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Summary from the Last Lecture

• Fault Tolerance: 

• General introduction

• Process Resilience

• Reliable Client-Server Communication
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Goals for Today

• Understand the time synchronization issue(s) 

• Be able to exercise algorithms to synchronize

clocks

• Apply leader election algorithms

DS WS 2019 3



Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.1 of van Steen/Tanenbaum, 3rd edition
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Motivation
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Physical Clocks

• Your computer‘s internal clock is based

on a quartz crystal

• Different clock values: Clock skew

• Solution approach: Synchronize local clocks, 

using the Universal Coordinated Time (UTC)

• Aims:

• Precision: Keep deviations within a specific bound

between machines in a distributed system (internal 

synchronization)

• Accuracy: Keep deviations with a reference value

within a specific bound (external synchronization)
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Network Time Protocol (NTP)
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NTP: Calculating δ
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NTP: Calculating θ
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NTP: Calculating θ

DS WS 2019 10

Time Server B

DB-Server A

DB 1

XII

IIIIX

VI

XII

IIIIX

VI

T2 = 12:11 T3 = 12:15
Zeit

Zeit

δTrequest δTresponse

T1 = 12:15 T4 = 12:21



NTP: Changing the Time

• Buffering 8 pairs (δ, θ)

• Select the pair with the minimal δ and the according

offset θ

• What to do if θ is negative? 

• Time is not allowed to run backwards

• So, let the clock run slower, until the correction has

been made
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NTP: Symmetric Time Propagation 

• NTP is used bidirectional, i.e., both involved

servers get the delta and offset and adjust their

clocks
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Berkeley Algorithm: 

Basic Approach

• NTP works best if you got a very accurate

source

• When no reliable time source: Let a local time 

server scan all machines periodically, calculate

an average, and inform remaining machines

how they should adjust their time relative to

their present time
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Berkeley Algorithm: Example
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Berkeley Algorithm: Overview

• Time daemon is polling-based

• Benefit: Machines will be in sync without UTC

• Drawback: Only suitable in small environments
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Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.2 of van Steen/Tanenbaum, 3rd edition
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Logical Clocks: Motivation

Case 1: First the deposit, then the

interest

Case 2: First the interest, then the

deposit
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“Happens-before” Relation

• a → b: “event a happens before event b”

1. If a and b are two events in the same process, and a

comes before b, then a → b

2. If a is the sending of a message, and b is the receipt 

of that message, then a → b

3. If a → b and b → c, then a → c
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Logical Clocks: Global View

Question: How do we maintain a global view on 

the system’s behavior that is consistent with the 

happened-before relation?

Solution: Attach a timestamp C(e) to each event e, 

satisfying two properties:

1. If a and b are two events in the same process, 

and a → b, then we demand that C(a) < C(b)

2. If a corresponds to sending a message m, and b to 

the receipt of that message, then also C(a) < C(b)
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P1

Lamport‘s Algorithm

Each process Pi maintains a local

counter Ci and adjusts this

counter:

1. Before each new event that

takes place within Pi, Ci is

incremented by some value, 

i.e., Ci ← Ci + n.

2. Each time a message is sent by

Process Pi, the message

receives a timestamp ts(m) = Ci.

3. Whenever a message m is

received a process Pj, Pj

adjusts its local counter Cj to

max{Cj, ts(m)}, then executes

Step 1 and passes m to the

application.
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Limitations of Logical Clocks

• Do not capture

causality

• 𝑎 → 𝑏 ⇒ 𝐶(𝑎) < 𝐶(𝑏)

but:

𝐶(𝑎) < 𝐶(𝑏) ⇏ 𝑎 → 𝑏
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Vector Clocks

Causal Dependency:

• Allow us to know 

that: If VC(a) < VC(b), 

then a causally 

precedes b
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Basic Approach:

• We assign each 

event a unique 

name: pk is the kth

event that happened 

at process P

• Causal history H(p2)

of event p2 is {p1, p2}



Sending Messages 

• Apart from the actual message content, the causal history is also 

sent

• Causal history of sender is merged into causal history of receiver

• Check if event p precedes causally an event q
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Vector Clocks: Basic Approach

Each process Pi maintains a 

vector clock VCi, where:

1. VCi[i] is the number of 

events that happened in 

Pi

2. VCi[j] = k means that Pi 

knows that k events 

have previously occurred 

in Pj

Maintaining vector clocks:

1. Increment VCi[i] before 

executing an event

2. When sending a 

message m, set m’s 

(vector) timestamp ts(m)

equal to VCi after having 

executed Step 1.

3. When receiving m, Pj

sets VCj[k] to 

max{VCj[k], ts(m)[k]} for

each k; afterwards, 

execute Step 1
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Vector Clocks: Example

Reminder: When receiving m, Pj sets VCj[k] to max{VCj[k], 

ts(m)[k]} for each k; afterwards, execute Step 1
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Vector Clocks: Example II
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Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.4 of van Steen/Tanenbaum, 3rd edition
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Motivation & Basic Assumptions

• How can we select this

special process

dynamically?

• Basic assumptions:

• All processes have unique

IDs

• All processes know IDs of 

all processes in the

system (but not if they are

up or down)

• Election means identifying

the process with the

highest ID that is up
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Election by Bullying

Very simplistic approach:

• Any process may notice 

failure/absence of coordinator

• Any process may trigger an 

election

Holding an election:

1. Pk sends an ELECTION 

message to all processes with 

higher identifier (Pk+1, Pk+2, …)

2. If no one responds, Pk wins

3. If one of the higher-ups 

answers, it takes over 
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Election in a Ring

Processes organized in a logical ring, ordered by process 

priority.

• Any process can start an election by sending an 

election message to its successor. If a successor is 

down, the message is passed on to the next successor.

• When the message is passed on, the sender adds itself 

to a list in this message. When it gets back to the 

initiator, everyone has had a chance to make its 

presence known.

• The initiator sends a coordinator message around the 

ring containing a list of all living processes. The one 

with the highest priority elects himself as coordinator.
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Election in a Ring: 

Election Messages
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Election in a Ring: 

Coordinator Messages
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Conclusions

• Clock Synchronization: Network Time Protocol 

& Berkeley algorithm

• Logical Clocks: Lamport‘s logical clocks & 

vector clocks

• Leadership Election
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Thanks for your attention!

Stefan Schulte

s.schulte@dsg.tuwien.ac.at
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