
Synchronization and Coordination

Associate Prof. Dr.-Ing. Stefan Schulte

Distributed Systems Group

TU Wien

s.schulte@dsg.tuwien.ac.at

mailto:s.schulte@dsg.tuwien.ac.at

Summary from the Last Lecture

• Fault Tolerance:

• General introduction

• Process Resilience

• Reliable Client-Server Communication

DS WS 2019 2

Goals for Today

• Understand the time synchronization issue(s)

• Be able to exercise algorithms to synchronize

clocks

• Apply leader election algorithms

DS WS 2019 3

Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.1 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 4

Motivation

DS WS 2019 5

XII

IIIIX

VI

XII

IIIIX

VI

XII

IIIIX

VI

??? €

1110 €

+ 1% Interest

+ 100 €

12:15 +100 € 12:15 +100 € 12:10 +10 €
12:10 +10 €

Time Server

Universal Coordinated Time (UTC)

XII

IIIIX

VI

Physical Clocks

• Your computer‘s internal clock is based

on a quartz crystal

• Different clock values: Clock skew

• Solution approach: Synchronize local clocks,

using the Universal Coordinated Time (UTC)

• Aims:

• Precision: Keep deviations within a specific bound

between machines in a distributed system (internal

synchronization)

• Accuracy: Keep deviations with a reference value

within a specific bound (external synchronization)

DS WS 2019 6

Network Time Protocol (NTP)

DB-Server A

DB 1

XII

IIIIX

VI

Time Server B

XII

IIIIX

VI

T1 T4

T2 T3
Zeit

Zeit

δTrequest δTresponse

DS WS 2019 7

NTP: Calculating δ

DS WS 2019 8

Time Server B

DB-Server A

DB 1

XII

IIIIX

VI

XII

IIIIX

VI

T1 = 12:15 T4 = 12:30

T2 = 12:11 T3 = 12:15
Zeit

Zeit

δTrequest δTresponse

T1 = 12:15 T4 = 12:21

T1 T2 T3 T4 δ

12:15 12:11 12:15 12:30 5.5

12:15 12:11 12:15 12:21 1

NTP: Calculating θ

DS WS 2019 9

Time Server B

DB-Server A

DB 1

XII

IIIIX

VI

XII

IIIIX

VI

T1 = 12:15 T4 = 12:30

T2 = 12:11 T3 = 12:15
Zeit

Zeit

δTrequest δTresponse

NTP: Calculating θ

DS WS 2019 10

Time Server B

DB-Server A

DB 1

XII

IIIIX

VI

XII

IIIIX

VI

T2 = 12:11 T3 = 12:15
Zeit

Zeit

δTrequest δTresponse

T1 = 12:15 T4 = 12:21

NTP: Changing the Time

• Buffering 8 pairs (δ, θ)

• Select the pair with the minimal δ and the according

offset θ

• What to do if θ is negative?

• Time is not allowed to run backwards

• So, let the clock run slower, until the correction has

been made

DS WS 2019 11

T1 T2 T3 T4 δ θ

12:15 12:11 12:15 12:30 5.5 -9.5

12:15 12:11 12:15 12:21 1 -5

DB-Server A

DB 1

XII

IIIIX

VI

NTP: Symmetric Time Propagation

• NTP is used bidirectional, i.e., both involved

servers get the delta and offset and adjust their

clocks

DS WS 2019 12

Berkeley Algorithm:

Basic Approach

• NTP works best if you got a very accurate

source

• When no reliable time source: Let a local time

server scan all machines periodically, calculate

an average, and inform remaining machines

how they should adjust their time relative to

their present time

DS WS 2019 13

Berkeley Algorithm: Example

DS WS 2019 14

Server B

Server A

XII

IIIIX

VI

XII

IIIIX

VI

Server C
XII

IIIIX

VI

03:00

03:00

03:00

Network

Time Daemon

Server B

Server A

XII

IIIIX

VI

XII

IIIIX

VI

Server C
XII

IIIIX

VI

0

+25
-10

Network

Time Daemon

Server B

Server A

Server C

Network

Time Daemon

-20+15

+5

XII

IIIIX
VI

XII

IIIIX

VI

XII

IIIIX

VI

Berkeley Algorithm: Overview

• Time daemon is polling-based

• Benefit: Machines will be in sync without UTC

• Drawback: Only suitable in small environments

DS WS 2019 15

Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.2 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 16

Logical Clocks: Motivation

Case 1: First the deposit, then the

interest

Case 2: First the interest, then the

deposit

DS WS 2019 17

1111 €

1111 €
+ 1% Interest

+ 100 €

12:15 +100 € +100 € 12:10 +10 €
+11 €

1110 €

+ 1% Interest

+ 100 €

12:15 +100 € +100 € 12:10 +10 €
+10 €

1110 €

“Happens-before” Relation

• a → b: “event a happens before event b”

1. If a and b are two events in the same process, and a

comes before b, then a → b

2. If a is the sending of a message, and b is the receipt

of that message, then a → b

3. If a → b and b → c, then a → c

DS WS 2019 18

a b

b1 b

a a1

P

P1

P2

a → b

a → b

a → a1

b1 → b

a1 || b

b1 || A

Logical Clocks: Global View

Question: How do we maintain a global view on

the system’s behavior that is consistent with the

happened-before relation?

Solution: Attach a timestamp C(e) to each event e,

satisfying two properties:

1. If a and b are two events in the same process,

and a → b, then we demand that C(a) < C(b)

2. If a corresponds to sending a message m, and b to

the receipt of that message, then also C(a) < C(b)

DS WS 2019 19

P1

Lamport‘s Algorithm

Each process Pi maintains a local

counter Ci and adjusts this

counter:

1. Before each new event that

takes place within Pi, Ci is

incremented by some value,

i.e., Ci ← Ci + n.

2. Each time a message is sent by

Process Pi, the message

receives a timestamp ts(m) = Ci.

3. Whenever a message m is

received a process Pj, Pj

adjusts its local counter Cj to

max{Cj, ts(m)}, then executes

Step 1 and passes m to the

application.

DS WS 2019 20

0

6

12

18

24

30

36

42

48

54

60

P2

0

8

16

24

32

40

48

56

64

72

80

P3

0

10

20

30

40

50

60

70

80

90

100

m1

m2

m3

m4

ts(m1) = C1 = 6

61

69

77

85

70

76

Limitations of Logical Clocks

• Do not capture

causality

• 𝑎 → 𝑏 ⇒ 𝐶(𝑎) < 𝐶(𝑏)

but:

𝐶(𝑎) < 𝐶(𝑏) ⇏ 𝑎 → 𝑏

DS WS 2019 21

P1

0

6

12

18

P2

0

8

16

24

P3

0

10

20

30

m1

m2

24

30

36

42

48

60

32

40

48

56

64

72

80

40

50

60

70

80

90

100

m4

m5

61

69

77

85

70

76

m3

Vector Clocks

Causal Dependency:

• Allow us to know

that: If VC(a) < VC(b),

then a causally

precedes b

DS WS 2019 22

Basic Approach:

• We assign each

event a unique

name: pk is the kth

event that happened

at process P

• Causal history H(p2)

of event p2 is {p1, p2}

Sending Messages

• Apart from the actual message content, the causal history is also

sent

• Causal history of sender is merged into causal history of receiver

• Check if event p precedes causally an event q

DS WS 2019 23

q1

p3

Q

P
{p1, p2, p3}

q2

{p3}

{p3, q1, q2}

Vector Clocks: Basic Approach

Each process Pi maintains a

vector clock VCi, where:

1. VCi[i] is the number of

events that happened in

Pi

2. VCi[j] = k means that Pi

knows that k events

have previously occurred

in Pj

Maintaining vector clocks:

1. Increment VCi[i] before

executing an event

2. When sending a

message m, set m’s

(vector) timestamp ts(m)

equal to VCi after having

executed Step 1.

3. When receiving m, Pj

sets VCj[k] to

max{VCj[k], ts(m)[k]} for

each k; afterwards,

execute Step 1
DS WS 2019 24

Vector Clocks: Example

Reminder: When receiving m, Pj sets VCj[k] to max{VCj[k],

ts(m)[k]} for each k; afterwards, execute Step 1

DS WS 2019 25

m1

P1

P2

P3

(0, 1, 0)

(1, 1, 0) (2, 1, 0)

(2, 1, 1)

(3, 1, 0) (4, 1, 0)

m2
m3

(4, 2, 0)

m4

(4, 3, 0)

(4, 3, 2)

Vector Clocks: Example II

DS WS 2019 26

m1

P1

P2

P3

(0, 1, 0)

(1, 1, 0) (2, 1, 0)

(4, 3, 2)

(3, 1, 0) (4, 1, 0)

m2
m3

(2, 2, 0)

m4

(2, 3, 0)

(2, 3, 1)

ts(m2) ts(m4) ts(m2) < ts(m4) ts(m2) > ts(m4) Conclusion

Last slide (2, 1, 0) (4, 3, 0) Yes No m2 may causally
precede m4

Here (4, 1, 0) (2, 3, 0) No No m2 and m4

may conflict

Outline

1. Clock Synchronization

2. Logical Clocks

3. Leader Election Algorithms

Section 6.4 of van Steen/Tanenbaum, 3rd edition

DS WS 2019 27

Motivation & Basic Assumptions

• How can we select this

special process

dynamically?

• Basic assumptions:

• All processes have unique

IDs

• All processes know IDs of

all processes in the

system (but not if they are

up or down)

• Election means identifying

the process with the

highest ID that is up

DS WS 2019 28

Election by Bullying

Very simplistic approach:

• Any process may notice

failure/absence of coordinator

• Any process may trigger an

election

Holding an election:

1. Pk sends an ELECTION

message to all processes with

higher identifier (Pk+1, Pk+2, …)

2. If no one responds, Pk wins

3. If one of the higher-ups

answers, it takes over

DS WS 2019 29

1

6

7

4

5

30

2

X

COORDINATOR

Election in a Ring

Processes organized in a logical ring, ordered by process

priority.

• Any process can start an election by sending an

election message to its successor. If a successor is

down, the message is passed on to the next successor.

• When the message is passed on, the sender adds itself

to a list in this message. When it gets back to the

initiator, everyone has had a chance to make its

presence known.

• The initiator sends a coordinator message around the

ring containing a list of all living processes. The one

with the highest priority elects himself as coordinator.

DS WS 2019 30

Election in a Ring:

Election Messages

DS WS 2019 31

1

67

4

5

3

0

2

X

[3]

[3, 4]

[3, 4, 5][3, 4, 5, 6]

[3, 4,

5, 6, 0]

[3, 4, 5, 6, 0, 1, 2][3, 4, 5, 6, 0, 1]

[6]

[6, 0, 1]

[6, 0]

[6, 0, 1, 2] [6, 0, 1, 2, 3]

[6, 0, 1,

2, 3, 4]

[6, 0, 1, 2, 3, 4, 5]

Election in a Ring:

Coordinator Messages

DS WS 2019 32

1

67

4

5

3

0

2

X

[3, 4, 5, 6, 0, 1, 2]

[3, 4, 5, 6, 0, 1, 2][3, 4, 5, 6, 0, 1, 2]

[3, 4, 5, 6,

0, 1, 2]

[3, 4, 5, 6, 0, 1, 2][3, 4, 5, 6, 0, 1, 2]

[6, 0, 1, 2, 3, 4, 5]

[6, 0, 1, 2, 3, 4, 5]

[6, 0, 1,

2, 3, 4,

5]

[6, 0, 1, 2, 3, 4, 5] [6, 0, 1, 2, 3, 4, 5]

[6, 0, 1, 2, 3, 4, 5]

[6, 0, 1, 2, 3, 4, 5]

[3, 4,

5, 6,

0, 1, 2]

Conclusions

• Clock Synchronization: Network Time Protocol

& Berkeley algorithm

• Logical Clocks: Lamport‘s logical clocks &

vector clocks

• Leadership Election

DS WS 2019 33

DS WS 2019

Thanks for your attention!

Stefan Schulte

s.schulte@dsg.tuwien.ac.at

34

mailto:s.schulte@dsg.tuwien.ac.at

