Y (Informatics

Computer Systems

Advanced Processor Pipelines 1

Daniel Mueller-Gritschneder

15.04.2024

Persons

Prof. Daniel Muller-Gritschneder
Embedded Computing Systems

Florian Kriebel

Embedded Computing Systems -
- Y

15.04.2024 Computer Systems 2

Sources

Digital Design and This book covers the basics of how to design a simple in-order scalar

Computer Architecture processor pipeline in detail in hardware.
RISC-V Edition

Sarah L Harris
David Harris

* Literature: , Digital Design and Computer Architecture: RISC-V Edition”, by Sarah L. Harris and David Harris
* https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-
820064-3
* https://pages.nmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
* They also provide slideshows — the basis for ours! You can investigate extended version at their website.
* Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/gknpf/UTW alma21139903990003336

15.04.2024 Computer Systems 3

Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
A Quantisatize Approach : Disclaimer: The book provides advanced concepts from real complex processor
: E designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735
* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:
https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi _askewsholts vlebooks 9780123838735

15.04.2024 Computer Systems 4

Content — Session 1

Short Recap: RISC-V Assembly

Five-Stage In-order Scalar Processor Pipeline
* Pipelined Execution & Stages
* Data Hazards & Forwarding Paths
e Control Hazards

Branch Prediction
 Static Predictors: Taken / Not taken /BTFNT
* Branch Target Buffer
* Dynamic Predictors: 1 bit / 2 bit

A look at a real RISC-V processor — CVA6 Optional, not relevant for exam

A look at a real RISC-V processor — ESP32- C3
Trap Handling

15.04.2024 Computer Systems 5

Short Recap: RISC-V Assembly : y
RISC-\/*

Writing a small assembly function: abs_value

« Example C-Code 1 + RISC-V Code
- According to ABI a is given to the function in register a0
int abs value(int a) { - The function should also return a in register a0
(a<@) -
a=@-a; abs_value:
BGE a0, zero,abs value return # if a>=0
SUB a0, zero,al # a=0-a
abs _value return:
RET # JR ra

JALR rd,rs,imm
Behavior:

rd=PC+4 _ function return which is a pseudo instruction for
PC=rs+sign_extend(imm)

JRra

which is a pseudo instruction for
JALR x0,ra,0 JALR x0,ra,0
PC=ra

15.04.2024 Computer Systems

Writing a small assembly function: vec_add

RISC-V Code
* Example C-Code 3 # base address of a: ao0,
base address of b: al,
void vec add(int[4] a, int[4] b, int[4] c) { # base address of c: a2,
unsigned int 1i; # i: t0, constant 4: t3
Gi=':2:;i<i_l;i++} { vec add:
, c[i] = a[i] + b[i]; LI t0,0 # i=0
1 LI t3,4 # t3=4
vec_add for:
LW t1,0(a0) # tl = a[i]
LW t2,0(al) # t2 = b[i]
ADD t1,tl,t2 # tl1 = a[i] + b[i]
SW t1,0(a2) # c[i] = t1

ADDI a0,a0,4 #next element is base address + 4
ADDI al,al,4 #next element is base address + 4
ADDI a2,a2,4 #next element is base address + 4
ADDI tO,tO0,1 # i++

BLTU t0,t3,vec_add for # for (i < 4)

RET # void return

15.04.2024 Computer Systems

RISC-V Simulator

e Visual Studio Code

ﬂ RISC-V Venus Simulator
RIS T -

RISC-V Venus Simulator embedded ...

hm {:"3

Extensions -> Venus Simulator for RISC-V Assembly

15.04.2024 Computer Systems 9

Five-Stage Scalar In-order Processor Pipeline

Pipelined execution

* We break down instructions in sub-computations and place them into stages (s)

* We execute the instructions in a pipelined fashion (,,FlielSband“)

SLLI a2,al,2 SLL

SLLI a2,al,2 nnﬂ
ADD t1,t0,t2 | 53 | 4 | S5
LW a0,0(a3) ﬂnﬂ

15.04.2024 Computer Systems 11

Recap: Five-Stage In-order Scalar Processor Pipeline (Harris & Harris)

PCSroE @ ZeroE
CLK CLK CLK
RegWriteD %7 RegWriteE RegWriteM 67 RegWriteW
c%m,';OI ResultSrcDi o ResultSrcE | ResultSrcM; Resultércw‘ o
ni
MemWriteD MemWriteE ° MemWriteM
JumpD JumpE
0 BranchD BranchE
I ALUControlDz ALUControlEzo
” functd ' UsreD ALUSIE
funct7s ImmSrcDy.o ||
—
CLK CLK — CLK
< : u w
: WE3 WE
A RD InstrD 2] A1 RD1 RD1E oo SrcAE
i _-L%) ALUResultM ReadDataw =00
Instruction 24:20 RD2E | = A RD H o
Memory A2 RD2 KQ 0 sresE Data
A3 Reai mpks)) Memory
WD3 eg_lster WriteDataE WriteDataM WD
File
PCD pce | '\+|
19:15 Rs1D Rs1E |J
24:20 Rs2D Rs2E
11:7 RdD RdE RdM | RdW
4 L—] ExtimmD Extirhmg
317 Extend
PCPlus4F oo PCPIus4D| ¢ PCPIus4E PCPlus4M
i
T — — L[PePiusaw
7] PCTargetE
ResultW
wl w
3|3
n o |5 w HE
[o] © j=
[3 |2 z S| e

[Hazard Unit]

Computer Systems 12

15.04.2024

Five-stage Pipeline - Data Signal Busses

* Data path scheme of the pipeline:
* We omit all control signals.
* We are only interested how instructions can ,flow” through the pipeline (data signal busses)

. . — N "\ —
— | Instruction _ » DI - S I I
PC " Memory > Register oI M <_E| > >
ol File ™ g Data
. v Memory
> >
X L |
— >
IF/ID ID/EX
> » EX/MS »| MS/WB
> +4 f—
» Extend > e
R a
> > —> <

15.04.2024 Computer Systems 13

Five-stage Pipeline - Data Signal Busses

* Data path scheme of the pipeline:
* We omit all control signals.

* We are only interested how instructions can , flow” through the pipeline (data signal busses)

Instruction memory Instr. field for Register File
Data memory data memory content
Address = PC content for the address PC: reg address of content for
address at the address
IMEM[PC] operands operands
— | Instruction X‘ » DI I . =
Pe | Memory - Register - y Z:I
> File " i U Data
> > - Memory
o -T.l_ ID/EX -
(> MS/WB
Instr field for / » Extend > > N ot
result reg. > — a Ofe
< - < \alue
Next PC+4 (no - nded Branch target
jump or - e o diate address (BTA) —
branching) ; i

15.04.2024 Computer Systems 14

Five-stage Pipeline - Stages

* Stages:

Memory Stage
(MS)

Instuction Fetch

(IF)

Instruction =>1 DI . .
Memory Register |
> File i
»1 Extend >

v

v
\ 4
v

15.04.2024 Computer Systems 15

Five-stage Pipeline — Sub-computations in the Stages

Execute
(EX)
ALU:
Compute Result

. Compute Address
Instuction Fetch Comparison (Branch Memory Stage

(IF) Taken/Not Taken) (MS)
Compute JR Branch Targe
Address Comp. Read Data Memory

ADD: Write Data memory
Compute Branch Target

Address

Sub- Fetch Instruction

computation [ERaRES

H
|

— Instruction
Memory

Register
File

jj —

Extend

\ 4

\ 4

A 4

\ 4

v

15.04.2024 Computer Systems 16

Five-stage Pipeline — Sub-computations in the Stages (Example ADD)

* Instructions do not require all subcomputations, e.g. ADD

Instuction Fetch Execute Memory Stage
(IF) (EX) (MS)
Sub- Fetch Instruction Compute Result
Computation B S%a:Je

For ADD

v

A 4

Instruction

Memory Register

File

jj —

Extend

\ 4

\ 4

A 4

\ 4

v

v

v
\ 4
v

15.04.2024 Computer Systems 17

Five-stage Pipeline — Example Program

* Example program

#int testl(int *x, int i) {return x[i]+i;}
testl:

SLLI a2,al,2 # a2=i*4

ADD a2,a0,a2 # baseaddr+offset i*4

LW a0,0(a2) # a0 = x[i]

ADD a0,a0,al # a0= x[i] + 1

RET
- . — \/ > \/ ‘ N
— | Instruction _ » DI - S I I
CI memory [Register Iy I >
ol File ™ g Data
. v Memory
> >
X L |
—) >
IF/ID ID/EX
> > EX/MS »| MS/WB
> +4 f—
» Extend > e
_ ()
> > —>(<

15.04.2024 Computer Systems 18

Five-stage Pipeline — Example Program — Cycle 1

Cycle 1
SLLI a2,al,2 “
ADD a2,a0,a2
LW a0,0(a2)
ADD a0,a0,al

RET
SLLI a2,al,2
m ‘ . —_ \/ > \/ |
— | Instruction » DI ! . - - | (T
I memory [Register Iy I >
> File [~ U Data
> > - Memory
— > —
P IF/ID ID/EX
> > EX/MS »| MS/WB
> +4 f—
» Extend > e
_ ()
> » — <

——IRa

v

v

\ 4

v

15.04.2024

Computer Systems

19

Five-stage Pipeline — Example Program — Cycle 2

Cyclel Cycle2

sur a2,a1,2 [N

LW a0,0(a2)

ADD a0,a0,al This is x11
RET /
ADD a2,a0,a2 SLLI a2,al,2
—m [T 7
— | Instruction _ » DI - | (T
e g g Register - > _
Memory g | M < >
> File ’ U Data
> > - Memory
— > —
P IF/ID EX
> > EX/MS »| MS/WB
>l |
" Extend |—> * QO
_ ()
> > e <

15.04.2024 Computer Systems 20

Five-stage Pipeline — Example Program — Cycle 3

Cyclel Cycle2 Cycle3

ADD a0,a0,al Data hazard: a2 not yet updated by SLLI -> Stall ADD because it
RET cannot leave ID stage
LW a0,0(a2) ADD a2,a0,a2 SLLI a2,al,2
o Lo an B Avain
— o | Instruction R » DI " - % e p—| (T
e M v RaLler > >
emory . F?Ise_b M Data
> \ Memory
. —
» IF/ID ID/EX
EX/MS »| MS/WB
> +4 f—
» Extend >

v

v

——IRa

15.04.2024 Computer Systems 21

v

v
\ 4
v

Five-stage Pipeline — Example Program — Cycle 4

Cyclel Cycle2 Cycle3 Cycle4

sur 2,012 [JHCEH

ADD a2,a0,a2 “ stall | Stalls backpropagate in the pipeline to
LW a0,0 (a2) “ stall | following instructions
ADD a0,a0,al ADD and LW stall There is no instruction in the execute
an sta
RET stage -> Insert a so-called Bubble (NOP)
LW a0,0(a2) ADD a2,a0,a2 Bubble SLLT a2,al,2
—am | L) v
. R - S—
. PC T In.\;t;c:s,n > " P rister N < , g -
> File — i U Data
N - Memory
) y]
) IF/ID ID/EX
> EX/MS » MS/WB
|t/ f— /
» Extend > > N
: J =2

15.04.2024 Computer Systems 22

Five-stage Pipeline — Example Program — Cycle 5

Cyclel Cycle2 Cycle3 Cycle4 Cycle5

ADD a2,a0,a2 “ stall stall
LW a0,0 (a2) “ stall stall

ADD a0,a0,al
ADD can complete ID stage -> stop stalling

RET
LW a0,0(a2) ADD a2,a0,a2 Bubble Bubble SLLI a2,al,2
I \
ﬁ —>| | N N/ » \
— Pe | Instruction R » DI 3 e e | 1 (]
"1 Memory - "Ster >l M < > > Data
u
p IF/ID _m e .
> EX/MS » MS/WB
> +4 f—
Extend > > (m)]
- o
: » q <

v
y

N
\ 4
v

——IRa

15.04.2024 Computer Systems

23

Five-stage Pipeline with Forwarding Path

* Data hazards can be effectively mitigated using a forwarding path
* While named ,forwarding path” the signal buses go ,,back” in the pipeline

Forwarding path from WB stage

Forwarding
N AN N from MA stage
1”|U .
> > > X \/ g \/ —
. . > g - D -
— | Instruction R » DI) — -
PC "| Memory > Register W <—(' —> >
> File —D_’U Data
> « Memory
) —
IF/ID ID/EX
> > EX/MS > MS/WB
> +4 f—
» Extend > e
- (@)
> > —> <

15.04.2024 Computer Systems 24

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 2

Cyclel Cycle2

sur a2,a1,2 [N

LW a0,0(a2)

ADD a0,a0,al

RET |
ADD a2,a0,a2 SLLI a2,al,2
. : ; M
--}U R
R > > x N "\ -
— | Instruction _ » DI ! . - - | [T
PC "| Memory > Register W <—(' —> >
> File — —b_’U MData
> X . emory
p IF/ID r_' ID/EX T s o
— P> ;
P] fem b
—>| Extend > * QO
_ ()
> > e <

15.04.2024 Computer Systems 25

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 3

Cyclel Cycle2 Cycle3

SLLI a2,al,2 “

ADD a2,a0,a2

We proceed as we

know we can get a2

via the forwarding
path

LW a0,0(a2)

ADD a0,a0,al

RET I

LW a0,0(a2) SLLI a2,al,2

ﬁ 'l > \/ —
— Pe Instruction _ » DI . > — | [

Memory - neter
> File Data
> Memory

IF/ID 1
—_— > MS/WB
P 44—

» Extend

15.04.2024

Computer Systems

26

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 4

Cyclel Cycle2 Cycle3 Cycle4

SLLI a2,al,?2 “

ADD a2,a0,a2 We forward a2 via the
LW a0,0 (a2) forwarding path

ADD a0,al,a0

RET I

ADD a0,a0,al LW a0,0(a2) ADD ' a2,a0,a2 SLLI a2,al,2
ﬁ - > : ‘ﬁ
— | Instruction _ » DI g . e | [
ie " Memory > Register
» File [~ Data
> Memory
P IF/ID _1_ ID/EX
> MS/WB
1 —. —

P oToend >

v

v
\ 4
v

——IRa

15.04.2024 Computer Systems 27

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 5

Cyclel Cycle2 Cycle3 Cycle4 Cycle5

LW a0,0(a2)

ADD a0,a0,al

RET ADD a0,al0,al LW a0,0(a2) ADD a2,al,a2 SLLI a2,al,2

— | Instruction _ » DI S e | 11 [
PC > > gister >
Memory 5 >
> i - Data
> Memory
—
P IF/ID ID/EX
EX/MS »| MS/WB
> +4 f— ——
» Extend |—>

v

v
\ 4
v

——IRa

15.04.2024 Computer Systems 28

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 6

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycleb

o

ADD a0,a0,al stall

RET
Bubble LW a0,0(a2) ADD a2,al0,a2
RET
M
--}U R
—>| »| X \/ " \/ —
— Pe | Instruction R » DI <t N 3 —
" g zister —
Memory : | M < DMEM[]
— U
X
P IF/ID ID/EX
» EX/MS m » MS/WB
> +4 f—
» Extend > * N
R o
> > e <

15.04.2024 Computer Systems 29

Five-stage Pipeline with Forwarding Path and JR

e RET is a pseudo-instruction for jump register JR ra, which is a pseudo instruction for JALR x0,ra,0
* The Harris pipeline does not support to load a register value into PC
* We need another bus for implementing the JR instruction

JRTA (JR Branch Target Address)
\/ \/ M
U .
> > > x \/ g \/ >
S— | Instruction _ » DI ! . - - | [T
PC "| Memory > Register iy <—(' > >
> File — —b_’U MData
> X L, emory
—
IF/ID ID/EX
> > EX/MS »| MS/WB
> +4 f—
» Extend > e
_ ()
> » — <

15.04.2024 Computer Systems 30

Five-stage Pipeline with Forwarding Path — Example Program — Cycle 7

Cvcle1l Cvcle2 Cycle3 Cycled4d Cycle5 Cycle6 Cycle?7
Y 4 Y Y Y Y Y RET Pseudo instr for

sux 22,212 [x| s | we JALR x0,ra,0
ADD 22,2022 L F X | ms [wB |
1 20,0(a2) L F X | ms | WB

] X

ADD a0,a0,al stall

RET stall

Bubble LW a0,0(a2)

Bubble RET

v

N |

—
DMEV:al -, M-

— Pe | Instruction R DI Regist
> > egister >
Memory : .
Lowevo [
al

+4

!

\ 4

v Vv

MS/WB

v

v

\ 4
1

Extend

v
v

v
\ 4
v
|

——IRa

15.04.2024 Computer Systems

31

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 8

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8

RET Pseudo instr for
st a2,a1,2 [N X | ms | wB JALR X0,ra,0
ADD a2,30,a2 | X | mMs | wB
LW a0,0(a2) “ ““
| F

ADD a0,a0,al

RET
Bubble ra+0 Bubble ADD a0,a0,al Bubble
NVl DVEV-+al AR
. R >) —
— | Instruction _ » DI . > —
P | Memory - Register <—,:I { R
> File U Data
> X Memory
—
e _1_ /e / MS/WB
> EX/MS -
T e — i
» Extend > e
. ()
> > —

15.04.2024 Computer Systems 32

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 9

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9
RET Pseudo instr for

sz 22,212 [x| s | we JALR X0,ra,0

ADD 22,2022 L F] X | Ms | wB

1 20,0(a2) L F BTN
]

ADD a0,a0,al stall “mm

RET ADD a0,a0)al
Instr 1 Bubble Bubble ’
N/ N v
--}U R
B o | ‘ ~ s Y4 N
— | Instruction R » DI ! . - el | 1 [T]
PC | Memory g Register > M R
> ; —> —»U Data
D z X Memory
—_—
PC=ra IF/ID 0 ID/EX
> » EX/MS —n_, MS/WB
> 44— ___——'
™ Extend > * QO
_ (@)
> > e <

15.04.2024 Computer Systems 33

Five-stage Pipeline with Forwarding Path and JR - Example Program — Cycle 10

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cycle 10

el O o s [we RET Pseudo nsr for

WB on x0 has

ADD a0,a0,al stall “mm always xO 0

Instr 2 Instr 1 Bubble
N N/ M
B 2| : ik AV 7

> bC | Instruction _ DI Regist
I Memor > egister
y : M Data

u
PC+4 « Memory
'—’
IF/ID ID/EX

EX/MS

RET

\ 4

ALU

\ 4

v

llv \

v

MS/WB

v

»

> 4 p—

v

ADD

\ 4

Extend >

> —

v

v

v

e

15.04.2024 Computer Systems 34

\ 4
v

Five-stage Pipeline with Forwarding Path and JR - Pipeline Execution Diagram

* With forwarding path: Possible data hazard after load with penalty of 1 clock cycle (cc)

CC2 CC3 CC4 CC5 cc6 CC/ CC8 CC9 CC10
oo 0

RAW dep —
ADD a2,a0,a2

RAW dek B

LW a0,0(a2)
RAW data hazard -
RAW dep. . .

after load instruction] 3
ADD a0,a0,al 1CC penalty Bubble lZ:'
Bubble ﬂ
RET

Read After Write (RAW) dependency or ,true dependency”:

One instructions reads operand that is written as result of previous instructions.

Data hazard prevents the next instruction in the instruction stream from executing during its designated clock cycle.
15.04.2024 Computer Systems 35

| v
ac
o a0

Compiler Instruction Scheduling to Avoid RAW Data Hazards after Load Instructions

* Compiler often can move instructions to avoid RAW data hazards after loads

* Program order must not change (See next session)

» Rarely data hazard penalty observed in five-stage pipeline with forwarding paths

»Example:
vec_add for:

LW t1,0(a0) # tl
LW t2,0(al) ¥ t2
RAW 1CC penalty
ADD t1,tl1l,t2 # tl
SW t1,0(a2) # c[i
ADDI a0,al,4 #base
ADDI al,al,4 #base
ADDI a2,a2,4 #base
ADDI t0,t0,1 # i++

(..)

15.04.2024

]

a[i]
b[i]

al[i] + b[i]
= tl

address + 4
address + 4
address + 4

vec_add for:
LW t1,0(a0)
LW t2,0(al)
ADDI t0,t0,1
ADD tl1,tl,t2
SW t1,0(a2)
ADDI a0,a0,4
ADDI al,al,4
ADDI a2,a2,4

(...)

Computer Systems

tl
t2
i++
t1 = a[i] + b[i]
c[i] = tl

#base address + 4
#base address + 4
#base address + 4

a[i]
b[i]

36

Control Hazard

Control Hazards

Control hazards arise from instructions that change the PC

When the flow of instruction addresses is not sequential
* Unconditional branches (jal, jalr)
e Conditional branches (beg, bne, ...)
* Exceptions

Possible approaches
 Stall (impacts CPI)
* Move decision point as early in the pipeline as possible (Extra HW)
* Predict and hope for the best!
* Delay decision (requires compiler support)

Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards as forwarding is for data hazards

15.04.2024 Computer Systems 38

Control Hazards — Conditional Branches

* Branch determines flow of control

* Fetching next instruction depends on branch outcome (Branch taken/Not taken)
* Next PCis either PC+4 (branch not taken) or PC+imm<<1 (branch taken)

Branch taken/not taken
decision computed in ALU

\/ \/ M \l
--’ U
> > x \/ ‘
> | Instruction DI T
PC » Register >
Memor g
Y File ™ (M Data
—{U

Memory

:

A 4

\ 4

v

!
'

\ 4

v

1w A 4

IF/ID ID/EX

v

EX/MS MS/WB

v
v

v

+4

\ 4

v

Extend

v

!
ADD

T

» n —

Branch not taken PC Branch target address (BTA) for —
1502 20L0mputed in IF Computer Systems taken computed in EXE 39

v

v

Handling Control Hazards: Stall on Branch

* Conservative Approach: Wait until branch outcome determined before fetching next
instruction

Conservative approach: Stall immediately after fetching a branch, wait
until outcome of branch is known and fetch branch address.

* Reducing Branch Delay:

» E.g. Move Branch Decision to ID Stage: Extra hardware so that we can test registers, calculate
the branch address, and update the PC during the second stage of the pipeline

15.04.2024 Computer Systems 40

Handling Control Hazards: Conservative Approach (Branch not Taken)

e Control hazard (branch not taken): stall pipeline until decision known

* Branch penalty: 2 clock cycles
CC3 CC4 ccs CC6 CC7 Cc8 CC9 CC10

CcC1 CC2

40 BEQ al,a2,Ll |:|n|:|‘ MHm

Branch not taken

Pc=pc+4

44 AND a2,a0,a2 Bubble Bubble nﬂ‘ MMHM
R | - (=g - [
. O
6 1 | - Jisljm=g] s | we
: LW al,4(a4d) —

15.04.2024 Computer Systems 41

Handling Control Hazards: Conservative Approach (Branch Taken)

* Control hazard (branch taken): stall pipeline until decision and branch target known

* Branch penalty: 2 clock cycles
cCl1 CC2 CC3 CC4 ccs CC
o o 2H
|

—
44

6 CC7 CC8 CC9o CC10

pc=pc+8<<1=40 + 16 =56

48
Branch

52 taken

56 Ll: N
LN al,4(ad) Bubble Bubblel, ﬂﬂ‘ U:E_,HMHM

15.04.2024 Computer Systems 42

Reducing Branch Delay - Move Branch Decision to ID Stage

* A lot of branches rely on simple tests (e.g.,

equality) V4

* Add hardware to determine outcome of branch in
the ID stage
- Reduce cost of the taken branch
e Subcomputation: Compute Branch Target Address in ID

* Move target address adder from EX to ID
* PC and immediate are already in IF/ID pipeline register

e Subcomputation: Comparison

* Additional register comparator (done before in EX via the
ALU)

IF/ID

\ 4

A 4
\ 4

\ 4
v

ID/EX

»
»
o

»

Branch Taken

PC

v

/Not Taken

\ 4

* Additional Forwarding and Hazard Handling

15.04.2024 Computer Systems

A 4

n
u
X

Branch Target Address (BTA)

43

Reducing Branch Delay - Move Branch Decision to ID Stage — Branch Taken

* Target address adder in ID, Extra comparator to get branch decision in ID

* Branch penalty: Only one clock cycle
cC2 cc3

CC1
40 BEQ al,a2,Ll |:|n

44
48

52

56 Ll1:
LW al,4 (a4)

-

s

Branch
taken

Bubk

CC4 CC5 CC6
H - > H
| —

gl - 15

cC7

PC=PC+8<<1=40 + 16 =56

uoy v [e

CC8

CcCo

CC10

44

Static Branch Prediction

Motivation: Branch Prediction

* Longer pipelines can’t readily determine branch outcome early
* Branch penalty becomes unacceptable

* Predict outcome of branch
e Only stall if prediction is wrong

e Simple Static Branch Prediction Schemes
» Always not Taken: Always predict branches not taken — Also called fall through (PC=PC+4)
» Always taken: Always predict branches taken

15.04.2024 Computer Systems 46

Always Not Taken — Correct Prediction

* Prediction correct (Branch not taken)

* Branch penalty: O clock cycles
cC2 cC3 cca

CC1
40 BEQ al,a2,Ll |:|n:|‘ [t:a—v
predict pc=pc+4 N
44 AND a2,a0,a2 I—»Ui|ﬂ
b

48 OR al0,a2,tl

CCé6 CcC7 CC8 CC9 CC10

H

s |8
8- 3 [
|5y v |
- | - [iils-

LW al,4(a4)

52 ADD a0,a0,al

15.04.2024 Computer Systems 47

Always not Taken — Incorrect Prediction (1/2)

* Prediction incorrect (Branch not taken) — Flush instructions from pipeline

* Branch penalty: 2 clock cycles

CC1 CC2 CC3 CCa4 CC5 CCeé CC7 CC8 CC9 CC10
40 BEQ al,a2,Ll |:|n|:|‘

pd vs Jwe

predict branch not taken *E —> Branch taken
—

pc=pc+4 |
M ‘
X

48 OR a0,a2,tl Hn

52

56 Ll:
LW al,4(a4d)

15.04.2024 Computer Systems 48

Always not Taken — Incorrect Prediction (2/2)

* Prediction incorrect (Branch not taken) — Flush instructions from pipeline

* Branch penalty: 2 clock cycles

CC1 CC2
S - s 31 - [

CCé6 cC7 CC8 CC9 CC10

Branch taken
e
44 AND a2,a0,a2 F|ushH H‘ Bubble Bubble Bubble
48 OR a0,a2,tl FIUShH Bubble Bubble Bubble Bubble

52
pc=pc+8<<1=40 + 16 =56

v
56 Ll:
o I [- I

15.04.2024 Computer Systems 49

Always Taken — Correct Prediction

* Prediction (Branch taken) —> Branch target address is computed in EX stage

CC1 CC2 CC4 CC5 CC

predict branch taken —*E_ Branch taken

— Branch target address

CC3 6 cC7

No branch target

40 L2: -
AND a2,a0,a2 address in CC1

44 OR a0,a2,tl

15.04.2024 Computer Systems 50

Branch Target Buffer (BTB)

 Stores the Branch Target Address (BTA) for a certain branch (e.g. identified by its own
Branch Instruction Address (BTI))

* Content Addressable Memory (Costly for entries)
» Update policy (similar to caches)
* Entries entered in pairs (BIA, BTA)
* entry not available for first branch execution

. Lookup via PC Branch in EX
Branch Target Buffer (BTB)

Bl

oC Branch Instruction Address (BIA) | Branch Target Address (BTA)) A

» Lookup Update |
BTA
Valid BTB Entry (1), v Speculative taken
v No Valid BTB Entry (0) BTA

15.04.2024 Computer Systems 51

Five-stage Pipeline with Branch Target Buffer

* Only for branches and PC-relative Jumps J, JAL (not JALR, JR, RET)

I

Speculative Taken BTA
Branch J .
| Target Entries(BIA, BTA) for branches
PC for Buffer |«
M
lookup
U > N >\
L » > (X
> M | Instruction R »| DI . / 3 —
> U > PC " Memory > Register > < ™ >
— X » File [~ =<y N Data
> « . Memory
—
—
IF/ID ID/EX — - —
b+l i . "

» Extend > =E
- R Hya
> > > <

15.04.2024 Computer Systems

52

Always Taken — Correct Prediction (BTB has entry)

* Prediction (Branch taken) - BTA via Branch Target Buffer (BTB)

* Branch penalty: O clock cycles
cCl1 CC2 C

C3 CC4 CC5 CC

predict branch taken *E Branch taken

6 cC7

| A 4

—

Lookup PC=56

Branch Target = 40 BTB

) BTB

40 L2: LEH “H‘ BIA BTA
AND a2,a0,a2 56 40
44 OR al0,a2,tl Hﬂ

15.04.2024 Computer Systems 53

First execution of branch we cannot do a branch taken prediction.
Entry was written to BTB on earlier execution of branch with (56,40)

BTFNT: Enhancing Static Branch Prediction

Typical Statistics 60% to 70% of branches are taken
Example:

* 60% are backward branches (negative offset)

* Loops: Usual more than one iteration (branch will be taken more than once) — taken ~90%
* Typical behavior: TTTT..T NT
* About 90% of backward branches are taken

40% are forward branches (positive offset)
* |If-(Else) Constructs: Branches go forward (jump over code)
* About ~20% of forward branches are taken

Always not taken: (0,6 -0,9) + (0,4 - 0,2) = 62% mispredictions

Always taken: (0,6 -0,1) + (0,4 - 0,8) = 38% mispredictions

Enhanced Static Branch Prediction: Backward Taken, Forward Not Taken (BTFNT)
* Predict forward branches not taken: ~10% mispredictions

* Predict backward branches taken: ~20% mispredictions
* Overall: (0,6 -0,1) + (0,4 -0,2) = 14% mispredictions

15.04.2024 Computer Systems 54

Effect of Misprediction Rate and Branch Penalty on CPI

Program with:

* Relative number of branch instructions (branch rate b)

* The branch cycle penalty p for mispredictions
* The branch misprediction rate m

* CPI: Cycles per Instructions (data hazards rare so base CPI=1)

CPI=1+b-p-m

Five stage pipeline: b=15%, p=2
Always not taken: m=62% -> CPI = 1,186
Always taken: m=38% ->CPl=1,114

BTFNT: m=14% -> CPI = 1,042

Longer pipeline: b=15%, p=5
Always not taken: m=62% -> CPI = 1,465
Always taken: m=38% -> CPl = 1,285

BTFNT: m=14% -> CPI1 = 1,105

In longer pipelines, branch penalty is more significant

15.04.2024 Computer Systems

55

Dynamic Branch Prediction

Dynamic Branch Prediction

* In longer pipelines, branch penalty is more significant

* Branch prediction buffer (aka branch history table (BHT)) for dynamic prediction
 Stores last outcome (taken/not taken)
* To execute a branch
» Check table, expect the same outcome

» Start fetching from fall-through (not taken) or target (taken)
» In case of misprediction, flush pipeline and flip prediction

15.04.2024 Computer Systems 57

Dynamic Branch Prediction: 1-Bit Predictor

* Single-Bit / 1-Bit / Last-Time Predictor
* Indicates which direction the branch went last time it executed
* PNT: Predict NT (Bit=0): Fetch the instruction from (PC+4)
* PT: Predict T (Bit=1): Get target address from the BTB

Taken
Taken

Not Taken

15.04.2024 Computer Systems 58

Global Predictor

* One single Branch History Entry for all branches to save last decision

* Branch reaches IF stage

* Indexed Lookup with PCin BTB Global Branch
* No valid BTB entry History Entry
—> predict NT (PNT)
-> Supply PC=PC+4 PT/PNT Branch in EX
* Valid BTB entry
B B BTB
-> Global Predictor result based on BHT: PT/PNT ranch Target Buffer (BTB) BIA
-> Supply PC=BTA/PC+4 o BIA BTA .
° Branch reaches EX Stage > LOOkUp BIAl BTA1l Update)
* Indexed Lookup with PC in BTB BTA

-> No BTB entry -> Update BTB (create entry)
-> Eventually only in case that branch is taken

* Update Global Branch History Entry

15.04.2024 Computer Systems 59

Local Predictor

e Branch History Table (BHT): One entry for each BTB entry

* Branch in IF stage Branch T/NT
* Indexed Lookup with PCin BTB

* No valid BTB entry Branch in EX
—> predict NT
-> Supply PC=PC+4 Branch Target Buffer (BTB)

e Valid BTB entry BIA | BTA | BHT

-> Local BHT Predictor result T/NT PC
-> Supply PC=BTA/PC+4 Lookup | BIA1 |BTA1l|PT/PNT| Update

4 BIA

A

A 4

a

BTA

* Branch in EX stage

* Indexed Lookup with BIA in BTB
* No BTB entry -> Update BTB (create entry), initialize BHB with T/NT
* BTB entry: Update Local BHT with T/NT

15.04.2024 Computer Systems 60

Example Nested Loop Program - Static Branch Prediction

* Example Nested Loop Program:

for (x = 1024; x > 0; x--)
for (y =4;y > 0;y-)
do_something(x,y);

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:

1i sO0, 1024
xloop:
1i s1, 4

yloop:

mv a0, sO

mv al, sl

jal ra, do_something
addi sl1, sl1, -1
bnez sl1, yloop
addi s0, sO0, -1
bnez s0, xloop

15.04.2024

Inner Loop (LO9 Branch Pattern): (T-T-T-NT)
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T....

Static Branch Prediction:

» Always not taken: ~80% Mispredictions

» Always taken: ~20% Mispredictions

» BTFNT (same as always taken): ~20% Mispredictions

Computer Systems 61

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i sO, 1024

* Example Nested Loop Program: 02: xloop:
03: 1i s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T(T-T-T-NT) T.... |07} 501%rs “do something

08: addi sl1l, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi s0, s0, -1

i icti 11: b 0, x1
Misprediction rate: nez s0, xloop

Branch Start | LO9 L09 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y

BTB entry L11 Y

Global BHT PNT

Prediction NT

Direction -

Correct? -

15.04.2024 Computer Systems 62

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i sO, 1024

* Example Nested Loop Program: 02: xloop:
03: 1i s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T(T-T-T-NT) T.... |07} 501%rs “do something

08: addi sl1l, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi s0, s0, -1

i icti 11: b 0, x1
Misprediction rate: nez s0, xloop

Branch Start | LO9 L0O9 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y

Global BHT PNT | PNT PT PT PT | PNT

Prediction NT NT T T T NT
Direction - T T T NT T
Correct? - N Y Y N

15.04.2024 Computer Systems 63

Example Nested Loop Program - Dynamic Branch Prediction (1bit Global)

01: 1i sO, 1024

* Example Nested Loop Program: 02: xloop:
03: 1li sl1, 4

04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |g5i o0 %

07: Jjal ra, do_something
08: addi sl1l, sl1, -1
09: bnez sl, yloop
N=No, Y=Yes 10: addi s0, s0, -1

Misprediction rate: ~40% (2 out of five) Repeats 11: bnez SO, xloop

Branch Start | LO9 L0O9 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y

Global BHT PNT | PNT PT PT PT | PNT | PT PT PT PT | PNT

Prediction NT NT T T T NT T T T T NT
Direction - T T T NT T T T T NT T
Correct? - N Y Y N N Y Y Y N

15.04.2024 Computer Systems 64

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

e Example Nested Loop Program: o xif,ozo 1024
03: 1i s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |57} 55:°0% ®40 comething

08: addi sl1l, sl1, -1
09: bnez sl1, yloop
10: addi s0, sO0, -1
11: bnez s0, xloop

Misprediction rate:

Branch Start | LO9 L09 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y

BTB entry L11 Y%
BHT L9 PNT

BHT L11 PNT

Prediction PNT

Direction -

Correct? -

65

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

* Example Nested Loop Program: o xi(l)ozo 1024
03: 1i sl1, 4
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 3: Yi?‘a’g, <
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |ooi v al. st

07: Jjal ra, do_something
08: addi sl1l, sl1, -1
09: bnez sl1, yloop
10: addi s0, sO, -1
11: bnez s0, xloop

Misprediction rate: ~40% (2 out of five)

Branch Start | LO9 L09 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9
BTB entry LO9 Y Y Y Y Y Y

BTB entry L11 Y Y Y Y Y Y

BHT L9 PNT | PNT PT PT PT | PNT

BHT L11 PNT | PNT | PNT | PNT | PNT | PNT

Prediction PNT NT T T T NT
Direction - T T T NT T

Correct? - N Y Y N

66

Example Nested Loop Program - Dynamic Branch Prediction (1bit Local)

* Example Nested Loop Program: o xi(l)ozo 1024
03: 1i sl1, 4
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 3: Yi?‘a’g, <
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |ooi v al. st

07: Jjal ra, do_something
08: addi sl1l, sl1, -1
09: bnez sl1, yloop
10: addi s0, sO, -1
11: bnez s0, xloop

Misprediction rate: ~40% (2 out of five) Repeats

Branch Start | LO9 | LO9 | LO9 | LO9 | L11 | LO9 | LO9 | LO9 | LO9 | L11 || LO9 | LOO
BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y
BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y
BHT L9 PNT | PNT PT PT PT | PNT | PNT | PT PT PT | PNT

BHT L11 PNT | PNT | PNT | PNT | PNT | PNT | PT PT PT PT PT

Prediction PNT NT T T T NT NT T T T
Direction - T T T NT T T T T NT
Correct? - N Y Y N N N Y Y N

67

Improving the 1-Bit Predictor

* Problem: A 1-bit predictor changes its prediction from T->NT or NT->T too quickly

* Even though the branch may be mostly taken or mostly not taken

* Solution Idea: Add hysteresis to the predictor so that prediction does not change on a
single different outcome

* Use two bits to track the history of predictions for a branch instead of a single bit
e Can have 2 states for T or NT instead of 1 state for each

15.04.2024 Computer Systems 68

2-Bit Predictor

* Prediction does not change on a single misprediction

e 2-Bit entry in BHT => Four States [2 for NT, 2 for T]
e PSNT: Strongly Not Taken (00), PWNT: Weakly Not Taken (01)
 PWT: Weakly Taken (10), PST: Strongly Taken (11)

* 2-Bit Counter
* Increment by 1 if branch taken, otherwise decrement by 1
e Saturate the counter value at 0 and 3
* A prediction must be wrong twice (consecutively) before the prediction bit is changed

Not Taken Taken

Predict
Strongly Not
Taken (00

Predict
Weakly Not
Taken (01

Predict
Weakly
Taken (10

Predict
Strongly
Taken (11

Not Taken Not Taken

Not Taken

15.04.2024 Computer Systems 69

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

01: 1i sO, 1024

* Example Nested Loop Program: 02: xloop:
03: 1i s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv a0, sO
Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T(T-T-T-NT) T.... |07} 501%rs “do something

08: addi sl1l, sl1, -1
09: bnez sl1, yloop
N=No, Y=Yes 10: addi s0, s0, -1

i icti 11: b 0, x1
Misprediction rate: nez s0, xloop

Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9
BTB entry LO9 Y
BTB entry L11 Y

Global BHT PWNT

Prediction NT

Direction -

Correct? -

15.04.2024 Computer Systems 70

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

* Example Nested Loop Program: o xizozo 1024
03: 1li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv 20, S0

Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |ooi v al. st

07: Jjal ra, do_something
08: addi sl1l, sl1, -1
09: bnez sl1, yloop

N=No, Y=Yes 10: addi s0, s0, -1
. . 4. 11: bnez s0, xloop
Misprediction rate:
Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9
BTB entry LO9 Y Y Y Y Y
BTB entry L11 Y Y Y Y Y
Global BHT PWNT | PWNT | PWT | PST PST
Prediction NT NT T
Direction - T NT
Correct? - N

15.04.2024

Computer Systems

71

Example Nested Loop Program - Dynamic Branch Prediction (2bit Global)

* Example Nested Loop Program: o xizozo 1024
03: 1li s1, 4
04: yloop:
Inner Loop (LO9 Branch Pattern): (T-T-T-NT) 05: mv 20, S0

Nested Loop Pattern: (T-T-T-NT) T (T-T-T-NT) T (T-T-T-NT) T.... |ooi v al. st

07: Jjal ra, do_something
08: addi sl1l, sl1, -1
09: bnez sl1, yloop

N=No, Y=Yes 10: addi s0, s0, -1
Misprediction rate: ~20% (1 out of five) Repeats 11: bnez S0, xloop

Branch Start LO9 LO9 LO9 LO9 L11 LO9 LO9 LO9 LO9 L11 LO9 LO9

BTB entry LO9 Y Y Y Y Y Y Y Y Y Y Y

BTB entry L11 Y Y Y Y Y Y Y Y Y Y Y

Global BHT PWNT | PWNT | PWT PST PST PWT PST PST PST PST PWT

Prediction NT NT T T

Direction - T NT NT

Correct? - N N

15.04.2024

Computer Systems

72

2-bit Predictor: Limits

Still penalty on regular patterns:
* Recap: Inner loop iterations: T-T-T-NT
* Branches often show such regular patterns

Can we incorporate this regularity? -> Use a history

Two-level-history adaptive branch predictors (many variants *)
* Learn the history and loop pattern T-T-T-NT
*Tse-Yu Yeh and Y. N. Patt, "A Comparison Of Dynamic Branch Predictors That Use

¢ They usua | Iy Can have h igher aCcura Cy Two Levels Of Branch History," Proceedings of the 20th Annual International
° ThIS iS Stl“ 90ti€$ technology % Symposium on Computer Architecture, San Diego, CA, USA, 1993

Modern branch predictors for complex processors
* Based on neural networks
* Learn patterns, history and interrelation between branches
e Can achieve very small misprediction rates

15.04.2024 Computer Systems 73

Optional, not relevant for exam

A Look at a Real Processor — CVAb6

“CVAG6 is a RISC-V compatible application processor core that can be configured as a 32- or 64-bit core:
CV32A6 and CV64A6".

--- CVA& User Manual
https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/Introduction.html

Developed initially as part of PULP project (ETH Ziirich), now maintained by the OpenHW Group

CVAG6 Branch Predictor

“Branch Predict: If the BHT and BTB predict a branch on a BT

certain PC, PC Gen sets the next PC to the predicted [T ant_afias T target address [saturation cnt | compressed?
address and also informs the IF stage that it performed a
prediction on the PC. (...)” e update

LAll branch prediction data structures reside in a single
register-file like data structure. It is indexed with the L -
appropriate number of bits from the PC and contains }
information about the predicted target address as well as [Branchpredict Pipeiine Entry
the outcome of a configurable-width saturation counter

(two by default). The prediction result is used in the

subsequent stage to jump (or not).”

taken?

to instruction fetch

-- CVAG6 Design Document (deprecated) — Branch Prediction (05.04.2024)
https://docs.openhwgroup.org/projects/cvab-user-manual/03_cva6_design/pcgen_stage.html

15.04.2024 Computer Systems 75

Optional, not relevant for exam

A Look at a Real Processor — ESP32-C3

ESP32-C3 Technical Reference Manual

https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical reference_manual_en.pdf#triscvcpu

Low Power Mikro-Controller — ESP32-C3

Scalar in-order processors with five or less pipeline stages are used in
low-cost micro-controller-type devices.

Picture: Alibaba-
Costs less than 1€ ,ESP-RISC-V CPU is a 32-bit core based upon RISC-V ISA comprising base

integer (1), multiplication/division (M) and compressed (C) standard
extensions. The core has 4-stage, in-order, scalar pipeline optimized for
area, power and performance. (...)“

-- ESP32-C3 Technical Reference Manual

https://www.espressif.com/sites/default/files/documentation/esp32-
c3_technical_reference_manual_en.pdf#riscvcpu

15.04.2024 Computer Systems 77

Optional, not relevant for exam

Trap Handling

Terminology

Terminology is used often different for different architectures (x86,ARM, RISCV,...).

* For RISC-V:

* “We use the term exception to refer to an unusual condition occurring at run time
associated with an instruction in the current RISC-V hart.”

e “We use the term interrupt to refer to an external asynchronous event that may cause a
RISC-V hart to experience an unexpected transfer of control.”

* “We use the term trap to refer to the transfer of control to a trap handler caused by
either an exception or an interrupt.”

—-Volume 1, Unprivileged Specification version 20191213:
https://riscv.org/technical/specifications/

15.04.2024 Computer Systems 79

Trap Handling

* For a function call the compiler assures that the function call standard of the ABI
is kept

* An exception and interrupt can happen during execution of a function ceither due
to an instruction (e.g. memory access error) or due to an external event (device
raises an interrupt)

* For a trap, we are in the middle of execution of a function and must save the
context of the current execution before calling a trap handler to handle the
exception or interrupt

* RISC-V has certain so-called Control Status Registers (CSRs) to identify the cause
of a trap

15.04.2024 Computer Systems 80

Causes for Traps

Interrupt

Exception Code

Description

Reserved

Supervisor software interrupt
Reserved

Machine software interrupt

Reserved

Supervisor timer interrupt
Reserved

Machine timer interrupt

CO|=1 D UL x| N = O

Reserved

Supervisor external interrupt
Reserved

Machine external interrupt

Reserved
Designated for platform use

S OO D OO OO ODODO OO0 OO DR

00 =1 & Ot s LN =

e e e
TR W=D 0

16-23
24-31
3247
48-63

>64

Instruction address misaligned
Instruction access fault

Tllegal instruction

Breakpoint

Load address misaligned

Load access fault

Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved

Environment call from M-mode
Instruction page fault

Load page fault

Reserved

Store/AMO page fault
Reserved

Designated for custom use
Reserved

Designated for custom use
Reserved

15.04.2024

e —-Volume 2, Privileged Specification version 20211203
https://riscv.org/technical/specifications/

Word trap is mentioned 301 times

 Different architectures treat exceptions differently e.g.
division by zero is not raising an exception in RISC-V

Computer Systems

81

Trap Handling Basics

* Trap is detected.

* Change mode

e Jump to trap handler

* Trap handler saves context

* Trap handler identifies cause (exception/interrupt)

* Corresponding exception/interrupt handler is called
* Some handlers do not return if they can not recover from an exception

* Trap handler restores context
* Change mode

* Jump back to program execution

15.04.2024 Computer Systems 82

Precise vs. Imprecise traps

* Precise traps:
» Associated with a certain instruction (e.g. illegal instruction exception)
e Easier to debug

* Imprecise trap:
* Not associated with an instruction
* Hard to debug

* OR: Pipelined execution makes it hard to associate the exception with an instruction
(This is an issue with certain pipelines, which we see in next lecture)

15.04.2024 Computer Systems 83

Where we are

* Five-Stage Scalar In-order Processor Pipeline
* Forwarding to mitigate data hazards
* Branch prediction to mitigate control hazards

»
»

* In-order pipeline
* Five Stages
* Scalar pipeline: CPI >=1

* Upcoming Lecture: Multi-cycle Functional Units (DIV/MUL) and Out-of-Order (0O00)

15.04.2024 Computer Systems 85

Thank you for your attention!

BACKUP

Registers of RISC-V

15.04.2024

RISC-V has 32 integer registers

Processors can have different
register width, we look at RV32
with 32-bit width

Each register has two IDs (x0-
x31) and an ABI name that
indicates its role

ABI stands for Application
Binary Interface (ABI)

Register ABI Name Description Saver
x0 Zero Hard-wired zero
x1 ra Return address Caller
x2 sp Stack pointer Callee
X3 gp Global pointer
x4 tp Thread pointer
x5-7 t0-2 Temporaries Caller
x8 sO,fp Saved Callee
register/frame
pointer
x9 sl Saved Register Callee
x10-11 a0-1 Function Caller
arguments,
Return values
x12-17 a2-7 Function Caller
arguments
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Computer Systems

88

Application Binary Interface (ABI) — Function Call Convention

* ABI also specifies rules for register usage in passing arguments and results for
function calls

* Callee-saved registers: If function foo1l (caller) calls foo2 (callee), then foo2 is not allowed
to modify this value (it needs to save it and restore it before returning to foo1l)

e Caller-saved registers: If function fool (caller) calls foo2 (callee), then fool needs to save
this register before calling foo2 if it wants to keep the value in it because fool is allowed to
modify it

* According to ABI parameters are passed to a function in registers a0-a7

* The function should return its return value in register a0 (if <=32-bit value)

15.04.2024 Computer Systems 89

RISC-V Instructions

 The RISC-V ISA is modular with base instruction sets and a large variation of extensions
* We look at RV32IM

e 32-bit Integer Instruction Set RV32|

* Integer Register-Register Instructions (R-type)
. Runs an arithmetic or logical operation on registers
. Both operands are values in registers
. Integer Register-Immediate Instructions (I-type)
. Second operand is an immediate (constant) value
. Control Transfer Instructions
. Unconditional jumps
. Conditional Branches
. Load Store Instructions
. Move data between memory and registers
. Load-store Architecture: Operations on registers only

e 32-bit Integer Multiplication RV32M Extension -> Next Session
* Integer Multiplication Instructions
* Integer Division Instructions

15.04.2024 Computer Systems 90

Y (Informatics

Computer Systems

Advanced Processor Pipelines 2

Daniel Mueller-Gritschneder

22.04.2024 V0O4g

Sources

Digital Design and This book covers the basics of how to design a simple in-order scalar

Computer Architecture processor pipeline in detail in hardware.
RISC-V Edition

Sarah L Harris
David Harris

* Literature: , Digital Design and Computer Architecture: RISC-V Edition”, by Sarah L. Harris and David Harris
* https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-
820064-3
* https://pages.nmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
* They also provide slideshows — the basis for ours! You can investigate extended version at their website.
* Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/gknpf/UTW alma21139903990003336

22.04.2024 Computer Systems 2

Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
A Quantisatize Approach : Disclaimer: The book provides advanced concepts from real complex processor
: E designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735
* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:
https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi _askewsholts vlebooks 9780123838735

22.04.2024 Computer Systems 3

RECAP: Five-Stage In-Order Scalar Pipeline

»
»

* Five Stage
* In-order pipeline

 Each stage takes one cycle to complete * Scalar pipeline

»Single access cycle to instruction and data memory: Works for small and slow micro-
controller-type processors with on-chip embedded SRAM memories

»Single cycle operations, works for simple instructions (ADD, Compare,...)

ADD a0,a0,al stall

RET stall

 Scalar processor: Can execute at maximum 1 instruction per cycle (IPC <=1)

22.04.2024 Computer Systems 4

* Multi-cycle Functional Units (FUs)

Load and Store Optimizations
Instruction Dependencies (RAW, WAW, WAR)
Dynamic Scheduling with Scoreboard (Out of Order — O00)

Register Renaming

Superscalar

Optional, not relevant for exam
* Alook at a real RISC-V processor: CVA6

* Pipeline Support for Precise Traps

22.04.2024 Computer Systems 5

Multi-Cycle Operations

Integer Multiplication Instructions

* Signed-signed Multiplication
* Multiplying two 32bit values can result in a value of up to 64 bit

e MUL a3,al,az
* Behavior: a3 & al*a2 // only the lower 32bit

* MULH a4,al,az
* Behavior: a4 & al*a2 // only the higher 32bit

e Example:
* MULH a4,al,az

e MUL a3,al,a?
Behavior: [a4 a3] = al*a2 // full 64 bit

* Unsigned-unsigned multiplication MULHU
e Signed-Unsigned multiplication MULHSU

22.04.2024 Computer Systems 7

Integer Division Instructions

e Signed-signed Division
DIV a3,al,a?
* Behavior:a3 &< al/a2

* REM a4,al,az
* Behavior: a4 & al modulo a2 // remainder

* Unsigned-unsigned division DIVU, REMU

22.04.2024 Computer Systems 8

Pipelined Functional Units (FUs)

* Complex computations require deep circuit logic

 Critical path in deep logic limits the design’s frequency

* Similar to processor design, break FU into stages and integrate registers to build a pipeline
» Latency (in cycles) equals to number of pipeline stages

» Initialization Interval: Delay (in cycles) between start of two computations

Stage Stage
s1 s2

Latency = 2 Cycles
* Example: 2-stage Multiplier Initialization Interval = 1 Cycle

Cyclel Cycle2 Cycle3 Cycle4

MUL a0,a0,t0 MUL(s1) | MUL(s2)
MUL al,al,tl MUL(s1) | MUL(s2)
MUL a2,a2,t2 e VIUL(s1) | MUL(s2)

Initialization
Interval Latency

Computer Systems 9

22.04.2024

Serial Functional Units (FUs)

* Often complex operations such as divisions can be computed by iterative algorithms

* The number of iterations (required clock cycles) often depends on the input values

* These iterations can be implemented on a serial FU, which is busy as long as it computes
» Latency equals to number of cycles required for computation

» Initialization Interval equals to number of cycles required for computation

e Example: Serial Divider L 1-64 Cvcl
atency = 1- ycles

Initialization Interval = Latency

1-64 clock cycles

Latency

DIV a0,a0,t0 2 DIV DIV

22.04.2024 Computer Systems 10

Example: RISC-V CVA6 Processor

“Multiplier

The multiplier contains a division and multiplication unit. Multiplication is performed in two
cycles and is fully pipelined (re-timing needed). The division is a simple serial divider which
needs 64 cycles in the worst case.”*

*https://docs.openhwgroup.org/projects/cvab-user-manual/03_cva6_design/ex_stage.html

22.04.2024 Computer Systems 11

Integration of Multi-cycle Functional Units

* Multi-cycle Functional Units are integrated into the EX stage

* Example only for Multiplier
Forwarded Forwarded Forwarding also sometimes called

from MS from WB ,bypass”
»| M
Ju] EX/MS
> X
M M ut ” Result
U +—> >
xS o
M
p U —p
Rsl "X S
|
M <
Rs2 » U >
> X
;F > » Store
_ X N Value
Extended Immediate R
'58 BTA: Branch
PC >/ T
Target Address

22.04.2024 Computer Systems

Simplified Illlustration Style for

Multiplexing
] EX/MS
7 M || UL+— —
— >
- |, Result
— >
-)
— > |
= >
— :/
> | » Store
_+ Value
BTA
—_—

12

Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

* Multi-cycle Functional Units are integrated into the EX stage

e Simplified diagram

BTA—s
BIATS BrB [TBTA
TBTA —. L L Forwarding
JRBTA — = i u
> > L
PCp4 — > >
PC
BTA: Branch Target Address "I T
PCp4: PC+4 > >
JRBTA: Register-defined
branch target address > >
TBTA: Taken-BTA from | . - g,
Branch Target Buffer (BTB) > 1 > > |
PCp BIA

22.04.2024 Computer Systems 13

Scalar Five-Stage Pipeline with Multi-cycle FUs and Forwarding

* Multi-cycle Functional Units are integrated into the EX stage

* Further simplified diagram (PC Generation, Extend, PC+rd address not shown, but of course still needed!)

Forwarding

L C
Focus on the L B L :@ J—]
computation flow M) Ml AR
ol -
N} I >
i(ne

22.04.2024 Computer Systems 14

Scalar Four-Stage Pipeline with Multi-cycle FUs with Forwarding

* The DIV and MUL do not
need to make memory

accesses
. Move the memory sage NN x| wB_
(MS) after the ALU (which Forwarding

is required for the address
computation for
load/store)

* Merges MS and EX stage H.mﬂv
(four stages)

* Single forwarding path
required in four-stage
pipeline

y

\ 4

v

i

v
v

\ 4
\ 4

* Such changes need
additional control in
control path

v
A 4

22.04.2024 Computer Systems 15

Scalar Four-Stage Pipeline with Multi-cycle FUs and Load Store Unit (LSU)

e We can add a
second address

computation adder “ “m

(AC) to form a Forwarding

simple so-called

load/store unit (LSU)

y

B

v

¥
B v
<

RS
&

22.04.2024 Computer Systems 16

Execution Scheme: Four-Stage In-Order Scalar Pipeline

* The EX stage has an execution scheme defined by the processor control path

* Version 1: Static In-order Scheduling
» Allow only one single instruction in the EX stage

» Data hazards: Operands are forwarded by previous instruction

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0 Cyclell

ADDI t1,tl,4 (dependencies stall “ stall stall m

Data hazard tlis forwarded

v

After load
EX still busy v oo
Stalls back te | and £X
.a ls ackpropagate In stage still
pipeline busy

22.04.2024 Computer Systems 17

Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

* Version 2: Static In-order Scheduling exploiting Pipelined FUs

» Allow only one single instruction in EX stage

» Except for: Pipelined MUL can use Initialization Interval for two consecutive MUL
(still need to check for RAW dependency between the MUL)

Cyclel Cycle2 Cycle3 Cycle4d Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0

L £1,0(a3) o SR c | ovEv | we |
ADDI t1,tl1,4 “ stall stall

22.04.2024 Computer Systems 18

Load / Store Optimizations

Memory System

* The memory for more complex
processors usually uses caches to
allow for fast accesses D

v

v

_‘_I
vy 3

v

 Memory latency depends
whether the data is found in the
cache (cache hit/miss)

v
v

* Also instructions are loaded from
caches, so also instruction fetch
may require several cycles on an
instruction cache miss.

\ 4 A 4 \ 4

Instruction Cache Data Cache

v Y T

Interconnect + Memory System (L2 Cache, Main Memory)

22.04.2024 Computer Systems 20

Instruction Cache Misses

* Instruction cache miss causes several cycles of delay for instruction fetch (IF), depending
on speed to catch fresh instruction block from memory system

* Instructions are usually reloaded to cache in blocks (cache line size) so that usually there
are several cache hits after a cache miss (depending on jumps/branches in program)

Cyclel Cycle2 Cycle3 Cycled4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0
ADD a2,tl,t2

MUL a2,a0,a2 “

MUL a4,al,a4

MUL MUL

T

Instruction Cache Miss

» Advanced caches pre-fetch the next block before the cache miss happens to hide cache
refill latencies.

22.04.2024 Computer Systems 21

Load Cache Miss

e Data cache misses lead to extra cycles for loads as the data needs to get fetched from
another memory (level 2 cache, main memory)

* Example (function vec_add, see first session): We load from two different addresses a0
and al (worst case both loads lead to a data cache miss)

Data Cache Miss

Cycle1 Cycle 2 Cycle 3 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t1,0(a0) “ mm Data Cache Miss

ADD tl1,tl,t2 “ stall stall stall stall stall stall

RAW dependencies /
ID here because stall on
previous instruction finished

22.04.2024 Computer Systems 22

Example vec_add: Loads from two different addresses (a0,al)

RISC-V Code
* Example C-Code 3 # base address of a: ao0,
base address of b: al,
void vec_add(int[4] a, int[4] b, int[4] c) { # base address of c: a2,
unsigned int 1i; # i: t0, constant 4: t3
Gi=':2:;i<i_l;i++} { vec add:
, c[i] = a[i] + b[i]; LI t0,0 # i=0
1 LI t3,4 # t3=4
vec_add for:
LW tl1,0(a0) ¥ t1 = ali]
LW t2,0(al) # t2 = b[i]
ADD tl1,tl,t2 # tl = a[i] + b[i]
SW t1,0(a2) # c[i] = t1

ADDI a0,a0,4 #next element is base address + 4
ADDI al,al,4 #next element is base address + 4
ADDI a2,a2,4 #next element is base address + 4
ADDI tO,tO0,1 # i++

BLTU t0,t3,vec_add for # for (i < 4)

RET # void return

22.04.2024 Computer Systems

Nonblocking Loads (1/2)

* Load accesses are for longer times in flight due to cache misses

Most interconnects/caches allow to overlap multiple memory accesses

Allows to execute multiple load accesses in overlapping fashion

Example (function vec_Add): Cache observes both addresses for load accesses and may
need to reload cache lines for both accesses when both miss.

Data Cache Misses
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

LW t2,0(al) “ AC DMEM DMEM DMEM DMEM

ADD tl,tl,t2 “ stall stall stall stall

WB

22.04.2024 Computer Systems 24

Nonblocking Loads (2/2)

* Cache usually returns values in-order (some caches/interconnects support to return data
out-of-order)

* Example (function 3): When only the first load misses, the second load still needs to wait
in the LSU when the LSU returns results in-order.

Data Cache Misses
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

w t1,020) [N DMEM | DMEM | DMEM | DMEM | WB |
LW t2,0(al) . F | AC DMEM | DMEM | DMEM | DMEM | WB |

No data cache miss, but we
need to wait for first cache
access to finish.

22.04.2024 Computer Systems 25

Store Cache Miss

* Depending on Store Policy: Write-back data cache:
* Additional latencies for stores possible when a dirty cache line needs to be replaced.
* Dirty cache line needs first to be written to memory before it can be replaced
* Write through data cache:
* Long store latency because the data is written not only to cache but also to main memory.

Example: We store to two different addresses a0 and al (first store misses)

Data Cache Misses
Cycle1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle10 Cyclell

sw 1,020 [NTEEN | AC_| DMEM | DMEM | DMEM | DMEM | wB |
LI t2,4 “ stall stall stall stall stall m

22.04.2024 Computer Systems 26

Buffers

* A buffer can store several values

* FIFO (First-in-first-out) buffer: Values can be read only from the
buffer in the same order they are written to the buffer

* Reorder buffer: We can look up and read any value in the buffer

FIEO Reorder
In- Buffer In- In- Buffer Out-of-
order order order order
— e — ———

22.04.2024 Computer Systems 27

Store Buffer

* |tis not really necessary to wait until a store write completes

e Store Unit (SU) with Store Buffer:
» Put store address and data to store buffer (sometimes called “Posted stores”)
» Store buffer performs memory store access (MSA) independently from pipeline
» Only stall pipeline for stores when store buffer is full

e Load Unit (LU): Load more complex:
> need to first look whether address is in store buffer then in cache
» or need to wait until SB is empty.

22.04.2024 Computer Systems 28

Nonblocking Stores with Store Buffer

Store accesses are for longer times in flight due to cache misses

Store Buffer store accesses and pipeline continues execution

Store Buffer writes data to memory via Memory Store Access (MSA).

Only stall pipeline for stores when store buffer is full

Example:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

sw t1,0(20) [N SB SB SB MSA
SW t2,0 (al) . F | SB sB sB MSA

22.04.2024 Computer Systems

Cycle 9

Cycle 10

29

Execution Scheme: Scalar Four-Stage Pipeline with Pipelined FUs

and Load Store Optimization

* Version 3: Static Scheduling with pipelined FUs and Load Store Optimization
» Allow only one single instruction in EX stage

» Except for:

» Pipelined MUL can use Initialization Interval for two consecutive MUL
» Certain number of nonblocking Loads can be in EX stage (then EX stalls)

» Certain number of stores can be posted in the SB depending on SB size (EX stalls when SB full).
When Store is posted in SB, it does not count as instruction in EX stage.

Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
1 2 3 5 6 7 8 9 10 11 12

4

MUL a4,al,ad “ MUL(s2) m

SW a2,0(a3) | F stall [N MSA

ADDI a3,a3,4 “ stall

SW a2,0 (a3) sall [N SB SB MSA

22.04.2024

Performance of Scalar Four-Stage Pipeline with Pipelined FUs

and Load Store Optimization

* We still only allow one instruction to execute in EX stage
except for some instruction types (MUL, Store, Load) in Version 3

* Multi-cycle operations cause many stalls (stiff scalar execution scheme)

Cyclel Cycle2 Cycle3 Cycled Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0

o

LW tl1,0(a3) stall stall stall stall

ADDI a3,a3,4 stall “ stall stall stall

e Can we interleave instructions to make better use of parallel units, maybe even just start
them when they are ready, possibly out-of-order (000)?

* We want to exploit so-called Instruction Level Parallelism

22.04.2024 Computer Systems 31

Challenges for Exploiting Instruction Level Parallelism

Challenges for Exploiting Instruction Level Parallelism: Structural Hazards

e Start instructions in EX stage when FUs are available?
e Challenge: Structural Hazards, e.g. in WB Stage

Cyclel Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8 Cycle9 Cyclel0

ADD a2,tl,t2 “ ALU m
LW t1,0(a3) “ m WB Two WB in same cycle!
G

ADDI a3,a3,4 WB WB collision!

Structural Hazard!

22.04.2024 Computer Systems 33

Challenges for Exploiting Instruction Level Parallelism: Instruction Dependencies

 Start instructions in EX stage when FUs are available?
» Instructions can overtake each other due to different FU latencies.
e Challenge: The assembly program defines a program order for the instructions.

* Requires consideration of instruction dependencies during pipelined execution to
preserve program order.

Cyclel Cycle2 Cycle 3 Cycle4 Cycle5 Cycle 6 Cycle7 Cycle8 Cycle9 Cyclel0

a0z we_

SW a4,0(a3) AC

ADDI a4,a3,4 “ m DIV must write back result first

So-called Write-after-Write
(WAW) dependency

RAW dependency was ignored (data hazard!)

22.04.2024 Computer Systems 34

Instruction Dependencies

A closer look at RAW, WAR and WAW!

Types of Instruction Dependencies

* Read-after-Write (RAW): Also ,, True dependency” Example for RAW:
 Result of one instruction (write) is needed as XOR a1,a2,a4
input for another instruction (read) ., RAW
* May cause data hazards (we seen this one already) ADD a3,a1,t1
* Write-after-Read (WAR): Also ,,anti-dependency” Example for WAR:
* Avalue is used (read) and then updated (write) SW al,0(a2)
* The update (write) is not allowed to overtake the use (read) WAR
ADDI a2,a3,4
° ite- - 1 . «“
Write-after-Write (WAW). Also ,output depe{vdengy Example for WAW:
* Avalue us updated (write) and then updated again (write)
* The second update may not overtake the first update LW a1,0(a2)
* Often created when registers are reused for different / WAW
variables Ll a1,a3,4

22.04.2024 Computer Systems 36

Dep. For Example Program (vec_add)

base address of a: a0,

* Example C-Code 3 # base address of b: al,
base address of c: a2,
void vec_add(int[4] a, int[4] b, int[4] c) { #i:t0, constant 4: t3
unsigned int 1i; dd:
(i=0;i<4;i++) { vec_add:
c[i] = a[i] + b[i]; LI t0,0 #i=0
. LIt3,4 #1t3=4
¥ vec_add_for:

LW t1,0(a0) #t1 =ali]

LW t2,0(al) #1t2=D][i]

ADD t1,t1,t2 #1t1 = a[i] + b|[i]

SWt1,0(a2) #cli]=t1

ADDI a0,a0,4 #next element is base address + 4
ADDI al,al,4 #next element is base address + 4
ADDI a2,a2,4 #next element is base address + 4
ADDI t0,t0,1 # i++

BLTU t0,t3,vec_add_for # for (i < 4)

RET # void return

22.04.2024 Computer Systems 37

Dep. For Example Program (vec_add) (RAW)

LW t1,0(a0)

* Mark all RAW dependencies for the

following code block: LW t2,0(al) A
RAW

10,0 ADD t1,tl,t2
LI t3,4 RAW
vec add for: SW t1,0(a2)

LW t1,0(a0)

LW t2,0(a1) ADDI a0,a0,4

ADD t1,t1,t2

SW t1,0(a2) ADDI al,al,4

ADDI a0,a0,4

ADDI a1,al1,4 ADDI a2,a2,4

ADDI a2,a2,4

ADDI 0,t0,1 ADDI t0,t0,1 o

BLTU t0,t3,vec_add_for

RET BLTU t0,t3,vec_add for

22.04.2024 Computer Systems 38

Dep. For Example Program (vec_add) (WAR)

LW t1,0(a0)

* Mark all WAR dependencies for the

following code block: LW t2,0(al)

LI t0,0 ADD t1,tl1,t2 WAR
LI t3,4
vec add for: SW t1,0(a2) WAR

LW t1,0(a0)

LW t2,0(al) ADDI a0,a0,4

ADD t1,t1,t2

SW t1,0(a2) ADDI al,al,4

ADDI a0,a0,4

ADDI al,al,4 ADDI a2,aZ2,4

ADDI a2,a2,4

ADDI t0,t0,1 ADDI t0,t0,1

BLTU t0,t3, dd_f

RET YRR BLTU t0,t3,vec_add for

22.04.2024 Computer Systems 39

Dep. For Example Program (vec_add) (WAW)

LW t1,0(a0)

* Mark all WAW dependencies for the

following code block: LW t2,0(al) WAW
LI 0,0 ADD t1,tl,t2
LI t3,4
vec add for: SW t1,0(a2)
LW t1,0(a0)
LW t2,0(al) ADDI a0,a0,4
ADD t1,t1,t2
SW t1,0(a2) ADDI al,al,4
ADDI a0,a0,4
ADDI al,al,4 ADDI a2,aZ2,4
ADDI a2,a2,4
ADDI t0,t0,1 ADDI t0,t0,1
BLTU t0,t3, dd_f
RET YRR BLTU t0,t3,vec_add for

22.04.2024 Computer Systems 40

Dep. For Example Program (vec_add) (ALL)

_ LW t1,0 (a0) :
* Mark all dependencies for the
following code block: LW t2,0(al) RA

ADD t1,tl,t2 jJ

LI t0,0 WAR
Ll t3,4 L 0(az
. SW t1,0(a
vec add for: (a2) WAR
LW t1,0(a0)
LW t2,0(al) ADDI a0,a0,4
ADD t1,t1,t2
SW t1,0(a2) ADDI al,al,4
ADDI a0,a0,4
ADDI a1,al1,4 ADDI a2,a2,4
ADDI a2,a2,4
ADDI t0,10,1 ADDI t0,t0,1 o
BLTU t0,t3,vec_add_for
RET BLTU tO0,t3,vec_add for

22.04.2024 Computer Systems 41

Challenges with Interleaving Instruction Execution in EX Stage

1. We have to consider RAW, WAR and WAW dependencies.

2. Structural hazards must be avoided, e.g., FU is already busy.

3. Some instructions can cause so-called exceptions (e.g. memory fault on load/store)
(See optional content for what is required for precise exceptions).

22.04.2024 Computer Systems 42

Dynamic Scheduling With Scoreboard

Out-of-Order (000, O3) Pipeline
Computer Architecture A Quantitative Approach — Section C7

The CDC 6600 Project [1964]

 First implementation of Scoreboard
(Out-of-Order)

* 16 separate non-pipelined functional units
(7 int, 4 Floating Point (FP), 5 memory)

e Out-of-order (000) execution is also called
dynamic instruction scheduling

Steve Jurvetson
CCBY 2.0

22.04.2024 Computer Systems 44

The CDC 6600 Project [‘1964]

Instruction status

Write
CDC 66 OO S C O r eb O a r d ILrl.s;truﬂl:::psd{m Iss\ue Read otlerands Executmn\complere re::ult
. LD F2,45(R3) v v '
* Three main components MILD F0.2,8 \ » x
SUB.D FB,F6,F2 " Y y
> Instruction status M S ; \ ;
» Functional unit status Functionalunit tatus
. Name Busy Op Fi Fi Fk Qj Qk Rj Rk
» Register result status meger Mo
Multl Yes Mult FO F2 F4 No No
:\I::I_ ::.,\ Add Fo & F2 No No
Divide Yes Div FI0 FO F6 Multl No Yes
* For an example of use of Scoreboard
H R Register result status
In CDC 6600 See- FO F2 Fa4 F& F8 F10 F12 voo F30

FU Mult | Add Divide

 Computer Architecture
A Quantitative Approach — Section C7

22.04.2024 Computer Systems 45

Split of ID Stage

“To implement out-of-order execution, we must split the ID pipe stage into two stages:
* 1. Issue—Decode instructions, check for structural hazards.
* 2. Read operands—Wait until no data hazards, then read operands.”

* “In a dynamically scheduled pipeline, all instructions pass through the issue stage in
order (in-order issue); however, they can be stalled or bypass each other in the second
stage (read operands) and thus enter execution out of order”

-- Computer Architecture A Quantitative Approach — 5% Ed. Section C7

22.04.2024 Computer Systems 46

Steps in Out-of-Order Execution (Scheme 1%*)

1. Issue
> Functional unit is free

» No other active instruction has the same destination register
(guarantee that WAW hazards cannot be present)

> If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue
until these hazards are cleared.

2. Read operands

» When source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the
registers and begin execution.

» The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order.

3. Execution
» The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it
has completed execution.
4. Write result

» Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards
and stalls the completing instruction, if necessary.

-- *Computer Architecture A Quantitative Approach — 5t Ed. Section C7

22.04.2024 Computer Systems 47

Steps in Out-of-Order Execution (Simpler Scheme 2**)

_F B e Lws
))

Issue Read Operands
(Dispatch) and Execute

Complete

Issue Buffer (IB) holds multiple instructions waiting to issue.

Instruction Decode (ID) adds next instruction to IB if
* thereis spaceinIB and
* the instruction does not have a WAR or WAW dependency with any instruction in IB.

Instruction Issue (IS) can issue any instruction in IB whose
* RAW hazards are satisfied to all previous instructions in IB
* FU is available.

Note: With writeback (WB) we delete the instruction from the IB, this may enable
more instructions to issue as RAW dependencies are resolved.

-- **Inspired by MIT course, Daniel Sanchez -
http://csg.csail. mit.edu/6.823520/Lectures/L09.pdf

22.04.2024 Computer Systems 48

Example OoO Processor: Simple Scoreboard Data Structure

e Simplified CDC-style Scoreboard Data Structure to track execution
* For Scheme 2, One Issue Buffer

* Logical, not HW implementation

Scoreboard (ScB)
FU Status (Ready?)

DIV MUL |ALU ADD SU LU

Issue Buffer (IB)

Instruction | rd rsl rs2 | Imm | RO Complete

RO: Instruction read operands (started the computation)
Complete: Instruction finished computation (in last EX stage)

22.04.2024 Computer Systems 49

Example OoO Processor: Scoreboard Integration

Example four-stage pipeline with

the ports are under-utilized
-> limit ports in HW and limit issue
or stall for structural hazards

- IBsize4and Scoreboard (SCB) :
* 4 ports to issue instructions from DI
buffer (4 ROs) E
* 4 ports for write back (WB)
V v VvV y R
B :@ -
=)
B)
= —>
= _»E»BTA
No structural hazards in RO/WB —_— R
This is costly, we will later see that —J .

\ 4

22.04.2024 Computer Systems 50

Example OoO Processor: FUs in EX stage

For simplicity all FUs have fixed latency:

FU Latency Initialization Interval

ALU 1 1

ADD 1 1

MUL 2 1 Pipelined

DIV 4 4 Serial (fixed latency)
LSU

LU 2 1 Nonblocking

SU 1 1 Store buffered

* Instruction can only be issued when FU is available.
* SU and LU share same port, cannot be issued together
 We assume instruction cannot be issued to EX same cycle it was added to IB by ID

22.04.2024 Computer Systems 51

Example OoO Processor — Pipeline Diagram - Cycle 2

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
=) LW x12,8(x9)

LW x13,0(x7)

DIV x17,x13,x12
ADDI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14
ADD x10,x10,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

. FU Status (Ready?)
Instruction rd rsl rs2 | Imm | RO | Complete

=Ly 12 | o . DIV |[MUL |AWU |ADD |SU LU

Computer Systems 52

Example OoO Processor — Pipeline Diagram - Cycle 3

Cycle 2

1 3
=) LW x13,0 (x7)

DIV x17,x13,x12 n

ADDI x18,x12,28

MUL x19,x12,x18
MUL x10,x17,x14
ADD x10,x10,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

. FU Status (Ready?)
Instruction rd rsl rs2 | Imm | RO | Complete

LW x12 | x9 g « DIV MUL ALU ADD SU LU

B 1
=) W x13 | x7 0 hl

Computer Systems 53

Example OoO Processor — Pipeline Diagram - Cycle 4

Cycle 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
I
IF

LW x12,8(x9)

LW x13,0(x7)

- DIV x17,x13,x12

ADDI x18,x12,28 n

MUL x19,x12,x18

MUL x10,x17,x14
ADD x10,x10,x13
SW x10,0(x11)
LW x10,4(x8)

ADDI X13,x10,4

Issue Buffer (IB)

. FU Status (Ready?)
Instruction rd rsl rs2 | Imm | RO | Complete

LW x12 X9 g « « DIV MUL ALU ADD SU LU
Busy 2
LW x13 X7 0 X
=) DIV x17 | x13 | x12

Computer Systems 54

Example OoO Processor — Pipeline Diagram - Cycle 5

Cycle 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
P JSH W [w [we
I3

LW x12,8(x9)

LW x13,0 (x7)

DIV x17,x13,x12

m) ADDI x18,x12,28 n
MUL x19,x12,x18 n

MUL x10,x17,x14

IB RAW

ADD x10,x10,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

. FU Status (Ready?)
Instruction rd rsl rs2 | Imm | RO | Complete

LW 13 | x7 0 N § DIV MUL |ALU ADD SuU LU
Busy 1
DIV x17 | x13 | x12
=» ADDI x18 | X12 28

Computer Systems 55

Example OoO Processor — Pipeline Diagram - Cycle 6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
e] w w [ws
w o S EOURETY

Cycle

LW x12,8(x9)

DIV x17,x13,x12
ADDI x18,x12,28
-MUL x19,x12,x18

MUL x10,x17,x14

ADD x10,x10,x13
SW x10,0(x11)
LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm | RO | Complete

DIV «17 | x13 | x12 « DIV MUL ALU ADD SU LU
Busy Busy
ADDI x18 x12 28 X X
= MUL x19 | x12 | x18

Computer Systems 56

Example OoO Processor — Pipeline Diagram - Cycle 7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
et ¢ e L o [we
wasown [UTRETY

DIV x17,x13,x12 n IB

o .82 - [N e

MUL x19,x12,x18 MUL

Cycle

» MUL x10,x17,x14

ADD x10,x10,x13 n

SW x10,0(x11)

LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm | RO | Complete

DIV x17 | x13 | x12 « DIV MUL ALU ADD SU LU
Busy Busy(s1)
MUL x19 x12 x18 X
=r MUL x10 | x17 | x14

Computer Systems 57

Example OoO Processor — Pipeline Diagram - Cycle 8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
LW x12,8 (x9) n mm
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB
ADDI x18,x12,28 n m
MUL x19,x12,x18 n m
3

MUL x10,x17,x14 IB RAW

m) ADD x10,x10,x13 n stall WAW

SW x10,0(x11) stall

Cycle

LW x10,4 (x8)

ADDI X13,x10,4

Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm | RO | Complete

DIV x17 | x13 | x12 « DIV MUL ALU ADD SU LU
Busy Busy(s2)

MUL x19 x12 | x18 X X

MUL x10 | x17 | x14

Computer Systems 58

Example OoO Processor — Pipeline Diagram - Cycle 9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
SRR - TSN Ly | w | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB
-

ADDI x18,x12,28 m
I

MUL x10,x17,x14 IB IB RAW
m) ADD x10,x10,x13 n stall stall WAW

SW x10,0(x11) stall stall

Cycle

MUL x19,x12,x18

LW x10,4 (x8)

ADDI X13,x10,4
Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rs1 | rs2 [Imm | RO | Complete

DIV x17 | x13 | x12 X « DIV MUL ALU ADD SU LU
Busy

MUL x10 | x17 | x14

Computer Systems 59

Example OoO Processor — Pipeline Diagram - Cycle 10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
- i

ADDI x18,x12,28 m
I
MUL x10,x17,x14 n IB IB
m) ADD x10,x10,x13 n stall stall stall WAW

SW x10,0(x11) stall stall stall

Cycle

MUL x19,x12,x18

LW x10,4 (x8)

ADDI X13,x10,4
Issue Buffer (IB)

FU Status (Ready?)

DIV MUL ALU ADD SU LU
Busy(s1)

Instruction rd rsl rs2 | Imm | RO | Complete

MUL x10 | x17 | x14 X

Computer Systems 60

Example OoO Processor — Pipeline Diagram - Cycle 11

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
- i

ADDI x18,x12,28 m
I
S

m) ADD x10,x10,x13 nstall stall stall stall WAW

Cycle

MUL x19,x12,x18

MUL x10,x17,x14

SW x10,0(x11) stall stall stall stall
LW x10,4 (x8)

ADDI X13,x10,4
Issue Buffer (IB)

FU Status (Ready?)

DIV MUL ALU ADD SU LU
Busy(s2)

Instruction rd rsl rs2 | Imm | RO | Complete

MUL x10 x17 | x14 X X

Computer Systems 61

Example OoO Processor — Pipeline Diagram - Cycle 12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
- i

ADDI x18,x12,28 m
I
IE - = EE

m) ADD x10,x10,x13 stall stall stall stall

SW x10,0(x11) stall stall stall stalln

LW x10,4 (x8)

Cycle

MUL x19,x12,x18

MUL x10,x17,x14

ADDI X13,x10,4
Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl rs2 | Imm | RO | Complete

= ADD x10 | x10 | x13

Computer Systems 62

Example OoO Processor — Pipeline Diagram - Cycle 13

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ARl - SN | o [ws
wasown [EURNCRETY

ADDI x18,x12,28

s 20 I G
o 70 I - - @

stall stall stall stall

ADD x10,x10,x13
m) SW x10,0(x11) stall stall stall stall

LW x10,4 (x8) n

ADDI X13,x10,4
Issue Buffer (IB)

FU Status (Ready?)

Instruction | rd rsl1 | rs2 [Imm | RO | Complete

ADD x10 | x10 | x13 X « DIV MUL ALU ADD SU LU
busy

m=p SW x11 | x10 | O

Computer Systems 63

Example OoO Processor — Pipeline Diagram - Cycle 14

Cycle 2

LW x12,8(x9)

1

LW x13,0(x7)
DIV x17,x13,x12
ADDI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14
ADD x10,x10,x13
SW x10,0(x11)

m) LW

ADDI X13,x10,4

,4 (x8)

4 5

L | LW jws
LU

W
s ENEJEDEDET
T,

stall stall stall stall

stall stall stall stall

Instruction rd rsl

rs2

SW x11

stal WAR
stall
Issue Buffer (IB)
FU Status (Ready?)
Imm | RO | Complete
DIV MUL ALU ADD SU LU
0 X X
Busy 1

Computer Systems

64

Example OoO Processor — Pipeline Diagram - Cycle 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
e o v

Cycle

ADDTI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14

ADD x10,x10,x13 stall stall stall stall

SW x10,0 (x11) stall stall stall stalln m SB

=) LW x10,4 (x8) n stall

ADDI X13,x10,4 stall n
Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl rs2 | Imm | RO | Complete

= LW x10 | x18 4

Computer Systems 65

Example OoO Processor — Pipeline Diagram - Cycle 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
e o v

Cycle

ADDTI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14

ADD x10,x10,x13 stall stall stall stall

SW x10,0 (x11) stall stall stall stalln m SB

LW x10,4 (x8) n stall m

m) ADDI X13,x10,4 stall
Issue Buffer (IB) n
- FU Status (Ready?)
Instruction rd rsl rs2 | Imm | RO | Complete
DIV MUL ALU ADD SU LU
LW x10 | x18 4 X
Busy 1

=) ADDI x13 | x10 4

Computer Systems 66

Example OoO Processor — Pipeline Diagram - Cycle 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
B w | w | wo
PR - N o | o
e - Y o (v ov v [ws.

e N T

Cycle

LW x12,8(x9)

ADDTI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14

ADD x10,x10,x13 stall stall stall stall

SW x10,0 (x11) stall stall stall stalln m SB

ADDI X13,x10,4 stall lll IB RAW
Issue Buffer (IB)

FU Status (Ready?)

Instruction rd rsl rs2 | Imm | RO | Complete

DIV MUL ALU ADD SU LU
LW x10 | x18 4 X X

Busy 1

ADDI x13 | x10 4

Computer Systems 67

Example OoO Processor — Pipeline Diagram - Cycle 18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1
STSVISSN TSN L | | we
LW x13,0(x7) n mm
DIV x17,x13,x12 n IB m
e o v

Cycle

ADDI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14
ADD x10,x10,x13 stall stall stall stall

SW x10,0(x11) stall stall stall stall n m SB

m s - PR L [we
s I

ADDI X13,x10,4 stall

Issue Buffer (IB)

FU Status (Ready?)

DIV MUL ALU ADD SU LU
busy

Instruction rd rsl rs2 | Imm | RO | Complete

ADDI x13 | x10 4 X X

Computer Systems 68

Example OoO Processor — Pipeline Diagram - Cycle 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| F IS L | LU [wB |
SR - T | [wo
DIV x17 . x13 x12 10 instructions
x17,x13,x . .
7 [NISTRR o | o DV DIV | wB. 3 cycles ramp-up (4-stage pipeline)
-

ADDI x18,x12,28 m Total 19 cycles -3 cycles = 16 cycles
R CPI=16

stall stall stall stall

Cycle

LW x12,8(x9)

MUL x19,x12,x18
MUL x10,x17,x14
ADD x10,x10,x13

SW x10,0(x11) stall stall stall stall

£l s
e 10 e R o [w | ws.
ADDI x13,x10,4 stall n IB “m
Issue Buffer (IB)

FU Status (Ready?)
DIV MUL ALU ADD SU LU

Instruction rd rsl rs2 | Imm | RO | Complete

Computer Systems 69

Terminology

»Scalar (CPI >=1) * In-order

»Some stages can be multi-
issue, e.g. four WB ports

] B x| ws
* In-order/000 can be

different for every stage. * In-order * 000

v

v

»But: 000 usually means
instructions are scheduled
000 in EX stage.

22.04.2024 Computer Systems 70

Register Renaming

Out-of-Order Limitations

« WAW and WAR limit further reordering

* Not real dependencies
* Artificially added: limitation of registers

* Problem with limited registers
* Number of registers limited by ISA
e Compiler optimizations limited
* Especially with different execution paths

e Approach: CPU solves problem by register renaming

22.04.2024 Computer Systems 72

Register Renaming

* Approach: Rename to microarchitecture register names
* More microarchitecture registers than logical ISA registers

 Entirely eliminates WAR and WAW hazards
* Not visible to the outside world

SW t1,0(a2) SW t1,0(a2)
:>\NAR

ADDI a2,a2,4 ADDI p2,a2,4

* Introduced by Robert Tomasulo (1967)
e Reservation stations (FU-specific IBs) before FUs store instructions and reg. names

» Tomasulo Algorithm: Computer Architecture A Quantitative Approach 5t Ed. —
Chapter 3

22.04.2024 Computer Systems 73

Example: Register Renaming removes WAW, RAW stalls

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LW x12,8(x9)

LW x13,0(x7)
DIV x17,x13,x12
ADDI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14
ADD pl0,x10,x13
SW pl10,0(x11)
LW pll, 4 (x8)

ADDI x13,pll, 4
We do not have to stall IF and IS on WAW and WAR, but RAW still makes instruction wait in IB for operands.
In this example the ADD caused 4 stall cycles that are gone now but the RAW still requires it to wait.

BUT: Instructions behind ADD can execute earlier in 000 fashion.

22.04.2024 Computer Systems 74

Simple Superscalar (Scoreboard) — Dual Fetch and Decode

Instruction fetch can
fetch two instructions at once
Ideal IPC =2

Rename

-

Scoreboard (ScB) D :

AR =

vV

31 I ¥

22.04.2024

v

—E)
W
B
=8
b o

v

Computer Systems

\ 4

75

Simple Superscalar (Scoreboard) — Dual Instruction Fetch and Decode — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LW x12,8 (x9) “ m
LW x13,0 (x7) n IB -
N

DIV x17,x13,x12
ADDI x18,x12,28 Due to this chain of RAW dependencies

MUL x19,x12,x18 “ --m IPC <=1, Otherwise IPC could go above 1
MUL x10,x17,x14 n B 1B |IB IB| IB m
ADD p10,x10,x13 || B | 1B IB| IB Ea

sWw pl0,0 (x11) B | 1B IB| IB

E - -

ADDI x13,pll, 4

SB

Stall Stall

“ Stall Stall

Issue buffer full

Fetching more instructions assures the issue buffer is always filled.
BUT: Instruction Level Parallelism can limit instructions executing in parallel
22.04.2024 Computer Systems 76

Simple Superscalar (Scoreboard) — Dual Fetch, Decode and Issue

Wide instruction fetch can
fetch two instructions at once
Ideal IPC =2

Reduce HW: Max two issues per cycle

Scoreboard (ScB) D :

Rename IB

-

AR =

vV

it H

Reduce the number of RO ports
and share WB ports (DIV, MUL)
Structural hazard can cause extra cycles

22.04.2024

v
A 4

I‘“"*‘?’Eé

\ 4

Computer Systems 77

Simple Superscalar (Scoreboard) — Dual Instruction Fetch, Decode and Issue — Example

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LW x12,8(x9)

LW x13,0(x7)
DIV x17,x13,x12
ADDI x18,x12,28
MUL x19,x12,x18
MUL x10,x17,x14
ADD pl0,x10,x13
SW pl10,0(x11)

LW pll,4(x8)

ADDI x13,pll, 4 No RO structural
hazard as first
LW was issued a

Stall Stall

cycle earlier “ Stall stall

We still observe no structural hazards. ILP limits instruction issue below 2.

22.04.2024 Computer Systems 78

Reorder Buffer (ROB)

Reorder Buffer (ROB)

* Reorder buffer: Orders the WBs and commits them in-order

* Also assures stores are committed in order with WBs (needed for precise exceptions)

* In-order * 000 * In-order
) B)
Issue Read Operands Complete Commit
(Dispatch) and Execute (Retire)
Finish

22.04.2024 Computer Systems 80

Optional, not relevant for exam

A Look at a Real Processor

CVAG6

CVAG Pipeline Diagram: https://github.com/openhwgroup/cva6

i Cache Subsystem !
I ’ 1S ‘ ’ DS Miss Unit DS Mem | DS Controller DS Buffer H D$ | :
I
|
: i
| Frontend ID Issue Execute Commit :
s e e e
I 1 T I T T oy
| Speculative Regime | | From ! |In-order Issue | 0o0O WB ! In-order =
! | 1 : | | Architectural =
. | ‘ | d | Commit g 5
| | | ° E 1
| : Instr. Queue 1] £ £
! | Re-aligner e =!
! Decoded Instr. --> Q © !
I I E—— Lsu © £
: . \—, Valid > 5 — -{:‘é _ g :
| | DTLB ITLB : nEJ g]
| | <-- Instr. ACK Tssue =5 =
i | Ack FU . '
| e = Data Commit Instr. --> 1
: l % 'qé' ALY Exception --> cf mr_nit 1
| || - ogic
: s ; b Issue Read ?1; - T 9 :
g g = | & & |CSR Data-->
I !
| | ‘% E Cor?'lpre..ssed 3 3 |3 8 CSR Buffer g |
: e v © g z 2 o Regfile :
| e 3 ol 23 (8 =™ 8 <-- RF Enable| | Write .
| || o a =35 |0 |7 2 A o EPU 7] -]
| S i @ 1 1 2a (=] = ! @ <-- Commit Ack 1
CSR R Qg LE L v |8 Al %
I " 17 1 a v v 3 a w © I w 1
| Write g] g 2 =) <-- Commit CSR| [CSR !
! | s el 2 Mul / Div I Write :
: 5 o <-- Commit Store 1
p ! | Decoder o]
| SHoE l ' — H | Branch Unit '
ranch Uni
: mtvec --> I : \Valld_»> Scoreboard :
| epc --> ! : |
I [|
| ! i Issue Entry —> — To/From — T |
| | | | Commit | | |
: I : I : Privilege :
| | 1 | I Check 1
! | ' | ! 1
[} | 1 |
I > > I |
] I .] Exception '
! | from MMU § from Decoder] P :
<
: PC | o : :
| Select | ° 5 ! Interrupt * |
I | (-9 o I |
| w w | 1
| | T 1 |
] | | 1
: : 4 L - .
1 I 1 |
| T t T I |
I + - |
| | | | 1 |
e T L 1 ‘o _________ |
22.04.2024 82

Frontend Backend

CVAG Pipeline Diagram: https://github.com/openhwgroup/cva6

Cache Subsystem ’

! |
: 1S ‘ ’ DS Miss Unit DS Mem |D$ Controller DS Buffer H D$ | :
I
' l
I
| Frontend ID Issue Execute Commit :
s e e e
I 1 T 1 T T = |
| Speculative Regime | | From ! |In-order Issue | 0o0O WB ! In-order =
! | 1 : | | Architectural =
i | | | | | Commit g 5
I I J— 1 § E I
| : Instr. Queue] =
: ! Re-aligner Decoded Instr. --> 8 % :
| : oecased s s E
Valid --> | (]]
| - Q= X
. | DTLB | | ITLB 88 &
i | <-- Instr. ACK = 258
I [— 1
I Tl imm --> Ack FU c it |
! I = Data | | o ommit Instr. --> . 1
! g 2 ALY Exception - Comr_mt '
! | g H & ption > Logic |
| e m b Issue Read | ° T]
Fetch | g 3 Compressed | | E o ® € |CSRData-> .
i e : P 3 s[5 g CSR Buffer 8 |
(7] ! Decod 03] & @ b 2 "
buffer : g ’ e |3 |3 9 g Reaflel |
! I '% 3 o|a 2 % = ‘% W._<-- RF Enable | | Write 1
| 18 L8 ss (2 [T |24 2 FPU - Commi '
between IF : CSR | .3 . g\:’ Lz_a, %" v |8 'L A E <}brnm|lAck :
| write | £ ! £ e J | o < Commit\CSR CSR :
and ID i | o x| 2 Mul I Div P rite .
: 5 o <-- Commit Store 1
p : | Decoder o o]
| epc -->] L| | . i
Bi h Unit
: mtvec --> I : /lvahdé"’——’—" Scoreboard ranch Uni :
! epc --> ! R !
I I
b d | —], I Issue Entry —> —— .{:"’F’O"‘ T T |
| 1 ommit | | |
scoreboard T 1D = | O S =
| | 1 | I Check 1 -
, | , , | ~ In-order
[} 1 |
| | > > [| 1
| | | | ceoron - commit.
! | from MMU § from Decoder] P :
' e || 3 ; Sorts the
I 1
| Select | ! Interrupt * |
o v
: | g & | -~ OoOWB
| | T 1 |
] | | 1
. | “® “ ® .
I 1 |
I T t T I |
I + - |
| | | | 1 |
L [L 1 ‘o _________ |
22.04.2024 ! 83

Frontend Backend

Optional, not relevant for exam

Pipeline Support for Precise Traps

Challenge with OoO Pipelines and Exceptions

* Some instructions can cause exceptions
* Memory fault on load/store

* Before entering exception handling all previous instructions should have committed
(done their write back)

* Noinstruction after the one that caused the exception should have committed (done their write back)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

sw t1,0(20) [N SB SB SB MSA
SW t2,0(al) . F | SB SB SB FAULT

LI would have committed before we observe the
memory store fault exception (imprecise exception)

22.04.2024 Computer Systems 85

Implementing Precise Exceptions in OoO Pipelines

» For Precise Exception:
» Before entering exception handling all previous instructions should have committed
» All previous stores should have written to memory or SB should continue to write them to memory

» No instruction after the instruction that caused the exception should have committed,
instead they should be deleted (killed)

» No store after the instruction that caused the exception should have written to memory from the SB,
instead they should be deleted (killed) from the SB

»Scoreboard approach did not support precise exceptions

» Different approaches to implement precise exceptions: e.g. Reorder-Buffer (ROB) sorts all
WB commits and makes sure store buffer only sends committed stores to memory

22.04.2024 Computer Systems 86

Where we are

* Four-Stage Superscalar Out-of-order Processor Pipeline
* Exploit Instruction Level Parallelism to hide extra cycles of multi-cycle FUs.
* Scoreboard to track instruction dependencies

_r B e] ws

»

* |n-order * 000 * 000

»
»

v

* Four Stage
* Qut-of-order (000) pipeline
* Superscalar pipeline (Multi-Issue)

* Upcoming Lecture: More on Multi-Issue Processors (targeting IPC > 1)

22.04.2024 Computer Systems 88

Thank you for your attention!

ystems

Y (Informatics

Computer Systems

Advanced Processor Pipelines 3

Daniel Mueller-Gritschneder

25.04.2024

Sources

Digital Design and This book covers the basics of how to design a simple in-order scalar

Computer Architecture processor pipeline in detail in hardware.
RISC-V Edition

M(Sarah L Harris

David Harris

e Literature: , Digital Design and Computer Architecture: RISC-V Edition”, by Sarah L. Harris and David Harris
* https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-
820064-3
* https://pages.nmc.edu/harris/ddca/ddcarv.html (Includes resources for students!)
* They also provide slideshows — the basis for ours! You can investigate extended version at their website.
* Available at TU’s library: https://catalogplus.tuwien.at/permalink/f/gknpf/UTW alma21139903990003336

25.04.2024 Computer Systems 2

https://shop.elsevier.com/books/digital-design-and-computer-architecture-risc-v-edition/harris/978-0-12-820064-3
https://pages.hmc.edu/harris/ddca/ddcarv.html
https://catalogplus.tuwien.at/permalink/f/qknpf/UTW_alma21139903990003336

Sources

So-called application processors have many additional features:
Branch prediction, Out of order execute, Scoreboard, Superpipelining, Multi-
COMPUTER | issue, Superscalar, VLIW, Multi-threading, ...
ARCHITECTURE
o A Quniitaice Approach : Disclaimer: The book provides advanced concepts from real complex processor
: ’ designs. We only study the concepts at a high level. For simplicity, the used
pipeline models in this lecture are reduced strongly in complexity.

But: We will have a look at some current RISC-V processor designs

Literature: ,Computer Architecture A Quantitative Approach” 5th Edition - September 16, 2011
Authors: John L. Hennessy, David A. Patterson eBook ISBN: 9780123838735

* https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
* Available at TU’s library:

https://catalogplus.tuwien.at/permalink/f/8agg25/TN cdi askewsholts vlebooks 9780123838735

25.04.2024 Computer Systems 3

https://shop.elsevier.com/books/computer-architecture/hennessy/978-0-12-383872-8
https://catalogplus.tuwien.at/permalink/f/8agg25/TN_cdi_askewsholts_vlebooks_9780123838735

Sources

MODERN PROCESSOR Advanced concepts for superscalar.
DESIGN </ i Focescors
T G

Literature: Shen & Lipasti : Modern Processor Design (2005)

Lecture slides available: https://pharm.ece.wisc.edu/mikko/

25.04.2024 Computer Systems 4

* Processors’ Performance
* Superpipelining

e VLIW

* Superscalar

* Multi-threading

Optional, not relevant for exam

* Alook at a real RISC-V processor: BOOM, A15

25.04.2024 Computer Systems 5

Processors’ Performance

Superpipelining and Multi-Issue

Processors’ Performance

* Recap of Last lecture: Superscalar processor reached CPI=1

Performance of a processor (IC is instruction count):

1 Instructions 1 _IPC-Freq Freq
IC Cycle Cycle Time IC ~IC - CPI

Performance =

* Superpipelining aims at increasing performance via frequency
e Superscalar, VLIW aims at increasing performance via IPC

* Compiler optimization can improve instruction count (IC) and IPC

25.04.2024 Computer Systems 7

Superpipelining and Multi-Issue

 Scalar five-stage pipeline

SLLI a2,al,2
ADD t1,t0,t2
SLLI a5,a4,2
LW a0,0 (a3)

* Superpipelining concept: Multi-Issue concept:

sit a2,a1,2 [N EEEEEE sz 22,212 [T IESEIETY
o ooz D HEEEER it " M x| vs [we
sur s,z QECCHEEEEE s =: EECTIESITINTS

Li 20,0 (a3) Bl BEEEEE 700 I EIOD

* Superpipelining aims at higher clock frequency by increasing number of pipeline stages!

* Multi-lssue processors enable CPl < 1 (IPC > 1) by fetching, decoding and executing multiple instructions in parallel

25.04.2024 Computer Systems

Superpipelining

Superpipelining

* Superpipelining aims to reduce cycle time (increase clock frequency)

* Deep pipelining or superpipelining: Having more stages than a given baseline
(e.g. five-stage pipeline)

sut 22,12 [0 BEEEEN
wo t1,e0,e2 B DEEEEE
suras,asz Bl BEEERN

* Pipeline stages do not need to be split evenly

LW a0,0(a3)

25.04.2024 Computer Systems 10

Example: MIPS R4000

* |IF — First half of instruction fetch;

« Example MIPS R4000 Pipeline* * IS — Secor\d half ?f instruction fetch,
_ L _ complete instruction cache access.
* Cache access time most critical in the design « RF — Instruction decode and register

* Eight stages (registers not shown -> lines for cycle boundaries) fetch

 EX — Execution, which includes
effective address calculation, ALU
operation, and branch-target
computation and condition evaluation.

* DF — Data fetch, first half of data cache
access.

* DS — Second half of data fetch,
completion of data cache access.

* TC — Tag check, to determine whether
the data cache access hit.

e WB — Write-back

*-- diagram according to Computer Architecture A Quantitative Approach — Section C6

25.04.2024 Computer Systems 11

Example: MIPS R4000

) Load-use delay = 3 cycles
* Execution Scheme Y Y

Branch penalty = 3 cycles
B EREER l ‘

* Instruction dependences have higher penalties (due to deeper pipeline)

* Branch decision later available -> prediction even more important as more instructions must be flushed
(In MIPS R4000: branch computed in EX stage -> 3 cycles branch penalty)

* Forwarding can‘t remove all stall cycles for RAW dependencies (e.g. Load-use data needs three cycles
to become available).

25.04.2024 Computer Systems 12

Limits of Superpipelining

 Number of pipeline stages:
Desktop CPUs: 12-20 stages.

* Embedded CPUs: all from 1-20 stages.

» Original Source “Runtime Aware Architectures”, Mateo Valero,
HiPEAC CSW 2014,
taken from Lecture Myoungsoo Jung (Slide 6):
http://camelab.org/uploads/Main/lecture06-istruction-paralllel-
processing.pdf

» See for example
https://en.wikipedia.org/wiki/List of Intel CPU microarchitectures
for a list of the number of pipeline stages for recent Intel‘s processors

25.04.2024

Around ~15 stages_

N\ D O NN @ Q& Q@2 2D
. X N N %)
SOREC ARSI
FRNCIRGY SR Ea e
QURZLANS, & e SN
< \‘)\% b‘b‘\ %’D
> ™ \)((\

. < < \}.\)@

R%QZ kY

Computer Systems

13

http://camelab.org/uploads/Main/lecture06-istruction-paralllel-processing.pdf
https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Static and Dynamic Multi-Issue

 Static multiple issue (at compile time)
* Compiler groups instructions to be issued together in a bundle
e Sorts them into “issue slots”
* Compiler detects and avoids hazards

* Dynamic multiple issue (during execution)
* CPU examines instruction stream and chooses instructions to issue each cycle
e Compiler can help by reordering instructions
* CPU resolves hazards using advanced techniques at runtime

25.04.2024 Computer Systems 15

Speculation

* “Guess” what to do with an instruction
e Start operation as soon as possible

* Check whether guess was right
* If so, complete the operation
* |If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

* Examples
* Speculate on branch outcome, execute instructions after branch
* Roll back, if path taken is different
* Speculate on store that precedes load does not refer to same address

* We can execute the load instruction before the store instruction
* Roll back, if the store writes the same address the load reads from

25.04.2024 Computer Systems 16

Compiler or Hardware Speculation

 Compiler can reorder instructions
e e.g., move load before branch
e Can include “fix-up” instructions to recover from incorrect guess

 Hardware can look ahead for instructions to execute
» Buffer results until it determines they are actually needed (written to the registers or memory)
* Flush buffers on incorrect speculation

25.04.2024 Computer Systems 17

Very Long Instruction Word (VLIW)

Static Multi-Issue

Static Multiple Issue

e Compiler groups instructions into “issue packets” (sometimes also called bundles)
* Group of instructions that can be issued on a single cycle
* Determined by pipeline resources required

* Think of an issue packet as a very long instruction
» Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

25.04.2024 Computer Systems 19

Scheduling Static Multiple Issue

e Compiler must remove some/all hazards
* Reorder instructions into issue packets
* No dependencies within a packet
» Possibly some dependencies between packets
e Pad with nop if necessary

25.04.2024 Computer Systems 20

Example: Pipeline with Static Dual Issue

e We fetch and decode two instructions: One instructions is executed on slot 1 the other on
slot 2 (Each way can execute certain instruction types)

Forwa rding

Slot 1

vyvyvyv

ALU

vy v
T
v oy
>

Branch Comp.

v ¥
I
)

Slot 2

Load/Store

v v
v ¥
—
\ 2 / V"JV \ 4

25.04.2024 Computer Systems 21

Hazards in the Dual-Issue RISC-V

More instructions executing in parallel

RAW data hazard

* Forwarding avoided stalls with single-issue

* Now can’t use ALU result in load/store in same packet

* add x10, x0, x1
1w x2, 0(x10)

e Split into two packets, effectively a stall

Load-use hazard
* Still one cycle use latency, but now two instructions

More aggressive scheduling required

25.04.2024 Computer Systems 22

Dependency Analysis

Loop: 1w x31, 0(x20)
add x31, x31, x21
SW x31, 0(x20)
addi x20, x20, -4
blt x22, x20, Loop

x31l=array element
add scalar in x21
store result
decrement pointer
branch if x22 < x20

H H H H

Loop: 1w x31, 0(x20) 1w x31, 0(x20)

add x31, =31, x21 addi x20, x20, -4

RAW

SW x31, 0(x20) add =x31, x31, x21

addi x20, x20, -4 sSwW x31, 4(x20)

blt =x22, %20, Loop blt =x22, x20, Loop

Compiler can reorder instructions, but needs to adopt the offset of the sw

25.04.2024 Computer Systems 23

Scheduling Example

* Schedule this for dual-issue RISC-V

Loop: 1w x31, 0(x20)

‘SMtl_:_AI:_U_/_B RANCH Slot 2: Load/store

addi x20, x20, -4 —
"""" > 1w x31, 0(x20)

add =31, %31, x21

sw %31, 4(x20)

blt =x22, %20, Loop

25.04.2024 Computer Systems 24

Scheduling Example

* Schedule this for dual-issue RISC-V

Loop: ||1lw x31, 0(x20) WAR hazard to Iw

Slotl : ALU/BRANCH Slot 2: Load/store
Loop: 1w x31, 0(x20)
-+ addi x20, x20, -4

addi x20, x20, -4

add x31, x31, x21

sw %31, 4(x20)

blt =x22, x20, Loop

25.04.2024 Computer Systems 25

Scheduling Example

* Schedule this for dual-issue RISC-V

RAW + (WAW) hazard to Iw
Slot 1 already occupied in pack 2

Loop: 1w x31, 0(x20)

Slotl : ALU/BRANCH Slot 2: Load/store

AW) Loop : 1w x31, 0(x20)
RAW addi x20, x20, -4
""""""" Jadd x31, x31, x21

addi x20, x20, -4

add x31, x31, x21

sw %31, 4(x20)

blt =x22, x20, Loop

No
dependencies but go into same slot

25.04.2024 Computer Systems 26

Scheduling Example

* Schedule this for dual-issue RISC-V

Loop: ||1lw x31, 0(x20) RAW to add

Slotl : ALU/BRANCH Slot 2: Load/store
Loop: 1w x31, 0(x20)
addi x20, x20, -4

addi x20, x20, -4

add x31, x31, x21

add x31, x31, x21

___________________________________ >

sw %31, 4(x20)

SwW x31, 4(x20)

blt =x22, x20, Loop

25.04.2024 Computer Systems 27

Scheduling Example

* Schedule this for dual-issue RISC-V

Loop: 1w x31, 0(x20)

Slotl : ALU/BRANCH Slot 2: Load/store

Loop: 1w x31, 0(x20)
addi x20, x20, -4
add x31, x31, x21
» blt x22, %20, Loop | sw x31, 4 (x20)

addi x20, x20, -4

add x31, x31, x21

sw %31, 4(x20)

blt =x22, x20, Loop

No
dependencies

25.04.2024 Computer Systems 28

Scheduling Example

* Schedule this for dual-issue RISC-V

Loop: |[|1lw x31, 0(x20) Fill up with nop

Slotl : ALU/BRANCH Slot 2: Load/store
Loop: | nop 1w x31, 0(x20)
addi x20, x20, -4 nop

add x31, x31, x21 nop

blt x22, x20, Loop | sw x31, 4 (x20)

addi x20, x20, -4

add x31, x31, x21

sw %31, 4(x20)

blt =x22, x20, Loop

25.04.2024 Computer Systems 29

Example Baseline VLIW Processor with Two Slots — Execution Latencies = 1

* Performance:/IPC =5 instr / 4 cycles = 1.25 (peak IPC =2)

Slotl : ALU/BRANCH Slot 2;: Load/store
nop 1w x31, 0(x20)

addi x20, x20, -4 nop

add x31, x31, x21 nop

blt =x22, x20, Loop | sw x31, 4(x20)

25.04.2024 Computer Systems 30

Compiler Optimization - Loop Unrolling

* Replicate loop body to expose more parallelism
e Reduces loop-control overhead

e Use different registers per replication

* Compiler applies “register renaming” to eliminate all data dependencies that are not true data
dependencies

* Avoid loop-carried “anti-dependencies”
* Store followed by a load of the same register
e Aka “name dependence” - Reuse of a register name

* Unroll factor: Number of loop body replications

e Fully unrolled: Number of loop body replications equal to number of iterations

25.04.2024 Computer Systems 31

Unrolled Code Example

e Unroll factor = 4:

addi x20,x20,-16
blt x22 ,x20,1p

decrement pointer
branch if x22 < x20

Loop: 1lw x31, 0(x20) 1p: 1w x28,0 (x20) # x28=array element
add x31, x31, x21 Lw x29,-4 (x20) # x29=array element
SW x31, 0(x20) 1w x30,-8(x20) # x30=array element
addi x20, x20, -4 1w x31,-12(x20) # x31l=array element
blt x22, x20, Loop add x28,x28,x21 # add scalar in x21

add x29,x29,x21 # add scalar in x21
add x30,x30,x21 # add scalar in x21
add x31,x31,x21 # add scalar in x21
sSwW x28,0 (x20) # store result
sSwW x29,-4 (x20) # store result
sSwW x30,-8 (x20) # store result
SW x31,-12(x20) # store result

#

#

25.04.2024 Computer Systems 32

Loop Unrolling Example - — Optimized Code for VLIW

o ALU/branch Load/store cycle
Optimization: Loop: | addi x20, x20, -16 1w x28, 0(x20) 1
lw, sw offsets nop 1w x29, 12 (x20) 2
are adapted to add x28, x28, x21 1w x30, 8(x20) 3
move addi into add x29, x29, x21 lw x31, 4(x20) 4
first pack. add x30, x30, x21 sw x28, 16(x20) 5
No load-use RAW add x31, x31, x21 SW x29, 12 (x20) 6
data hazards, so nop sw x30, 8(x20) 7
no influence on blt x22, x20, Loop SW x31, 4(x20) 8

performance

 IPC=14/8=1.75
* Closer to 2, but at cost of registers and code size

* Instruction Count (IC) of loop also reduced, less loop iteration
checks

25.04.2024 Computer Systems 33

Limits of VLIW

* Branches and Labels break sequential instruction execution (code basic blocks)
* Hard to find sufficient Instruction Level Parallelism in single basic block

» Compiler Optimization techniques:
» Loop unrolling
» function inlining: function becomes part of the caller code
» SW pipelining: schedules instructions from different iterations together
» trace scheduling & superblocks: schedule beyond basic block boundaries

* Code Size Increase (e.g. due to loop unrolling, function inlining)

* Binary Compatibility: If the micro-architecture is changed, VLIW code may not be
compatible anymore because it depends on the latencies.

25.04.2024 Computer Systems 34

Dynamic Multi-Issue

Superscalar

Superscalar

Exploits Instruction Level Parallelism

In-order: In order issue but pipeline (not compiler) selects issue bundles

Out-of-order (Oo0): dynamically scheduled

Phases of instruction execution:
Fetch — decode — rename — dispatch — issue — execute — complete — commit (retire)

25.04.2024 Computer Systems 36

Archetype of a OoO Superscalar Pipeline

* According to Shen & Lipasti : Modern Processor Design (2005), Fig. 4.20.

Reservation Stations

Reorder Buffer
(ROB) Store Buffer

Dispatch Complete Retire

IF/ID Buffer Dispatch Buffer

[o[o

\ 4

\ 4

\ 4

v

v
v

Out-of-order In-order
Issue F|n|5h

In-order

25.04.2024 Computer Systems 37

Superscalar vs. VLIW

e Superscalar requires more complex hardware for instruction scheduling

»issue buffers for 000 execution

»complicated multiplexing between instruction issue structure & functional units
»dependence checking logic between parallel instructions

»functional unit hazard checking

»VLIW requires a complex compiler and higher code size (e.g. slower due to less efficient
use of instruction cache)

»Superscalars can execute pipeline-dependent code more efficiently : don’t have to
recompile if binary is executed on different processors (pre-compiled libraries)

25.04.2024 Computer Systems 38

Simple Superscalar (Scoreboard) — Dual Fetch, Decode and Issue

Wide instruction fetch can
fetch two instructions at once
Ideal IPC =2

Scoreboard (ScB) |[«---------:

Reduce HW: Max two issues per cycle

- - - ——— ===

Rename

™

-

Reduce the number of RO ports
and share WB ports (DIV, MUL)
Structural hazard can cause extra cycles

25.04.2024

\ 4

A 4

B

Computer Systems

LS with LU, SU

A 4

v

39

Unrolled Code Example

e Unroll factor = 4:

addi x20,x20,-16
blt x22 ,x20,1p

decrement pointer
branch if x22 < x20

Loop: 1lw x31, 0(x20) 1p: 1w x28,0 (x20) # x28=array element
add x31, x31, x21 Lw x29,-4 (x20) # x29=array element
SW x31, 0(x20) 1w x30,-8(x20) # x30=array element
addi x20, x20, -4 1w x31,-12(x20) # x31l=array element
blt x22, x20, Loop add x28,x28,x21 # add scalar in x21

add x29,x29,x21 # add scalar in x21
add x30,x30,x21 # add scalar in x21
add x31,x31,x21 # add scalar in x21
sSwW x28,0 (x20) # store result
sSwW x29,-4 (x20) # store result
sSwW x30,-8 (x20) # store result
SW x31,-12(x20) # store result

#

#

25.04.2024 Computer Systems 40

Simple Superscalar (Scoreboard) — Dual Instruction Fetch, Decode and Issue — Example

Cycle

addi x20,x20,-16
1w x28, 0(x20)
Lw x29,12(x20)
add x28,x28,x21
1w x30,8(x20)
add x29,x29,x21
lw x31,4 (x20)
add x30,x30,x21
sw x28,16(x20)
add x31,x31,x21
sw x29,12 (x20)
sw x30,8(x20)
sw x31,4(x20)

blt x22,x20, Loop

25.04.2024

[we
W | e

3 4 5 6 7 8 9 10

11

12

13 14

o DRI
Ny

I Renaming to avoid WAR and
WAW hazards is omitted here,
but it is assumed no stalls on

-
-

- Y
=
IB IB

o I

Computer Systems

SB

SB

WAR and WAW!
- IR
F CENNCIN AW [WB
P Ul W W we A
n B IB m 8 cycles 14 instructions

41

Instruction Scheduling for Superscalar

* The process of mapping a series of instructions into execution resources

* Decides when and where an instruction is executed

1,2,3,4 can execute on FU1
5,6 can execute on FU 2

Instr 1

Instr 3

Instr 4

Instr 5 Dependence
graph

Instr 6

Derived from CA course of Mikko Lipasti-University of Wisconsin
25.04.2024 Computer Systems 42

Instruction Scheduling via Selection and Wakeup

* A set of wakeup and select operations
 Wakeup
» Broadcasts the tags of parent instructions selected

»Dependent instruction gets matching tags, determines if source
operands are ready

»Resolves RAW data dependencies

* Select

» Picks instructions to issue among a pool of ready instructions
» Resolves resource conflicts

»Issue bandwidth

» Limited number of functional units / memory ports

25.04.2024 Computer Systems 43

Instruction Scheduling via Selection and Wakeup - Example

* Wakeup and Selection Example:

Ready to Issue Select and
Wakeup

Select 1
Wakeup 2,3,4

2,3,4 Select 2
Wakeup 5

3,4,5 Select 4,5
Wakeup -

3 Select 3
Wakeup 6

5 6 Select 6

25.04.2024 Computer Systems 44

Multithreading

* Thread
* has state and a current program counter
* shares the address space of a single process, allowing a thread to easily access data of
other threads within the same process.
* Multithreading:
* multiple threads share a processor without requiring an intervening process switch.

* The ability to switch between threads rapidly is what enables multithreading to be
used to hide pipeline and memory latencies.

* Exploiting Thread-Level Parallelism (TLP) to improve uniprocessor throughput (IPC)

25.04.2024 Computer Systems 46

Thread-level parallelism (TLP)

* Multithreading (MT) targets to exploit thread-level parallelism (TLP)
 MT allows multiple threads to share the FUs of a single processor

* MT does not duplicate the entire processor, duplicating only private state, such as the
registers and PC.

* A more general method to exploit TLP is to use a multi-core processor that can execute
multiple independent threads in parallel.

* Many recent compute platforms incorporate multi-core processors, for which each single
core additionally provides multithreading support.

25.04.2024 Computer Systems 47

Example: Use of FUs by Single Thread

Superscalar
Cycle | ALU | MUL | DIV
i+1 Pattern for Superscalar Execution:
i+2 * Cycles that a certain instruction of the
i+3 thread uses a specific FU (EX stage)
i+4 Time now runs from top to bottom.
i+5 We need to rotate the pipeline diagram by
i+6 90 deg.
i+7
i+8
i+9
| i+10
Time i+11

25.04.2024 Computer Systems 48

Fine-Grained vs. Coarse-Grained MT

* Fine-grained multithreading
e switches between threads on each clock cycle,

» execution of instructions from multiple threads to be interleaved. (often round-robin skipping stalled
threads)

* Advantage: hide the throughput losses that arise from both short and long stalls because instructions
from other threads can be executed when one thread stalls, even if the stall is only for a few cycles.

* Disadvantage: slows down the execution of an individual thread because a thread that is ready to
execute without stalls will be delayed by instructions from other threads.

* Coarse-grained multithreading
» switches threads only on costly stalls, such as level two or three cache misses.
* Advantage: less likely to slow down the execution of any one thread
* Disadvantage: it is limited in its ability to overcome throughput losses, especially from shorter stalls.

25.04.2024 Computer Systems 49

Simultaneous Multithreading (SMT)

e Simultaneous multithreading (SMT):

e dynamically scheduled (Oo0O) processors already have many of the hardware mechanisms
needed to support SMT

* Multithreading can be built on top of an out-of-order processor by adding
» separate PCs and register files, and
 the capability for instructions from multiple threads to commit.

* Instructions from different threads can be issued in same cycle.

25.04.2024 Computer Systems 50

Patterns for Types of Multithreading (MT)

Coarse-grained MT Fine-grained MT Simultaneous MT (SMT)

Cycle

i+1
i+2
i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10

Time i+11

25.04.2024 Computer Systems 51

The speedup from using multithreading on one core on an i7 processor

2.00 A
2 O Speedup —il— Energy efficiency
o
& 1.75 1
c
2
2]
5
> _
5 1.50 1 o
-
() __
o
c
[4+]
[}
% 1.25
£ al B
: N_‘ W \
|5
& o m N
= ' v
=

075 T T |\| |°J|<)| |gl\£-| 1 |\| I IKI | Ib‘l

& O
&Qeev% éc}(‘ & 6‘& J(g}@(‘ & qs)% Qc}e- & (\z_'b &Q\G‘ é@.é@» && \0‘3@ RN Jrrﬁa
CF P T PSP E Cfe® & &
< N N @
o < 3

Source: Computer Architecture — A Quantitative Approach
5th Edition Fig. 3.33

25.04.2024 Computer Systems 52

Example: Simple Dual Multi-threaded Processor

* EX has 1xDIV, 1xMUL, 1x Branch/ALU, 1xALU, 1xLSU

IB
-
PC1 L

IB
PC2 N

LSU (2 stages)
Stage 1: Adress Comp. (AC)
Stage 2: Memory access (MA)

25.04.2024 Computer Systems 53

Example with Stall due to I-Cache Miss

Loop: 1w x31, 0(x20)
add x31, x31, x21
SW x31, 0(x20)
addi x20, x20, -4
blt x22, x20, Loop
Cycle—i+

lw x31,0 (x20)

add x31,x31,x21

sw x31,0 (x20)

addi x20,x20,-4
blt x22,x20,Loop

1w x31,0(p20)

25.04.2024

1 2

3 4 5 6
LSU | LSU
(AC) | (MA)

W o [

LSU

Computer Systems

I Renaming to avoid WAR and
WAW hazards is omitted here,
but it is assumed no stalls on
WAR and WAW!

Cache miss

14

54

Example with Stall due to I-Cache Miss

Cycle -i+ 1 2 3 4 5 6
1w x31,0(x20) LSU LSU
(AC) | (MA)
add x31,x31,x21 IB ALU
I Renaming to avoid WAR and
sw x31,0(x20) IB LSU SB WAW hazards is omitted here,
(AC) but it is assumed no stalls on

blt x22,x20,Loop
LSU Cache miss
(AC) (MA)
5 6 7 8 9 10

11 12 13 14

lw x31,0 (x20)

FU USE -cyclei + 1 2 3 4
m_ .
0 oo - -

25.04.2024 Computer Systems 55

Cache miss

Example with Stall due to I-Cache Miss

Loop: 1w x31, 0 (x20)
add x31, x31, x21
SwW x31, 0(x20)
addi x20, x20, -4
blt x22, x20, Loop

Cycles run from
top to bottom

25.04.2024

Cycle

i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10
i+11
i+12
i+13
i+14

Thread 1

Cache
Miss

Computer Systems

Cycle

i+3
i+4
i+5
i+6
i+7
i+8
i+9
i+10
i+11
i+12

Thread 2

56

Multithreaded - SMT

Example with Stall due to I-Cache Miss Cycle |ALU | LSU LSU

(AC) (MA)

Thread 1 Thread 2
Cycle | | Cycle | I+3
i+4
i+3 i+3 i+5]
i+4 i+4 i+6
i+5 i+5 i+7
i+6 i+6 i+8
i+7 i+7 i+9
i+8 i+8 i+10
i+9 Cache i+9 i+11 -
+10 Miss i+10 w12 |
i+11 .- i+11 i+13
i+12 i+12 i+14
i+13 i+15
i+14 i+16
i+17

25.04.2024 Computer Systems 57

Optional, not relevant for exam

A Look at Real Processors

A15 and BOOM

ARM A15 Superscalar Core

* ARM A15 pipeline diagram:

ARM Cortex A15

Queue Issue Writeback
— Integer :I
= Integer
Multipl

Fetch DeOOdDeié:aetgﬁme " i — Floating-Point / NEON '
Lo _—)
A =

=N Branch '

L) —3 Load
Loop Cache Lo Store :l

Source: theregister.co.uk

(Copied from from slides of CS course Mikko Lipasti-University of Wisconsin)

25.04.2024 Computer Systems 59

Berkeley Out-of-order Machine (BOOM)

e BOOM: an open-source out-of-order RISC-V core

‘; { - J 7-cycle branch-
- L B ispredict It
E fetch | fetch p=» queves =+ dec I ISS exec wb mispredict penalty
o L —a (Il !
)
'S 1 [Tss
(@) BTB | cshare : T d tib D$ D$ wb
m i
4 10-cycle branch-
N r= 7] M B mispredict penalty
> fetch | fetch | fetch M queves p] dec | dis i 2 r| iss rrd exec | wb
E L——a i 1 T 4-cycle load-use
@) BTB i '
@) © bliss [md | tb [D$ | DS | wb
o
(0] GShare le==
4 12-cycle branch-
=7 ~ o | mispredict penalty
“>) fetch | fetch | fetch | fetch M queves p| dec | dis -»: @ Missue | rrd | exec | wb br
L = = =
E - 1.2 _' 1 4-cycle load-use
UBTB erB ;g ! !
O Recoder > 2 1.
O) 2] issue rrd tib D$ D$ wb
BTB RAS i
m e T =
TAGE g % :-b issue | rrd Custom RoCC Accelerator wb
| e

Source: https://github.com/riscv-boom/riscv-boom

25.04.2024 Computer Systems 60

https://github.com/riscv-boom/riscv-boom

Where we are

* We covered the following features: Branch prediction, Out of order execute, Scoreboard,
Superpipelining, Multi-issue, Superscalar, VLIW, Multi-threading

* Instruction Level Parallelism: VLIW, Superscalar

* Thread Level Parallelism: Multi-threaded Single Core Processor
* Upcoming:

»Thread Level Parallelism: Multi-Core (MIMD)
» Data level parallelism: Vector (SIMD)

25.04.2024 Computer Systems 62

Thank you for your attention!

	09_advanced_pipelines1a
	10_advanced_pipelines2b
	11_advanced_pipelines3a

