Distributed Systems
Processes and Communications |

Associate Prof. Dr.-Ing. Stefan Schulte
Distributed Systems Group
TU Wien

s.schulte@infosys.tuwien.ac.at

ca® DISTRIBUTED

Picture: The Opte Project A dsg ‘SYSTEMS GROUP



mn Teaching Approach

ngm . V
Utilization of classroom response tool
Pingo

2-3 minute breaks after ~45 minutes s \.
a..

Additional videos on TUWel (yes, they are
relevant for the exam)

There will be lecture recordings
(if it works)

DS WS 2019 2 o e G


https://pingo.coactum.de/

mn Reminder: Lecture Material

 Slides available for download, but not sufficient for

self-study! Please read on...
DISTRIBUTED SYSTEMS

« Avallable for free at
https://www.distributed
-systems.net/

 Today: Chapter 3(+4)

IIIIIIIIIIIIIIIIIIIIII

DS WS 2019 3 e T =y |3r3|éﬁg—rGERDOUP



mn Summary from the Last Lecture

* Introduction to Distributed Systems
« What are Distributed Systems?
 Different types of Distributed Systems
« Key concepts and design goals
* Transparency
« Scalability

* Architectural Styles:
« Abstraction, encapsulation, separation of concerns
« Communication models
« Architectural styles

DS WS 2019 4 o e G



mn Goals for Today

« Lay the foundations for the upcoming lectures

« Understand why threads are used in distributed
systems

« Be able to discuss benefits of virtualization
« Explanation of client-server interactions

DS WS 2019 5 o e G



mn Agenda for Today

 Threads

* Virtualization
 Clients

e« Servers

Chapter 3.1 of van Steen/Tanenbaum, 3" edition

DS WS 2019 6 o dsg | B,



mn Virtual Processors — Basic ldea

We build virtual processors in software, on top of
physical processors:

* Processor: Provides a set of instructions along
with the capability of automatically executing a
series of these instructions

* Process: A virtual software processor in whose
context one or more threads are executed.

 Thread: A minimal software processor in
whose context a series of instructions can be
executed.

DS WS 2019 7 o e G



mn Interlude

What do you actually expect from this course?

'J:",Fi.l i
f:ff.

DS WS 2019 8 e o


https://pingo.coactum.de/877851

mn Context Switching

* Processor context: Minimal collection of values
stored In the registers of a processor used for
the execution of a series of instructions.

« Thread context: Minimal collection of values
stored in the registers and memory, used for the
execution of a series of instructions.

* Process context: Minimal collection of values
stored in the registers and memory, used for the
execution of a thread.

DS WS 2019 9 o e G



mn Context Switching: Observations

 Threads share the same address space.
Thread context switching can be done entirely
Independent of the operating system (OS).

* Process switching is generally more expensive
as it involves getting the OS in the loop.

* Creating and destroying threads is much
cheaper than doing so for processes.

DS WS 2019 10 o e G



mn Threads — General Information

* Singlethreaded process: When a blocking

system call is executed, the process as a whole
IS blocked

 [Features of Multithreaded Processes:

« Parallelism: Speedup computing by putting threads
on different CPUs (while shared data is in the shared
main memory)

« Large applications

« Software Engineering: Dedicated threads for
dedicated tasks

DS WS 2019 11 o e G



mn Why Use Threads?

* Avoid needless blocking: A single-threaded
process will block when doing I/O. In a multi-
threaded process, we can switch the CPU to
another thread in that process.

* Exploit parallelism: The threads in a multi-
threaded process can be scheduled to run in
parallel on a multiprocessor or multicore
architecture.

* Avoid process switching: Structure large
applications not as a collection of processes,
but through multiple threads.

DS WS 2019 12 o e G



mn Avoid Process Switching

Process A Process B

S1: Switch from user space

to kernel space T~ - S3: Switch from kernel
i }/” space to user space
Operating systerr\

N
Trade-OffS S2: Switch context from

process A to process B

 Threads use the same address space: more prone to
errors

* No support from OS/HW to protect threads using each
other’'s memory

« Thread context switching may be faster than process
context switching

DS WS 2019 13 o e G




mn Multithreaded Clients

Example: Multithreaded Web client:

 Web browser scans an incoming HTML page, and
finds that more files need to be fetched

« Each file is fetched by a separate thread, each doing
a (blocking) HTTP request

« As files come in, the browser displays them.

Note: If calls are to different servers, we may
achieve linear speed-up.

DS WS 2019 14 o e G



mn Using Threads at the Server Side

Improve Performance:
e Starting a thread is cheaper than starting a new process

« Having a single-threaded server prohibits simple scale-
up to a multiprocessor system

« As with clients: hide network latency by reacting to next
request while previous one is being replied

Better Structure:

* Most servers have high I/0O demands. Using simple
blocking calls simplifies the overall structure

« Multithreaded programs tend to be smaller and easier to
understand due to simplified flow of control

DS WS 2019 15 o e G



mn Multithreaded Servers

_ Request dispatched
Dispatcher thread to a worker thread

\ / / Server
/ vd

\%—\\ - Worker thread

Request coming in A
from the network

Operating system

DS WS 2019 16 o e G



mn Agenda for Today

 Threads

* Virtualization
 Clients

e« Servers

Chapter 3.2 of van Steen/Tanenbaum, 3" edition

DS WS 2019 17 o dsg | B,



mn Virtualization as Basic Concept

Basic idea: Abstract view on IT resources

* Possible on different levels:
« Platform (complete machine)

« Memory

« HDD

* Network
DS WS 2019

Program

Program

Interface A

Interface A

Hardware/software system A

Implementation of
mimicking Aon B

Interface B

18

Hardware/software system B

eidsg

DISTRIBUTED
SYSTEMS GROUP



mn Mimicking Interfaces

Four types of interfaces at
three different levels:

1. Instruction set i
architecture (ISA): The instructions
set of machine
Instructions, with two
subsets:

a. Privileged instructions:
Allowed to be executed
only by the operating

Library functions

System calls

b. General instructions: Can
be executed by any
program

DS WS 2019 19

Application

‘-1

Library

N,I

Operating system

‘—.I

Hardware

dsg|

General
instructions

2. System calls as offered by
an operating system
3. Library calls, known as an
Application Programming
system Interface (API)

DISTRIBUTED
SYSTEMS GROUP



mn Process VMs

Process VM:

A program is compiled
to intermediate code,

Library functions Application
‘~{
System calls Library
- |
Privileged Operating system

instructions ™

executed

which iIs then

= instructions

~ | 1

Hardware

General Application/Libraries

DS WS 2019

Runtime system

Operating system

Hardware

ISTRIBUTED

20

o®%e UDSY [svsteEms croup



mn VM Monitors

Native VM Monitor:

A separate software layer
mimics the instruction set
of hardware

Application/Libraries

Operating system
| [ 1 |

Virtual machine monitor
[ [ [

Hardware

DS WS 2019 21

Hosted VM Monitor:

Makes use of an existing
operating system

Application/Libraries

Operating system
| ] |

Virtual machine monitor
| |

Operating system
| 1 [

Hardware

eidsg

DISTRIBUTED
SYSTEMS GROUP



mn Benefits of Virtualization

 Hardware changes faster than software
* Ease of portability and code migration

* Fault tolerance: Isolation of failures caused by
errors or security problems

DS WS 2019 22 o e G



mn Agenda for Today

 Threads

* Virtualization
* Clients

e« Servers

Chapter 3.3 of van Steen/Tanenbaum, 3¢ edition

DS WS 2019 23 o dsg | B,



mn Clients: User Interfaces

A major part of client-side software is focused on
user interactions

Client machine Server machine
Application —‘ Application —‘
[ Application- |
A independent A
Middleware protocol Middleware
Local OS L:ocal OS
Network

DS WS 2019 24 o e G



mn Client-Side-Software

Distribution
transparency:
« Access transparency * Replication transparency
« Location/migration « Failure transparency
transparency
Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl
S A Pl

Client side handles
request replication

Replicated request
DS WS 2019 25 o e G



mn Agenda for Today

 Threads

* Virtualization
 Clients

e Servers

Chapter 3.4 of van Steen/Tanenbaum, 3" edition

DS WS 2019 26 o dsg | B,



mn General Organization

Basic Model:
« A server is a process waiting for incoming service
requests.

 The server subsequently makes sure that the
request is taken care of, after which it waits for the
next incoming request.

Types of servers:
* |terative servers
e Concurrent servers

DS WS 2019 27 :,:.: dsg |DISTRIBUTED

SYSTEMS GROUP



mn Out-of-band Communication

Issue: Is it possible to interrupt a server once it has
accepted a service request?

Solution 1: Use a separate port for urgent data:

e Server has a separate thread/process for urgent
messages

« Message comes in => Associated request is put on
hold
Solution 2: Use out-of-band communication
facilities of the transport layer

DS WS 2019 28 o e G



mn Stateful and Stateless Servers

« Stateful servers:
« Maintain persistent information about its clients
« Performance gains possible, since the server has
additional information about its clients
« Stateless servers:
« Keep no information on the state of its clients
« Clients and servers are completely independent

 State inconsistencies due to client or server crashes
are reduced

« Possible loss of performance

DS WS 2019 29 o e G



mn Server Clusters: 3 Different Tiers

Distributed
file/database
system

Logical switch
(possibly multiple)

Application/compute servers

\__________/

Dispatched

Client requests F rew
>

|

\i < t >

|
|
| <
|
|
|

~

First tier Second tier Third tier

DS WS 2019 30 o e G



mn Conclusions

 Today, we have laid the foundations for more
sophisticated topics in distributed systems
 Why do we need threads?

 Why do we need virtualization and what does it
offer?

* How do clients and servers interact?

DS WS 2019 31 °o° dsg |DISTRIBUTED

AL SYSTEMS GROUP



Thanks for your attention!

FAKULTAT °e e d
. oo
FUR INFORMATIK e ® Sg
D\STRIBUTED
Faculty of Informatics SYSTEMS GROUP

Dr.
Stefan Schulte

Assistant Professor

TU Wien

Information Systems Engineering
Argentinierstrasse 8/194-02, 1040 Vienna, Austria
T: +43 158801-18417 F: +43 158801-18491

E: s.schulte@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/sschulte

DS WS 2019 32 o dsg | B,



