Fault Tolerance

Associate Prof. Dr.-Ing. Stefan Schulte
Distributed Systems Group
TU Wien

, 1 he dependability of a system is the
ability to avoid service failures that are
more frequent and more severe than
is acceptable”

(John Knight)

-
c e ® DISTRIBUTED
e dsg ‘SYSTEMS GROUP

mailto:s.schulte@infosys.tuwien.ac.at

mn Summary from the Last Lecture

* Naming:
« Flat Naming
e Structured Naming
« Attribute-based Naming

DS WS 2019 2 o dsg | B,

mn Goals for Today

 Name and compare the different types of faults

« Be able to describe different kinds of
redundancy

* Understand & explain the different cases in fault
handling for RPC

DS WS 2019 3 o e G

mn Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication

Section 8.1 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 4 o e G

mn The Case of Ariane 5

 Control software taken over from Ariane 4
without further testing

» (Costs: 290 Million €

* A “simple” problem with float numbers caused
the problem

« Software was even redundant:
 However, both systems had the same software bug

DS WS 2019 5 o e G

mn Dependability

« Basics: In Distributed Systems (DS),
components provide services to clients

« To provide services, the component may require
services from other components

 This means: It depends on some other component
« More specific: The correctness of the component in

guestion depends on the correctness of another
component
 Dependability Is therefore a core objective In
DS: Clients require correct service W.r.t.
functional and non-functional properties.
DS WS 2019 6 o e G

mn Dependability: Attributes

—Avallability —
— Reliability
N — Safety _
Dependability —— _ o ——Security
Confidentiality—

— Integrity —

— Maintainability
« Avallability: Immediate readiness for correct service
« Reliability: Continuity of correct service

« Safety: Absence of catastrophic consequences

* Integrity: Absence of improper system alterations

« Maintainability: Ability to undergo modifications

DS WS 2019 7 o e G

mn Threats to Dependability

* Failure: Delivered service deviates from correct
service, I.e., the system functionality is not
delivered anymore

* Error: Deviation of the actual system state from
the perceived one

 Fault; Cause of an error

Fault — Error — Fallure

DS WS 2019 8 o e G

mn Example I. Failures, Errors, Faults

* Fault: Software bug in a particular method

(so far, the fault is dormant: As long as nobody calls the
method, it will not become active)

* Error: The process offering this method is called
(fault becomes active), leading to calculation of
wrong value

* Falilure: If there is no mechanism to identify the
error, it will lead to incorrect service of the
component calling the process

DS WS 2019 9 o e G

mn Example Il: Failures, Errors, Faults

* Fault: Defect USB port of external drive

(as long as you do not make use of the drive: fault is
dormant, your computer is still working)

* Error: Input/Output operation started; bit errors
occur

* Fallure: It is not possible to correctly copy files
from/to the external drive

ca® DISTRIBUTED

DS WS 2019 10 A dsg |SYSTEMS GROUP

mn Failure Models

Crash Failure: Component halts, but is working correctly
until that moment.

Omission Failure: Component fails to respond:
* Receive omission: Fails to receive incoming messages

« Send omission: Fails to send messages

Timing Failure: Response lies outside a specified time
Interval

Response Failure: Response is incorrect:
« Value failure: The value of the response is wrong
« State-transition failure: Deviates from the correct flow of control

Arbitrary Failure (aka Byzantine Failure): May produce
arbitrary failures at arbitrary times

DS WS 2019 11 o dsg | B,

mn What to do about Faults?

Fault Prevention:
* Prevent the occurence of a fault

Fault Forecasting:

« Estimate present and future faults and their
consequences

Fault Tolerance:

« Avoid that service failures occur from faults, I.e.,
masks the presence of faults

e Service provision is continued!

Fault Removal:

 Reduce the number and severity of faults

DS WS 2019 12 o e G

mn Approaches to Fault Tolerance

* “No Fault Tolerance Without Redundancy”
(Gartner, 1999)

« Use redundancy to mask a failure, i.e., hide the
occurence of a fault

* Failure Masking by Redundancy:
« Information Redundancy: Add extra information
 Time Redundancy: Repeat request
« Physical Redundancy: Add additional components

DS WS 2019 13 o e G

mn Redundancy — Examples

* Information Redundancy:
 Add a parity bit
 Error Correcting Codes (memory)
 Time Redundancy:
 Retransmissions in TCP/IP

« Physical Redundancy:
 Backup server
« HarddisksinaRAID 1

« But also: Different implementations of same functionality in
different processes

DS WS 2019 14 o dsg | B,

mn Physical Redundancy — Example

Electronic circuit with Triple Modular Redundancy:

) ® ©

Vit —— (o —— v

'/<\ Voter /

} B2 } C2 V
Device

DS WS 2019 15 o e G

mn Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication

Section 8.2 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 16 o e G

mn Basics

 How to tolerate faulty processes?

* “No Fault Tolerance Without Redundancy”

« Organize several identical processes into a group

Hierarchical group Coordinator Flat group

~
"~—— -

DS WS 2019 17 S dsg | QTREUTED

mn Communication in
Hierarchical Groups

* Hierarchical Groups:
« Communication through a single coordinator

* Not really fault-

tolerant or Hierarchical group Coordinator
scalable

« However, easier to
Implement

DS WS 2019 18 o e G

mn Communication in Flat Groups

* Flat Groups:

 Good for fault tolerance as
Information exchange
Immediately occurs with all
group members

« May impose overhead as
control is completely
distributed, and voting
needs to be carried out

« Harder to implement

Flat group

DS WS 2019 19 o e G

mn Groups and Failure Masking

« k-fault tolerant group:
* Group is able to mask any k concurrent member
failures
« Assumptions: All members are identical and
orocess all input in the same order

 How large does a k-fault tolerant group need to

ne?

« Crash/omission/timing failure models (i.e., components
don‘t answer anymore): k+1 are necessary

« Arbitrary/Byzantine failure model: 2k+1 components
are necessary

DS WS 2019 20 o e G

mn Outline

1. Introduction to Fault Tolerance
2. Process Resilience
3. Reliable Client-Server Communication

Section 8.3 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 21 o e G

mn Reliable Client-Server
Communication

« So far: Process But what about
Resilience reliable
communication
channels?

N@
/
Process 2 tells 6

different things Connection between
Process 2 and Process 1 fails

DS WS 2019 22 o dsg | B,

mn Remote Procedure Calls:
What can go wrong?

1. Client cannot locate server

2.Client request is lost

3. Server crashes after receiving a message
4.Reply message from server is |lost

5. Client crashes (after sending a request)

ca® DISTRIBUTED

DS WS 2019 23 A dsg |SYSTEMS GROUP

mn Remote Procedure Calls:
Solutions |

1. Client cannot locate a server
— Just report back to client
— Client has to take care of it (e.g., exception
handling)

2.Client request Is lost
— Resend request message (using some kind of
timer)
— Server needs to know the difference between
original and retransmission

DS WS 2019 24 o e G

mn Remote Procedure Calls:

Solutions |l

REQ Server

3. Server crashes > .
a) Normal case Receive
b) Crash after execution ~EP Execute

c) Crash before execution <« Reply
REQ Server REQ Server
P Receive P Receive

Execute Crash

N%RE_P___ Crash NO‘REI_D_“

DISTRIBUTED

DS WS 2019 25 :'f': dsg |SYSTEMS GROUP

mn Remote Procedure Calls:
Solutions I

3. Server crashes

a) Normal case — no crash

_ The client is not able to
b) Crash after execution }
n

no fully transparent

see the difference, i.e.,
c) Crash before executio .
server recovery possible

REQ Server REQ Server
P Receive P Receive
Execute Crash
NoREP |[5msn] | NOREP

DS WS 2019 26 o e G

mn Remote Procedure Calls:
Solutions Il

3. Server crashes

« Correct behavior of Client depends on behavior of server

1. At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what

2. At-most-once-semantics: The server guarantees it will carry out
an operation at most once.

 And the Client? (if not receiving a reply, but a message
that the server has rebooted)

Always reissues a request

Never reissues a request

Reissue a request only if it did receive an ACK

Reissue a request only if it did not receive an ACK (that request
has been delivered)

A

DS WS 2019 27 :,:.: dsg |DISTRIBUTED

A SYSTEMS GROUP

mn Remote Procedure Calls:
Solutions IV

3. Server crashes
« 8 possible combinations of strategies

« Example: Client sends printing request to Print Server

 Three events may happen at the Server:
(M) Send the completion message (REP)
(P) Print the text
(C) Crash
* There Is no combination of server and client
strategies that will work correctly under all possible

event sequences.

DS WS 2019 28 o e G

mn Remote Procedure Calls:

Solutions V

3. Server crashes

These events can occur In six different
sequences:

1.

2.

3.

M —P —C: A crash occurs after sending the completion
message and printing the text.

M —C (—P): A crash happens after sending the completion
message, but before the text could be printed.

P —M —C: A crash occurs after printing the text and sending the
completion message.

. P—C(—M): The text is printed, after which a crash occurs before

the completion message could be sent.

. C (—=P —M): A crash happens before the server could do

anything.

. C (—M —P): A crash happens before the server could do

anything.

DS WS 2019 29 o dsg | B,

mn Remote Procedure Calls:

Solutions VI
3. Server crashes

Strategy M > P

Example: Client
wrongly assumes
Print has been
carried out

Strategy P - M

Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)
Always DUP | OK OK DUP | DUP QK
Never OK | ZERO | ZERO OK OR\ ZERO
Only when ACKed DUP OK ZERO DUP OK ZERO
Only when not ACKed OK | ZERO OK OK DUP \ OK
Client Server Server \

M = Send the completion message, P = Print, C = Crash

DS WS 2019

30

Example: Client
wrongly assumes
Print hasn't been
carried out

L 3
e ® DISTRIBUTED
-'.'- d Sg ‘ SYSTEMS GROUP

mn Remote Procedure Calls:
Solutions VI

4, Server response is lost

« How do we know that the server has not crashed?

 Once again: Has the server carried out the
operation?
* Repeat request:

— In case of real-world impact? Transfer from your
banking account carried out twice?

 No real solution! Except making operations
Idempotent, i.e., repeatable without any harm

DS WS 2019 31 o e G

mn Remote Procedure Calls:
Solutions VIlI

5. Client crashes (after request has been sent)

e Server executes requests anyway and sends
response (called orphan computation)

 Different Solutions:
1. Orphan is deleted by Client if it is received

2. Reincarnation: Client tells Servers that it has rebooted:;
Server deletes orphans

3. Expiration: Require computations to complete in T time
units. Old ones are simply removed.

DS WS 2019 32 o e G

mn Conclusions

 General iIntroduction to fault tolerance
* Resilient processes: Groups

 Reliable client-server communication

DS WS 2019 33 o dsg | B,

Thanks for your attention!

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

Stefan Schulte
s.schulte@infosys.tuwien.ac.at

DS WS 2019 34 o dsg | B,

mn Further Readings

= van Steen / Tanenbaum: Distributed Systems — Principles and
Paradigms, 3rd edition, 2017. (Today: Chapters 8.1-8.3)

= Avizienis, Laprie, Randell, Landwehr: Basic Concepts and
Taxonomy of Dependable and Secure Computing, IEEE
Transactions on Dependable and Secure Computing, 1(1), 2004.

= Gartner. Fundamentals of Fault-Tolerant Distributed Computing in

Asynchronous Environments, ACM Computing Surveys, 31(1),
19909.

DS WS 2019 35 :,:.: dsg |DISTRIBUTED

A SYSTEMS GROUP

