architectural style

DS WS 2019 50

Architectural Styles (3)

The object-based architectural style

DS WS 2019 51

Architectural Styles (4)

The event-based architectural style

DS WS 2019 52

Architectural Styles (5)

The shared data-space architectural style.

DS WS 2019 53

Centralized Architectures

General interaction between a client and a server.

DS WS 2019 54

Application Layering (1)

Recall previously mentioned layers of
architectural style

• The user-interface level
• The processing level
• The data level

DS WS 2019 55

Application Layering (2)
The simplified organization of an Internet search engine
into three different layers.

DS WS 2019 56

Multitiered Architectures (1)

The simplest organization is to have only
two types of machines:

• A client machine containing only the
programs implementing (part of) the user-
interface level

• A server machine containing the rest, the
programs implementing the processing and
data level

DS WS 2019 57

Two-tier Architecture

DS WS 2019 58

Multitiered Architectures (2)

Vertical Distribution: Alternative client-server
organizations (a)–(e).

DS WS 2019 59

Multi-tiered Architectures (3)

An example of a server acting as client.

DS WS 2019 60

Three-tier Architecture

DS WS 2019 61

Application (System) Integration

DS WS 2019 62

DS WS 2019 63

Summary
• A distributed system is a collection of computers working

seamlessly together (single-system image – pro/con!)

• Distributed systems have evolved to be pervasive

• Principles and techniques are needed to cope with the
complexity of distributed systems (openness, scalability,
architectural styles, ...)

• Basic abstractions and concepts for distributed systems:
client/server, layering (multitier), middleware, service, QoS,
...

DS WS 2019 64

Thanks for
your attention

Prof.Dr. Schahram Dustdar
Distributed Systems Group
Vienna University of Technology

dustdar@dsg.tuwien.ac.at
dsg.tuwien.ac.at

DS WS 2019 65

	Distributed Systems
	Outline
	Lecture Material
	Recommended additional reading
	Prerequisites
	Overview and Introduction
	Evolution
	The complete Internet 1969
	Part of the US Internet 1980
	Part of a network today
	Growth of the Internet
	Internet of Things
	Verteilte Systeme
	Verteilte Systeme
	Verteilte Systeme
	Verteilte Systeme
	Evolution of Distribution technologies
	Definition of a Distributed System (1)
	Slide Number 19
	Slide Number 20
	Types of Distributed Systems (1)
	Types of Distributed Systems (2)
	Concepts of Distributed Systems
	Key Concepts and Design Goals
	Why distribute at all?
	Design goals in Distributed Systems
	The 8 Fallacies of Distributed Computing
	Connecting Users and Services
	Quality of Service (QoS)
	Transparency
	Transparency in a Distributed System
	Transparency
	Degree of Transparency
	Openness
	Separating Policy from Mechanism
	Achieving openness
	Scalability
	Scalability Challenges (size)
	Performance Bottlenecks
	Decentralized Algorithms
	Geographical Scalability
	Administrative Scalability
	Scaling Techniques
	Scaling Techniques (2)
	Scaling Techniques (3)
	Architectural styles
	Dealing with complexity
	Communication models
	Architectural Styles (1)
	Architectural Styles (2)
	Architectural Styles (3)
	Architectural Styles (4)
	 Architectural Styles (5) 	
	Centralized Architectures
	Application Layering (1)
	Application Layering (2)
	Multitiered Architectures (1)
	Two-tier Architecture
	Multitiered Architectures (2)
	Multi-tiered Architectures (3)
	Three-tier Architecture
	Application (System) Integration
	Slide Number 63
	Summary
	Slide Number 65

