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Lecture Material

• Slides available for download, but not sufficient for 
self-study! Please read on…
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Recommended additional reading
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Prerequisites

• Data structures and algorithms (sequential)
• Operating systems / Systems programming
• Software engineering concepts
• Object-oriented programming

• For the lab: Java’s support for modularity 
(packages and interfaces), object orientation, 
exceptions, distribution (RMI), code mobility
(applets, class loader), and concurrency 
(threads and synchronization)
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OVERVIEW AND
INTRODUCTION
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Evolution

• Until 1985 large and expensive stand-alone 
computers

• Powerful microprocessors (price/performance
gain 1012 in 50 years)

• High-speed computer networks (LAN/WAN)
-> composition of computing systems of large

numbers of computers connected by a 
highspeed network increase
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The complete Internet 1969
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Vint Cerf

Robert E. 
Kahn



Part of the US Internet 1980
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Part of a network today
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Growth of the Internet
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Internet of Things

50 000 000 000
Internet-connected devices until 2020
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Evolution of Distribution technologies

• Mainframe computers
• Workstations and local networks
• Client-server systems
• Internet-scale systems and WWW
• Sensor/actor networks in automation
• Mobile, ad-hoc, and adaptive systems
• Pervasive (ubiquitous) systems
• Today, less than 2% of processors go into 

personal computers!

DS WS 2019 17



Definition of a Distributed System (1)

A collection of
independent computers
that appears to its users

as a single coherent
system.
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A collection of autonomous
computers linked by a computer

network and supported by software
that enables the collection to

operate as an integrated facility.

Definition of a Distributed System (2)
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You know you have one
when the crash of a computer

you have never heard of
stops you from getting any
work done. (Leslie Lamport)

Definition of a Distributed System (3)
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Types of Distributed Systems (1)

• Object/component based (CORBA, EJB, COM)
• File based (NFS)
• Document based (WWW, Lotus Notes)
• Coordination (or event-) based (Jini, 

JavaSpaces, publish/subscribe, P2P)
• Resource oriented (GRID, Cloud, P2P, MANET)
• Service oriented (Web services, Cloud, P2P)
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• Distributed Computing (cluster, GRID, cloud)

• Distributed Information Systems (EAI, TP, SOA)

• Distributed Pervasive (often P2P, UPnP in 
home systems, sensor networks, ...)

Types of Distributed Systems (2)
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Concepts of Distributed Systems

• Communication
• Concurrency and operating system support 

(competitive, cooperative)
• Naming and discovery
• Synchronization and agreement
• Consistency and replication
• Fault-tolerance
• Security
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KEY CONCEPTS AND DESIGN 
GOALS
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Why distribute at all?

• Connecting users to resources and services
 Basic function of a distributed system

• Dependability and Security
 Availability, Fault tolerance, Intrusion Tolerance, 

...
• Performance

 Latency, throughput, ...

Otherwise: Don’t distribute, its far more complex hence
expensive, error-prone, ...
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Design goals in Distributed Systems

• Resource sharing (collaborative, competitive)
• Transparency
• Hiding internal structure, complexity

• Openness
• Portability, interoperability, ...

• Services provided by standard rules
• Scalability
• Ability to expand the system easily
• Concurrency

• inherently parallel (not just simulated)

• Fault Tolerance (FT), availability
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The 8 Fallacies of Distributed 
Computing

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Essentially everyone, when they first build a distributed application, makes the above 
eight assumptions. All prove to be false in the long run and all cause big trouble and 
painful learning experiences. (Peter Deutsch)
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Connecting Users and Services

• Access and share (remote) resources
• Economics and policies
• Collaboration by information exchange
• Communication (Convergence, VoIP)
• Groupware and virtual organizations
• Electronic and mobile commerce
• Sensor/actor networks in automation and 

pervasive computing (fine grained distribution)
• May compromise security (tamper proof HW) 

and privacy (tracking, spam)
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Quality of Service (QoS)

• QoS is a concept with which clients can indicate 
the level of service (SLA) they require

Examples:
• For real-time voice communication, the client 

prefers reliable delivery times over guaranteed
delivery

• In financial applications, a client may prefer 
encrypted communication in favor of faster 
communication

• You can’t have it all -> Trade-offs!
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Transparency

• Concept: Hide different aspects of distribution 
from the client. It is the ultimate goal of many 
distributed systems.

• It can be achieved by providing lower-level 
(system) services (i.e. use another layer).

• The client uses these services instead of 
hardcoding the information.

• The service layer provides a service with a 
certain Quality of Service.
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Transparency in a Distributed System

Different forms of transparency in a distributed system (ISO, 1995).

Transparency:
Information Hiding Applied to Distributed Systems
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Transparency

Access
Transparency

Location
Transparency

Mobility
Transparency

Replication
Transparency

Scaling
Transparency

Performance
Transparency

Concurrency
Transparency

Failure
Transparency

(ANSA and ISO RM-ODP)
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Degree of Transparency

• Not blindly try to hide every aspect of distribution
• Performance transparency difficult (LAN/WAN)
• Trade-off transparency/performance

Failure masking
Replica consistency

•  Transparency is an important goal, but has to be 
considered together with all other non-functional 
requirements and with respect to particular demands
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Openness

• Offer services according to standard rules (syntax and 
semantics: format, contents, and meaning)

• Formalized in protocols
• Interfaces (IDL): semantics often informal

Complete  Interoperability: Communication between 
processes

Neutral  Portability: Different implementations of interface
• Flexibility: composition, configuration, replacement, 

extensibility (CBSE)
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Separating Policy from Mechanism

• Granularity: objects vs. applications?

• Component interaction and composition standards 
(instead of closed/monolithic)

• E.g. Web browser provides facility to store cached 
documents, but caching policy can be plugged in 
arbitrarily (parameters or algorithmic).
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Achieving openness

Web examples

• Different Web servers and Web browsers interoperate

• New browsers may be introduced to work with existing 
servers (and vice versa)

• Plugin interface allows new services to be added
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Scalability

• A distributed system’s ability to grow to meet 
increasing demands along several dimensions:
1. Size (users and resources)
2. Geographically (topologically)
3. Administratively (independent organizations/domains)

• System remains effective
• System and application software should not need to 

change
• Trade-Off scalability/security
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Scalability Challenges (size)

• Controlling the cost of physical resources: The 
quantity required should be O(n)

• Controlling the performance loss: In hierarchical 
system should be no worse than O(log n)
• O(log N) basically means time goes up linearly while the n goes up exponentially. 

So if it takes 1second to compute 10 elements, it will take 2 seconds to 
compute 100 elements, 3 seconds to compute 1000 elements, and so on.

• Preventing software resources running out, but over-
compensation may be even worse: e.g., Internet 
Addresses or Oracle7 2TB restriction

• Avoiding performance bottlenecks (centralized 
services, data, or algorithms)
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Performance Bottlenecks 

Examples of scalability limitations with respect to size.

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book, central DNS

Centralized algorithms Doing routing based on complete information
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Decentralized Algorithms

1. No machine has complete system state 
information

2. Machines make decisions based only on local 
(surrounding) information

3. Failure of one machine does not ruin the 
algorithm (no single point of failure)

4. No implicit assumption that a global clock 
exists
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Geographical Scalability

• LAN:
Synchronous communication
Fast
Broadcast
Highly reliable

• WAN:
Asynchronous communication
Slow
Point to point (e.g. problems with location service)
Unreliable
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Administrative Scalability

• Conflicting policies (e.g., tel. number portability):
1. Resource usage
2. Billing
3. Management
4. Security: Protection between the administrative 

domains – trusted domains – enforced limitations
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Scaling Techniques

• Hiding communication latencies
Asynchronous communication (batch processing, 

parallel applications)
Reduce overall communication (HMI)

• Distribution
Hierarchies, domains, zones, …  split

• Replication:
Availability, load balance, reduce communication
Caching: proximity, client decision
Consistency issues may adverse scalability!
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Scaling Techniques (2)

1.4

The difference between letting:

(a) a server or (b) a client check forms as they are being filled
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Scaling Techniques (3)

1.5

An example of dividing the DNS name space into zones.
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ARCHITECTURAL STYLES
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Dealing with complexity

• Abstraction (and modeling)
• Client, server, service
• Interface versus implementation

• Information hiding (encapsulation)
• Interface design

• Separation of concerns
• Layering (filesystem example: bytes, disc blocks, 

files)
• Client and server
• Components (granularity issues)
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Communication models

• Multiprocessors: shared memory (requires
protection against concurrent access)

• Multicomputers: message passing
• Synchronization in shared memory:

• Semaphores (atomic mutex variable)
• Monitors — an abstract data type whose operations may 

be invoked by concurrent threads; different invocations 
are synchronized

• Synchronization in multicomputers: blocking in 
message passing
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Architectural Styles (1)

Important styles of architecture for 
distributed systems

• Layered architectures
• Object-based architectures
• Data-centered architectures
• Event-based architectures
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Architectural Styles (2)

The layered architectural style
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Architectural Styles (3)

The object-based architectural style
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Architectural Styles (4)

The event-based architectural style  
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Architectural Styles (5) 

The shared data-space architectural style.
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Centralized Architectures

General interaction between a client and a server.
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Application Layering (1)

Recall previously mentioned layers of 
architectural style

• The user-interface level
• The processing level
• The data level
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Application Layering (2)
The simplified organization of an Internet search engine 
into three different layers.
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Multitiered Architectures (1)

The simplest organization is to have only 
two types of machines:

• A client machine containing only the 
programs implementing (part of) the user-
interface level

• A server machine containing the rest, the 
programs implementing the processing and 
data level
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Two-tier Architecture
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Multitiered Architectures (2)

Vertical Distribution: Alternative client-server 
organizations (a)–(e).
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Multi-tiered Architectures (3)

An example of a server acting as client.
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Three-tier Architecture
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Application (System) Integration
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Summary
• A distributed system is a collection of computers working

seamlessly together (single-system image – pro/con!)

• Distributed systems have evolved to be pervasive

• Principles and techniques are needed to cope with the 
complexity of distributed systems (openness, scalability, 
architectural styles, ...)

• Basic abstractions and concepts for distributed systems: 
client/server, layering (multitier), middleware, service, QoS, 
...
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Thanks for 
your attention

Prof.Dr. Schahram Dustdar
Distributed Systems Group
Vienna University of Technology

dustdar@dsg.tuwien.ac.at
dsg.tuwien.ac.at
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