
Fault Tolerance

Associate Prof. Dr.-Ing. Stefan Schulte

Distributed Systems Group

TU Wien

s.schulte@infosys.tuwien.ac.at

„The dependability of a system is the 

ability to avoid service failures that are 

more frequent and more severe than 

is acceptable”

(John Knight)

mailto:s.schulte@infosys.tuwien.ac.at


Summary from the Last Lecture

• Naming: 

• Flat Naming

• Structured Naming

• Attribute-based Naming

DS WS 2019 2



Goals for Today

• Name and compare the different types of faults

• Be able to describe different kinds of 

redundancy

• Understand & explain the different cases in fault 

handling for RPC

DS WS 2019 3



Outline

1. Introduction to Fault Tolerance

2. Process Resilience

3. Reliable Client-Server Communication

Section 8.1 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 4



The Case of Ariane 5

• Control software taken over from Ariane 4 

without further testing

• Costs: 290 Million €

• A “simple” problem with float numbers caused 

the problem

• Software was even redundant: 

• However, both systems had the same software bug

DS WS 2019 5



Dependability

• Basics: In Distributed Systems (DS), 

components provide services to clients 

• To provide services, the component may require 

services from other components

• This means: It depends on some other component

• More specific: The correctness of the component in 

question depends on the correctness of another 

component

• Dependability is therefore a core objective in 

DS: Clients require correct service w.r.t.

functional and non-functional properties.

DS WS 2019 6



Dependability: Attributes

• Availability: Immediate readiness for correct service

• Reliability: Continuity of correct service

• Safety: Absence of catastrophic consequences

• Integrity: Absence of improper system alterations

• Maintainability: Ability to undergo modifications

DS WS 2019 7

Dependability

Availability

Security

Reliability

Safety

Confidentiality

Integrity

Maintainability



Threats to Dependability

• Failure: Delivered service deviates from correct

service, i.e., the system functionality is not 

delivered anymore

• Error: Deviation of the actual system state from

the perceived one

• Fault: Cause of an error

Fault → Error → Failure

DS WS 2019 8



Example I: Failures, Errors, Faults

• Fault: Software bug in a particular method

(so far, the fault is dormant: As long as nobody calls the

method, it will not become active)

• Error: The process offering this method is called

(fault becomes active), leading to calculation of

wrong value

• Failure: If there is no mechanism to identify the

error, it will lead to incorrect service of the

component calling the process
DS WS 2019 9



Example II: Failures, Errors, Faults

• Fault: Defect USB port of external drive

(as long as you do not make use of the drive: fault is

dormant, your computer is still working)

• Error: Input/Output operation started; bit errors

occur

• Failure: It is not possible to correctly copy files

from/to the external drive

DS WS 2019 10



Failure Models

• Crash Failure: Component halts, but is working correctly 

until that moment. 

• Omission Failure: Component fails to respond:

• Receive omission: Fails to receive incoming messages

• Send omission: Fails to send messages

• Timing Failure: Response lies outside a specified time 

interval

• Response Failure: Response is incorrect:

• Value failure: The value of the response is wrong

• State-transition failure: Deviates from the correct flow of control

• Arbitrary Failure (aka Byzantine Failure): May produce 

arbitrary failures at arbitrary times 

DS WS 2019 11



What to do about Faults?

• Fault Prevention: 

• Prevent the occurence of a fault 

• Fault Forecasting:

• Estimate present and future faults and their

consequences

• Fault Tolerance:

• Avoid that service failures occur from faults, i.e., 

masks the presence of faults

• Service provision is continued!

• Fault Removal:

• Reduce the number and severity of faults

DS WS 2019 12



Approaches to Fault Tolerance

• “No Fault Tolerance Without Redundancy” 

(Gärtner, 1999)

• Use redundancy to mask a failure, i.e., hide the

occurence of a fault

• Failure Masking by Redundancy:

• Information Redundancy: Add extra information

• Time Redundancy: Repeat request

• Physical Redundancy: Add additional components

DS WS 2019 13



Redundancy – Examples

• Information Redundancy:

• Add a parity bit

• Error Correcting Codes (memory)

• Time Redundancy:

• Retransmissions in TCP/IP

• Physical Redundancy:

• Backup server

• Hard disks in a RAID 1

• But also: Different implementations of same functionality in 

different processes

DS WS 2019 14



Physical Redundancy – Example

Electronic circuit with Triple Modular Redundancy:

DS WS 2019 15



Outline

1. Introduction to Fault Tolerance

2. Process Resilience

3. Reliable Client-Server Communication

Section 8.2 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 16



Basics

• How to tolerate faulty processes?

• “No Fault Tolerance Without Redundancy”

• Organize several identical processes into a group

DS WS 2019 17



Communication in 

Hierarchical Groups

• Hierarchical Groups:

• Communication through a single coordinator

• Not really fault-

tolerant or

scalable

• However, easier to

implement

DS WS 2019 18



Communication in Flat Groups

• Flat Groups:

• Good for fault tolerance as

information exchange

immediately occurs with all

group members

• May impose overhead as

control is completely

distributed, and voting

needs to be carried out

• Harder to implement

DS WS 2019 19



Groups and Failure Masking

• k-fault tolerant group:

• Group is able to mask any k concurrent member

failures

• Assumptions: All members are identical and 

process all input in the same order

• How large does a k-fault tolerant group need to

be?

• Crash/omission/timing failure models (i.e., components

don‘t answer anymore): k+1 are necessary

• Arbitrary/Byzantine failure model: 2k+1 components

are necessary

DS WS 2019 20



Outline

1. Introduction to Fault Tolerance

2. Process Resilience

3. Reliable Client-Server Communication

Section 8.3 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 21



Reliable Client-Server 

Communication

• So far: Process

Resilience

• But what about

reliable

communication

channels?

DS WS 2019 22

2

31

a b

Process 2 tells

different things

2

31

b

Connection between

Process 2 and Process 1 fails



Remote Procedure Calls:

What can go wrong? 

1.Client cannot locate server

2.Client request is lost

3.Server crashes after receiving a message

4.Reply message from server is lost

5.Client crashes (after sending a request)

DS WS 2019 23



Remote Procedure Calls:

Solutions I

1.Client cannot locate a server

→ Just report back to client

→ Client has to take care of it (e.g., exception 

handling)

2.Client request is lost

→ Resend request message (using some kind of 

timer)

→ Server needs to know the difference between 

original and retransmission

DS WS 2019 24



Remote Procedure Calls:

Solutions II

3. Server crashes

a) Normal case

b) Crash after execution

c) Crash before execution

DS WS 2019 25



Remote Procedure Calls:

Solutions II

3. Server crashes

a) Normal case – no crash

b) Crash after execution

c) Crash before execution

DS WS 2019 26

The client is not able to

see the difference, i.e., 

no fully transparent 

server recovery possible



Remote Procedure Calls:

Solutions III

3. Server crashes

• Correct behavior of Client depends on behavior of server

1. At-least-once-semantics: The server guarantees it will carry out 

an operation at least once, no matter what

2. At-most-once-semantics: The server guarantees it will carry out 

an operation at most once.

• And the Client? (if not receiving a reply, but a message 

that the server has rebooted)

1. Always reissues a request

2. Never reissues a request

3. Reissue a request only if it did receive an ACK

4. Reissue a request only if it did not receive an ACK (that request 

has been delivered)

DS WS 2019 27



Remote Procedure Calls:

Solutions IV

3. Server crashes 

• 8 possible combinations of strategies

• Example: Client sends printing request to Print Server

• Three events may happen at the Server:

(M) Send the completion message (REP)

(P) Print the text

(C) Crash 

• There is no combination of server and client 

strategies that will work correctly under all possible 

event sequences.

DS WS 2019 28



Remote Procedure Calls:

Solutions V

3. Server crashes 

• These events can occur in six different 
sequences:
1. M →P →C: A crash occurs after sending the completion 

message and printing the text.

2. M →C (→P): A crash happens after sending the completion 
message, but before the text could be printed.

3. P →M →C: A crash occurs after printing the text and sending the 
completion message.

4. P→C(→M): The text is printed, after which a crash occurs before 
the completion message could be sent.

5. C (→P →M): A crash happens before the server could do 
anything.

6. C (→M →P): A crash happens before the server could do 
anything.

DS WS 2019 29



Remote Procedure Calls:

Solutions VI

3. Server crashes

M = Send the completion message, P = Print, C = Crash

DS WS 2019 30

Example: Client

wrongly assumes

Print hasn‘t been

carried out

Example: Client

wrongly assumes

Print has been

carried out



Remote Procedure Calls:

Solutions VII

4. Server response is lost

• How do we know that the server has not crashed?

• Once again: Has the server carried out the

operation?

• Repeat request: 

→ In case of real-world impact? Transfer from your

banking account carried out twice?

• No real solution! Except making operations

idempotent, i.e., repeatable without any harm

DS WS 2019 31



Remote Procedure Calls:

Solutions VIII

5. Client crashes (after request has been sent)

• Server executes requests anyway and sends

response (called orphan computation)

• Different Solutions:

1. Orphan is deleted by Client if it is received

2. Reincarnation: Client tells Servers that it has rebooted; 

Server deletes orphans

3. Expiration: Require computations to complete in T time 

units. Old ones are simply removed.

DS WS 2019 32



Conclusions

• General introduction to fault tolerance

• Resilient processes: Groups

• Reliable client-server communication

DS WS 2019 33



DS WS 2019

Thanks for your attention!

Stefan Schulte

s.schulte@infosys.tuwien.ac.at

34



Further Readings

▪ van Steen / Tanenbaum: Distributed Systems – Principles and 

Paradigms, 3rd edition, 2017. (Today: Chapters 8.1-8.3)

▪ Avizienis, Laprie, Randell, Landwehr: Basic Concepts and 

Taxonomy of Dependable and Secure Computing, IEEE 

Transactions on Dependable and Secure Computing, 1(1), 2004.

▪ Gärtner: Fundamentals of Fault-Tolerant Distributed Computing in 

Asynchronous Environments, ACM Computing Surveys, 31(1), 

1999.

DS WS 2019 35


