
Consistency and Replication
part II

Dr. Pantelis Frangoudis
 Distributed Systems Group

TU Wien

 pantelis.frangoudis@dsg.tuwien.ac.at

Verteilte Systeme, WS 2019

Outline

 Introduction

 Consistency Models
 Data-centric

 Client-centric

 Replica management
 Server-initiated

 Example: Dynamic Web Content placement (Rabinovich)

 Example: CDN

 Content distribution – general aspects

 Client-initiated replication (caching)
 Important aspects of client-initiated content distribution

 Example: Web Proxies

 Consistency protocols (= implementing consistency models):
 for data-centric consistency

 for client-centric consistency

 Conclusion 2

Refresh: Consistency and Replication

DS WS 2019 3

Refresh: Reasons for Replication

4

1. Performance and scalability
 scale in numbers

(more replicas can serve more client requests)

 scale in geographic/topological complexity
(replicas close to the client improve response time)

DS WS 2019

Refresh: Consistency and Replication

DS WS 2019 5

Some basic considerations:

 If no updates to the object → no consistency problem

 If access-to-update ratio is high, replication pays off

 If update-to-access ratio is high, many updates are never read

 Ideally, update the replicas that are going to be accessed.

 As a general rule, we try to keep a replica close to its clients.

 Placement of replica servers vs. placement of contents.

Refresh: Replica placement

DS WS 2019 6

Server-initiated replicas: CDN

DS WS 2019 7

 Example: Content Delivery Network (CDN)
 Acting as a distributed Web hosting service.

 Web pages embed (static) documents that are large
in size and rarely change (such as images, audio/video files).

 It makes sense to replicate them across many geographically
distributed servers to allow for faster access to many clients (in
parallel).
 scale: ~100k servers, in over 100 countries

 Replication is dynamically triggered
based on runtime metrics:
 (eg., latency, bandwidth, financial aspects)

Server-initiated replicas: CDN

DS WS 2019 8

e.g., 135.207.24.11

Server-initiated replicas: CDN

DS WS 2019 9

2. <img src= "
http://images.foo.com/pic.jpg"/
>

1.
http://foo.com/index.html

3. images.foo.com
?

3b. CNAME images.foo.com.cdn-
x.com

4b.
"135.207.24.11„

e.g., the closest

4. images.foo.com.cdn-x.com
?

5. GET
135.207.24.11/pic.jpg

7.
pic.jpg

e.g., 135.207.24.11

6. http://foo.com/pic.jpg

6b.
pic.jpg

Content distribution
between replicas

(general aspects)

DS WS 2019 10

Content Distribution

DS WS 2019 11

We already saw concrete examples of how data is
distributed among multiple servers.

Before proceeding with client-initiated replication,
let‘s briefly discuss what are general strategies for
content distribution (both for server- and client-initiated
replication)

• Assumptions:
• We assume a generic system on N replica machines.

• Data is updated by one of the replicas.

• How do other replicas get the update?

Content Distribution

DS WS 2019 12

1. Invalidation:

• Replicas are notified that there was an update.
No actual data sent low bandwidth⇒

• Other replicas mark the data as invalid.
• They decide when to update (depending on the

consistency model).

• Good when there are many updates that only
rarely get read.

Content Distribution

DS WS 2019 13

2. Data Transfer:

• The updated data is copied to other replicas upon
an update.
• can be server- or client-initiated

• Makes sense when read-to-write ratio is high and
strict consistency.

• ensures that updates get seen as they happen

• but consumes bandwidth
• multiple changes can be bundled together and sent as a

single update, if very frequent.

Content Distribution

DS WS 2019 14

3. “Active” replication:

• Do not transfer the actual data, but the
instructions that lead to the new values:
• e.g., send operation and parameters, e.g.,

invert_matrix(A)

• Possible for a limited number of special cases.

Content Distribution – Blocking
vs. Non-blocking

DS WS 2019 15

A replica wants to send an update

to other replicas:

• Synchronous (blocking, eager):
All replicas are updated immediately;

only then reply to originating replica.

• Asynchronous (non-blocking, lazy):
As soon as the update is delivered to
another one replica, the originator
proceeds. The propagation to other
replicas happens afterwards.

Client-initiated replication
(caching)

DS WS 2019 16

Client-initiated replication

DS WS 2019 17

 (Client) cache – local storage facility managed and
used by client to temporarily store data and improve
access times.
 especially useful if read-to-write ratio is high

 Cache hit if data is found in cache

 Data is fetched in cache upon client‘s request.
 Data stored for limited time only
 Usually located on client machine,

or nearby (if shared by multiple clients)

Content Distribution – Push vs. Pull

DS WS 2019 18

Push-based (server-based) protocols

• Updates are propagated to other clients without them
asking for updates.
• Reaching consistency faster! (main application reason)

• If server wants to update all clients at once, this is not
efficient (scalable): takes time, every client can fail.
• Unless efficient multicast implementation is available. e.g., in LAN

• Alternatively, update only clients that need the information
• Server needs to know what each client has ⇒ stateful server

Content Distribution – Push vs. Pull

DS WS 2019 19

Pull-based (client-based) protocols

• Client polls server to check if updates are available.
Then asking for update.

• Response time for client increases in case of a cache miss

• Most often used by client caches.

Content Distribution – Push vs. Pull

DS WS 2019 20

Content Distribution – Push vs. Pull

DS WS 2019 21

Comparison summary

• Can we get the advantages of both approaches at once?
• Leases: A hybrid solution to dynamically switch between pulling

and pushing.

Content Distribution – Leases

DS WS 2019 22

Lease – A contract in which the server promises
to push updates to the client until the lease expires.

• When should a lease expire?
• Depends on system‘s behavior (adaptive leases).

• By choosing different lease durations, we want to
minimize the load on the server, server state and
speed up the updating of clients (higher consistency
level).

Content Distribution – Lease expiry

DS WS 2019 23

• Age-based leases: An object that hasn’t changed for a
long time, will not change in the near future, so provide
a long-lasting lease.

Content Distribution – Lease expiry

DS WS 2019 24

• Age-based leases: An object that hasn’t changed for a
long time, will not change in the near future, so provide
a long-lasting lease.

• Renewal-frequency based leases: The more often a
client requests a specific object, the longer the
expiration time for that client (for that object) will be.

Content Distribution – Lease expiry

DS WS 2019 25

• Age-based leases: An object that hasn’t changed for a
long time, will not change in the near future, so provide
a long-lasting lease.

• Renewal-frequency based leases: The more often a
client requests a specific object, the longer the
expiration time for that client (for that object) will be.

• State-based leases: The more loaded a server is, the
shorter the expiration times become.

Content Distribution – Leasing

DS WS 2019 26

What did we achieve with this?

• Server‘s state is smaller
• limited to clients and data under lease

• Only those clients that actually need a higher
consistency level (achieved by pushes) apply for
a lease, so server can dedicate its resources to
them at the time.
• better utilization of server and network. Less

unnecessary communication and data transfers.

Application: Caching in the Web

DS WS 2019 27

• Browser cache (private)

• Web Proxy (shared)

• Web server can indicate
if the data can be cached
via HTTP headers.

• Web Proxies implement a pull-based protocol:
• If data older that a speficic expiration threshold:

• poll the server with If-Modified-Since header.
• if modified since last update, server sends the update.

• else: upon client request provide the cached copy

Application: Caching in the Web

DS WS 2019 28

• Normally ISPs set up a hierarchical proxy/caching
structure.

• Alternative: Cooperative caching (good for highly
decentralized systems)

Consistency Protocols

DS WS 2019 29

Consistency Protocols

DS WS 2019 30

• Consistency Protocol:
Describes the implementation of a specific
consistency model.

• Data-centric consistency protocols:
• Primary-based protocols

• Primary backup protocol (with remote writes)
• Primary backup protocol with local writes

• Replicated-Write protocols
• Quorum based protocols

• Client-centric consistency protocols

Primary-based Protocols

DS WS 2019 31

Primary-Backup Protocol

DS WS 2019 32

• Implements the sequential consistency model.
• All write operations are ordered through the primary

and delivered to the remaining servers.

• Reading the local copy yields the most up-to-date
value. Changes are atomic. No inconsistencies.

• Reading fast. Writing is slow (blocking operation).

• If one node not available,
not possible to perform
a write not resilient ⇒
against network or node
failure

Primary-Backup Protocol

DS WS 2019 33

• A non-blocking (asynchronous) scheme is also
possible.
• ACK as soon as Primary got the update

• Speeds up the writing

• Resilient against node and link failure

• But, data inconsistencies can occur
• a local read does not

always return the most
up-to-date value.

Primary-based Protocols

DS WS 2019 34

Primary-Backup with local writes

DS WS 2019 35

• If there are not too many concurrent writes,
writing is fast.

• The primary is a point of failure. If it fails, no other
node can become primary, or costly
reconfiguration needed to make another node
primary.

Quorum-based Protocols

DS WS 2019 36

• Ensure that each operation is carried out in such
a way that a majority vote is established:
distinguish read quorum and write quorum:

Quorum-based Protocols

DS WS 2019 37

• Basic idea: We have 5 nodes. To write to the
system, the client has to synchrounously
write/read to more than half of nodes (3).

• Data have monotonically increasing version
numbers (e.g., timestamps), so that we can
establish which version is newer.

• Advantage: Need to contact less nodes.
Important if there are many nodes (shortens
operation time) and/or some nodes are (often)
inaccessible to the client.

Quorum-based Protocols

DS WS 2019 38

Client-Centric Consistency Protocols

DS WS 2019 39

Requirements for (a naive) implementation:

• Each write operation W is assigned a unique ID.
• From the ID it is possible to determine the server

(origin) where the write operation took place.
• For each client, we keep two sets:

• read set – set of write operation IDs on which client‘s
read operations depend.

• write set – set of client‘s own write operations.

Client-Centric Consistency Protocols

DS WS 2019 40

Monotonic reads:

When a client performs a read operation at a server:

1. Server is handed the client's read set to check whether all
the read-relevant writes have taken place locally.

2. If not, it contacts the other servers to ensure that it is
brought up to date before carrying out the read operation.

3. Read set is updated with relevant local write operations
[WS(x⊆ 2)]

Client-Centric Consistency Protocols

DS WS 2019 41

Monotonic writes:

When a client performs a write operation at a server:

1. The server is handed the client's write set to make sure all
previous writes have been locally retrieved.

2. If not, it contacts the other servers to fetch them.
May take considerable time!

3. Write set is updated with ID(x2).

(Other client-centric models implemented in a similar spirit.)

Conclusions

DS WS 2019 42

 Replication is a mechanism to improve performance
(availability, scalability) and fault tolerance.

 The big problem: consistency
 For systems with different requirements we have

defined different consistency models.
 To implement different consistency models we need different

content distribution and consistency protocols

 Most importantly, we need to understand the
implications of applying different protocols and
techniques, make correct engineering trade-offs and
design decisions to build an efficient system.

Learning Material

 Main reading:
 Tanenbaum, Chapter 7

DS WS 2019 43

DS WS 2019

Thanks for your attention!

Pantelis Frangoudis
pantelis.frangoudis@dsg.tuwien.ac.at

44

	Diapo 1
	Outline
	Refresh: Consistency and Replication
	Refresh: Reasons for Replication
	Refresh: Consistency and Replication
	Refresh: Replica placement
	Server-initiated replicas: CDN
	Server-initiated replicas: CDN
	Server-initiated replicas: CDN
	Content distribution between replicas (general aspects)
	Content Distribution
	Content Distribution
	Content Distribution
	Content Distribution
	Content Distribution – Blocking vs. Non-blocking
	Client-initiated replication (caching)
	Client-initiated replication
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Push vs. Pull
	Content Distribution – Leases
	Content Distribution – Lease expiry
	Content Distribution – Lease expiry
	Content Distribution – Lease expiry
	Content Distribution – Leasing
	Application: Caching in the Web
	Application: Caching in the Web
	Consistency Protocols
	Consistency Protocols
	Primary-based Protocols
	Primary-Backup Protocol
	Primary-Backup Protocol
	Primary-based Protocols
	Primary-Backup with local writes
	Quorum-based Protocols
	Quorum-based Protocols
	Quorum-based Protocols
	Client-Centric Consistency Protocols
	Client-Centric Consistency Protocols
	Client-Centric Consistency Protocols
	Conclusions
	Learning Material
	Diapo 44

