mn Verteilte Systeme, WS 2019

Consistency and Replication
part Il

Dr. Pantelis Frangoudis
Distributed Systems Group

\ \ TU Wien
& ,1%

pantelis.frangoudis@dsg.tuwien.ac.at

" Example: CDN
Content distribution — general aspects

Client-initiated replication (caching)
" |Important aspects of client-initiated content distribution
" Example: Web Proxies
Consistency protocols (= implementing consistency models):
" for data-centric consistency
" for client-centric consistency

Conclusion 2

[MSTRIBUTED SYSTEM

S GRo

mn Refresh: Consistency and Replication

Some good enough definitions

e Replication is the process of maintaining several copies of an
data item at different locations.

e Consistency is the process of keeping data item copies the
same when changes occur.

&

DS WS 2019 3

mn Refresh: Reasons for Replication

1. Performance and scalability

" scale in numbers
(more replicas can serve more client requests)

" scale in geographic/topological complexity
(replicas close to the client improve response time)

DS WS 2019

mn Refresh: Consistency and Replication

Some basic considerations:

" If no updates to the object — no consistency problem

" |f access-to-update ratio is high, replication pays off

" |f update-to-access ratio is high, many updates are never read
" |deally, update the replicas that are going to be accessed.

" As ageneral rule, we try to keep a replica close to its clients.

" Placement of replica servers vs. placement of contents.

DS WS 2019 5

mn Refresh: Replica placement

—» Serverinitiierte Replikation
---» Clientinitiierte Replikation

/’ N
/ Permanente N\
E Replikate
\

Serverinitiierte Replikation

g
e e D
\\ i 1
* ' ‘\
—”\\k__ E _//;’/
y 3 I .

A

H 3 D

DS WS 2019 6

[MSTRIBUTED SYSTEMS (RO

mn Server-initiated replicas: CDN

" Example: Content Delivery Network (CDN)

" Acting as a distributed Web hosting service.

" Web pages embed (static) documents that are large
In size and rarely change (such as images, audio/video files).

" It makes sense to replicate them across many geographically
distributed servers to allow for faster access to many clients (in
parallel).

. scale: ~100k servers, in over 100 countries

" Replication is dynamically triggered
based on runtime metrics:

" (eg., latency, bandwidth, financial aspects)

DS WS 2019 7

mn Server-initiated replicas: CDN

e.g., 135.207.24.11 6. Get embedded documents
CON [———__ (if not already cached)
server e ——_ _ >~
~ ~N
~ N
5. Get embedded AN
documents \ \
Retumn IP address 7. Embedded documents \ \\
client-best server \ v
) 1. Get base document) : —
CDN DNS a Client Origin
server [« < server
/ 2. Document with refs
DNS lookups ‘I 3 l to embedded documents
Regular
+ DNS system !

DS WS 2019 8

mn Server-initiated replicas: CDN

e.g., 135.207.24.11 6. Get embedded documents
S CDN | —-—~__ (ifnotalready cached)
server “« — — _ " 6. http://foo.com/pic.jpg
-~ - ™~
7 7 6b. AN

5. GET o pic.ipg N\ \

135.207 cRfc i intSPg ; A
Return IP address o \ \
Nt be 46, 7. BEthbéelded documents \ \

"135.207.24.11, P Y

e.g. |‘.he cEQsest 1.) .
‘ CDN DRI$ I(2 > Client —WWWWM - : QOrigin
server S l€«— 2. <img src= " server

http://images.foo.com/pic.jpg"/

4. images.foo.com.cdn-x.com * | -
? J .
3b. CNAME images.foo.com.cdn- + 3. 1images.foo.com mbedded documents
X.com | ? y
. Regular
« DNS system

DS WS 2019 9

[MSTRIBUTED SYSTEMS (GROUT "

DS WS 2019

Content distribution
between replicas

(general aspects)

10

MI] Content Distribution

We already saw concrete examples of how data is
distributed among multiple servers.

Before proceeding with client-initiated replication,

let's briefly discuss what are general strategies for
content distribution (both for server- and client-initiated
replication)

* Assumptions:
* We assume a generic system on N replica machines.
* Data is updated by one of the replicas.

* How do other replicas get the update?
DS WS 2019 11

MI] Content Distribution

1. Invalidation:

* Replicas are notified that there was an update.
No actual data sent = low bandwidth

* Other replicas mark the data as invalid.

* They decide when to update (depending on the
consistency model).

* Good when there are many updates that only
rarely get read.

DS WS 2019 12

MI] Content Distribution

2. Data Transfer:

* The updated data is copied to other replicas upon
an update.

e can be server- or client-initiated

Makes sense when read-to-write ratio is high and
strict consistency.
* ensures that updates get seen as they happen

e put consumes bandwidth

* multiple changes can be bundled together and sent as a
single update, if very frequent.

DS WS 2019 13

MI] Content Distribution

3. “Active” replication:

* Do not transfer the actual data, but the
Instructions that lead to the new values:

* e.g., send operation and parameters, e.g.,
invert_matrix(A)

* Possible for a limited number of special cases.

DS WS 2019 14

IS Content Distribution - Blocklng
vs. Non-blocking "

A replica wants to send an update

to other replicas:

* Synchronous (blocking, eager):
All replicas are updated immediately;

only then reply to originating replica.

* Asynchronous (non-blocking, lazy):
As soon as the update is delivered to
another one replica, the originator
proceeds. The propagation to other
replicas happens afterwards.

DS WS 2019 15

DS WS 2019

Client-initiated replication
(caching)

16

mn Client-initiated replication

" (Client) cache - local storage facility managed and
used by client to temporarily store data and improve
access times.

" especially useful if read-to-write ratio is high server
= Cache hit if data is found in cache

" Data is fetched in cache upon client's request. (shared)
" Data stored for limited time only et
" Usually located on client machine, | 4 |
. : : P F F .
or nearby (if shared by multiple clients)

(multiple) client(s)

DS WS 2019 17

Mﬂ Content Distribution — Push vs. Pull

Push-based (server-based) protocols

* Updates are propagated to other clients without them
asking for updates.

* Reaching consistency faster! (main application reason)

* |f server wants to update all clients at once, this is not
efficient (scalable): takes time, every client can fail.

* Unless efficient multicast implementation is available. e.qg., in LAN

* Alternatively, update only clients that need the information
e Server needs to know what each client has = stateful server

DS WS 2019 18

Mﬂ Content Distribution — Push vs. Pull

Pull-based (client-based) protocols

* Client polls server to check if updates are available.
Then asking for update.

* Response time for client increases in case of a cache miss

* Most often used by client caches.

DS WS 2019 19

Mﬂ Content Distribution — Push vs. Pull

Push-based Pull-based
84
Client list ‘ ~
: A A
‘:lupdate ' update
H det:';uils E det::qils
Update E E poll Ypdate E E
(notify) b (notify) § 3
\ v

DS WS 2019 Response time Response time

& -
[MSTRIBUTED SYSTEMS (GROLUT

@ﬂ Content Distribution — Push vs. Pull

Comparison summary

Issue Push-based Pull-based

State at server List of client replicas and caches None

Messages sent Update (and possibly fetch update Poll and update
later)

Response time Immediate (or fetch-update time) Fetch-update

at client time

* Can we get the advantages of both approaches at once?

* = Leases: A hybrid solution to dynamically switch between pulling
and pushing.

DS WS 2019 21

Mﬂ Content Distribution — Leases

Lease — A contract in which the server promises
to push updates to the client until the lease expires.

* When should a lease expire?
* Depends on system's behavior (adaptive leases).

* By choosing different lease durations, we want to
minimize the load on the server, server state and
speed up the updating of clients (higher consistency
level).

DS WS 2019 22

Mﬂ Content Distribution — Lease expiry

* Age-based leases: An object that hasn’t changed for a
long time, will not change Iin the near future, so provide
a long-lasting lease.

DS WS 2019 23

Mﬂ Content Distribution — Lease expiry

* Renewal-frequency based leases: The more often a
client requests a specific object, the longer the
expiration time for that client (for that object) will be.

DS WS 2019 24

Mﬂ Content Distribution — Lease expiry

e State-based leases: The more loaded a server Is, the
shorter the expiration times become.

DS WS 2019 25

Mﬂ Content Distribution - Leasing

What did we achieve with this?

e Server's state I1s smaller
 |imited to clients and data under lease

* Only those clients that actually need a higher
consistency level (achieved by pushes) apply for
a lease, so server can dedicate its resources to
them at the time.

e petter utilization of server and network. Less

unnecessary communication and data transfers.
DS WS 2019 26

MI] Application: Caching in the Web

* Browser cache (private)
* Web Proxy (shared)

e \Web server can indicate
If the data can be cached
via HTTP headers.

browser caches

* Web Proxies implement a pull-based protocol:

* |f data older that a speficic expiration threshold:
* poll the server with If-Modified-Since header.
* if modified since last update, server sends the update.

* else: upon client request provide the cached copy

DS WS 2019 27

MI] Application: Caching in the Web

* Normally ISPs set up a hierarchical proxy/caching

structure.

* Alternative: Cooperative caching (good for highly

decentralized systems)

3. Forward request
to Web server

Web
server

1. Look in
local cache
Web 2. Ask neighboring proxy caches Web
Client| |Client| |Client

Client| |Client| |Client

HTTP Get request

Web

proxy

Client

Client

Client

DS WS 2019 28

DS WS 2019

Consistency Protocols

29

Mﬂ Consistency Protocols

* Consistency Protocol:

Describes the implementation of a specific
consistency model.

* Data-centric consistency protocols:

* Primary-based protocols

* Primary backup protocol (with remote writes)
* Primary backup protocol with local writes

* Replicated-Write protocols
* Quorum based protocols

* Client-centric consistency protocols

DS WS 2019 30

Mﬂ Primary-based Protocols

Primary-backup protocol

Client Client

Primary server
A for ltem X A

Backup server

/
”@H@ T

U Data store

W2 W3
W4
- /
W1. Write request R1. Read request
WZ2. Forward request to primary R2. Response to read

Wa3. Tell backups to update
W4, Acknowledge update
W5. Acknowledge write completed

DS WS 2019 31

[MSTRIBUTED SYSTEMS (GROLUT ‘

MI] Primary-Backup Protocol

* Implements the sequential consistency model.

* All write operations are ordered through the primary
and delivered to the remaining servers.

* Reading the local copy yields the most up-to-date
value. Changes are atomic. No inconsistencies.

* Reading fast. Writing is slow (blocking operation).

 |f one node not available,
not possible to perform
a write = not resilient x foritemx X Backup server

k
W1| (W5 s \ R1| |R2 /

against network or node RS ——1
failure {@47%4?8 %

o
=
e

DS WS 2019 32

MI] Primary-Backup Protocol

* A non-blocking (asynchronous) scheme is also

possible.

* ACK as soon as Primary got the update
* Speeds up the writing

* Resilient against node and link failure

e But, data inconsistencies can occur

e alocal read does not
always return the most Client Client

Primary server

up-to-date value. i for temx X

W5 ws

Backup server

/

u

E@Téﬂ‘%@

J ata store

DS WS 2019 33

Mﬂ Primary-based Protocols

Primary-backup protocol with local writes

Client Client

Old primary New primary
for item X for item x Backup server
[re

: T
Eor=er
i

N J
W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
WS5. Acknowledge update

DS WS 2019 34

[MSTRIBUTED SYSTEMS (GROLUT

MI] Primary-Backup with local writes

* If there are not too many concurrent writes,

writing Is fast.

* The primary is a point of failure. If it fails, no other
node can become primary, or costly

reconfiguration needed to make another node

primary. cion

Old primary New primary

Client

Backup server
W3

for item x for item x
R1 THE \ \ W1 T
E% -

W5

éﬁ:’%‘:ﬁé/

\"T/ w4 Data store
W5 W2
W4

DS WS 2019 35

Mﬂ Quorum-based Protocols

* Ensure that each operation is carried out in such
a way that a majority vote Is established:
distinguish read quorum and write quorum:

Lese-Quorum

——————————

T ———————————— -

Schreib-Quorum

DS WS 2019 36

Mﬂ Quorum-based Protocols

* Basic idea: We have 5 nodes. To write to the
system, the client has to synchrounously
write/read to more than half of nodes (3).

* Data have monotonically increasing version
numbers (e.g., timestamps), so that we can
establish which version is newer.

* Advantage: Need to contact less nodes.
Important if there are many nodes (shortens
operation time) and/or some nodes are (often)
Inaccessible to the client.

DS WS 2019

Mﬂ Quorum-based Protocols

Quorum-based protocol configuration considerations

e Optimize read: R=1, W=N
e Optimize write: W=1, R=N (no durability guarantees)
e Avoid write conflicts] W > (N+1)/2
e Strong consistency: |[W+R > N

--

‘A B CY N=12,W=6,R=1 (A B} (C) N=12, W=8, R=4
D .E . ..E/ D E | F

76 H] I G Hi | I

I K. g KL

DS WS 2019 38

Mﬂ Client-Centric Consistency Protocols

Requirements for (a naive) implementation:

* Each write operation W is assigned a unique ID.

* Fromthe ID it is possible to determine the server
(origin) where the write operation took place.

* For each client, we keep two sets:

* read set — set of write operation IDs on which client's
read operations depend.

* write set — set of client's own write operations.

DS WS 2019 39

Mﬂ Client-Centric Consistency Protocols

L1: WS(x4) R(x4)--,

L2: WS(x4;X5) @

Monotonic reads:

When a client performs a read operation at a server:

1. Server is handed the client's read set to check whether all
the read-relevant writes have taken place locally.

2. If not, it contacts the other servers to ensure that it is
brought up to date before carrying out the read operation.

3. Read set is updated with relevant local write operations
[S WS(X,)]

DS WS 2019 40

Mﬂ Client-Centric Consistency Protocols

Monotonic writes:

L2: WS(x4) T— @

When a client performs a write operation at a server:

1. The server is handed the client's write set to make sure all
previous writes have been locally retrieved.

2. If not, it contacts the other servers to fetch them.
May take considerable time!

3. Write set is updated with ID(X,).

(Other client-centric models implemented in a similar spirit.)

DS WS 2019 41

mn Conclusions

" Replication is a mechanism to improve performance
(availability, scalability) and fault tolerance.

" The big problem: consistency
" For systems with different requirements we have

defined different consistency models.

" To implement different consistency models we need different
content distribution and consistency protocols

" Most importantly, we need to understand the
Implications of applying different protocols and
techniques, make correct engineering trade-offs and
design decisions to build an efficient system.

DS WS 2019 42

mn Learning Material

" Main reading:
" Tanenbaum, Chapter 7

DS WS 2019 43

Thanks for your attention!

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

Pantelis Frangoudis
pantelis.frangoudis@dsg.tuwien.ac.at

DS WS 2019 44

	Diapo 1
	Outline
	Refresh: Consistency and Replication
	Refresh: Reasons for Replication
	Refresh: Consistency and Replication
	Refresh: Replica placement
	Server-initiated replicas: CDN
	Server-initiated replicas: CDN
	Server-initiated replicas: CDN
	Content distribution between replicas (general aspects)
	Content Distribution
	Content Distribution
	Content Distribution
	Content Distribution
	Content Distribution – Blocking vs. Non-blocking
	Client-initiated replication (caching)
	Client-initiated replication
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Leases
	Content Distribution – Lease expiry
	Content Distribution – Lease expiry
	Content Distribution – Lease expiry
	Content Distribution – Leasing
	Application: Caching in the Web
	Application: Caching in the Web
	Consistency Protocols
	Consistency Protocols
	Primary-based Protocols
	Primary-Backup Protocol
	Primary-Backup Protocol
	Primary-based Protocols
	Primary-Backup with local writes
	Quorum-based Protocols
	Quorum-based Protocols
	Quorum-based Protocols
	Client-Centric Consistency Protocols
	Client-Centric Consistency Protocols
	Client-Centric Consistency Protocols
	Conclusions
	Learning Material
	Diapo 44

