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1 GRAPH THEORY

1.1 BASICS

A graph G is a pair of two sets V and E. Where V rep-
resents the vertices and E represents the edges.

Definition 1.1. graph

G = (V,E) (1)

In a directed Graph each edge e ∈ E is represented as
a pair of Vertices (v, w) v, w ∈ V . (v, w) is not equal
to (w, v).

Definition 1.2. edge

∀e ∈ E : e = (v, w) v, w ∈ V (2)

In a undirected Graph each edge is represented as a set
of vertices v, w. Where this time v, w is equal to w, v. A
loop edge is a edge v, w where v = w. A multiple edge
consistes of multiple connections between two vertices
v, w is several times a element of E.

Definition 1.3. simple graph
A graph G is called simple graph if there are no loops

and multiple edges. Unless explicitly stated the graphs in
the lecture alre always simple graphs.

A graph corresponds to a relation on V C ⊆ V ×V .
A undirected graph always corresponds to a symmetric
relation.

Notations

– V Vertex set

– E Edge set

– V (G) Vertex set of graph G

– E(G) Edge set of graph E

– α0 = |V | Number of vertices

– α1 = |E| Number of edges

Definition 1.4. incident
A edge e is incident to a vertex v if v is a part of e.

Definition 1.5. Degree of a vertex in a undirected graph

v ∈ V : d(v) = Number of edges which are incident to v
(3)

Definition 1.6. Degree of a vertex in a directed graph

d+(v) = # of edges of form (v, w) (out-degree) (4)

d−(v) = # of edges of form (w, v) (in-degree) (5)

Definition 1.7. Neighborhood in a undirected graph

Γ(v) = set of neighbors of v (6)

Definition 1.8. Neighborhood in a directed graph

Γ+(v) = set of successors of v (7)

Γ−(v) = set of predecessors of v (8)

Lemma 1.1. Handshaking lemma in a undirected graph∑
v∈V

d(v) = 2 ∗ |E| (9)

Proof. A Edge is always counted twice

Lemma 1.2. Handshaking lemma in a directed graph∑
v∈V

d+(v) =
∑
v∈V

d−(v) = |E| (10)

Proof. A edge outgoing is also counted as a edge incom-
ing for another vertex

Example 1.1. Hypercube

– A one dimensional cube is a line. The coordinate of
the start and end point are given by 0 and 1.

– A two dimensional cube is a square whre the coor-
dinates are given by 00, 01, 10, 11.

– A three dimensional cube is a qube given by the co-
ordinate 000, 001,...

– A n-dimensional cube is a hypercube.
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So a hypercube is a graph where the vertices are de-
scribed as strings of 0 and 1 with the length of n. And on
each adjacent vertices only one bit flips

∑n
i=1 |vi−wi| =

1

G = (0, 1n, E) (11)

(v, w) ∈ E ⇐⇒
n∑
i=1

|vi − wi| = 1 (12)

Therefore we get the attributes of the hypercube easaly
by using the handshaking lemma.

α0 = 2n (13)

α1 =
1

2

∑
v∈V

d(v) = 2n−1 ∗ n (14)

Definition 1.9. A n-regular graph is a graph where
d(v) = n

Definition 1.10. Adjacency
If e : (v, w) ∈ E =⇒ v, w are adjacent.

Definition 1.11. Incident
Translated as connected..?

Definition 1.12. Adjacency Matrix

A =
(
aij
)
i,j=1...(n=α0)

(15)

aij =

{
1 vi ∼ vj adjacent
0 vi � vj not adjacent

(16)

Remark. If G is undirected =⇒ A is a symmetric Ma-
trix

Remark.
Ak =

(
a
[k]
ij

)
i,j=1..n

(17)

a
[k]
ij =

n∑
l=1..n

ail ∗ a[k−1]lj (18)

– A connection in one step

– Ak connection in k steps

– A0 = I identity matrix

Definition 1.13. .

– A walk in a graph is a sequence of edges where any
two successive edges have one same vertex.

– A trail is a walk where no edge is repeated.

– A closed trail is a circiut

Definition 1.14. Subgraph
Considered a Graph G = (V,E) then its subgraph H is
defined as H = (V ′, E′) (short form H ≤ G) where
V ′ ⊆ V , E′ ⊆ E andH is also a graph (∀(v′, w′) ∈ E′ :
v′, w′ ∈ V ′).

Definition 1.15. connection relation R
v is connected to w (vRw) ⇐⇒ there is a walk from v
to w (v  w). The connection matrix is defined as

C =

L∑
k=0

Ak L = min(|E|, |V − 1|) (19)

where L is the length of the walk

C =
(
cij
)

(20)

cij is the number of walks of length l ≤ L that connect
vi to vj

Definition 1.16.
M = sgn(C) (21)

Remark. .

– ∀v ∈ V : vRV

– ∀v, w ∈ V : vRw =⇒ wRv

– ∀v, w, u ∈ V : vRwŵRu =⇒ vRu

These show that R is a equivalence relation. Since R is a
equivalence relation, R induces a partitioning of V .

Definition 1.17. Connected components (partitions in-
duced by R)

V = V1 ∪ V2 ∪ ...Vn (22)
Vi ∩ Vj = ∅ i 6= j (23)

Definition 1.18. G connected if ∀v, w : vRw

Definition 1.19. H ≤ G connected components of G if
H is connected and H is maximal.

Definition 1.20. H is maximal if there is no graph H ′ :
H < H ′ ≤ G and H ′ is connected. The maximal defini-
tion supplies to vertices and edges

Definition 1.21. vSw : ⇐⇒ ∃ a walk v  w and a
walk w  v

S like R is a equivalent relation and thus also induces
partiotioning.

Definition 1.22. G is strongly connected :⇐⇒ ∀v, w ∈
V : vSw
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Definition 1.23. H ≤ G, H is maximal strongly con-
nected. If H ≤ H ′ ≤ G and H 6= H ′ then H ′ is not
strongly connected =⇒ H is strongly connected com-
ponent of G

Definition 1.24. G is strongly connected if ∀v, w vSw.
H ≤ G H strongly connected component if H is max-
imal strongly connected.

Remark. G strongly connected component ⇐⇒ H has
1 strongly connected component.

Definition 1.25. shadow
G is directed, H = G without directions and multiple
connections deleted =⇒ H shadow of G.

Definition 1.26. weakly connected
G is weakly connected ⇐⇒ H (shadow of G) is con-
nected.

Definition 1.27. reduction of G
G is a directed graph.. GR = (VR, ER) is simple.
VR = {K1,K2, ...,Km} is the set of strongly connected
components of G. ER = {(Ki,Kj)|∃v ∈ V (Ki),∃w ∈
V (Kj), (v, w) ∈ E

The reduction is the graph resulting of the interconnect
between strongly connected components.

Remark. GR is always acyclic. If G is strongyl con-
nected then GR = ({.}, ∅) while {.} is one vertex.

Definition 1.28. node base
we haveG = (V,E) directed graph thenB is a nodebase
if

– B ⊆ V

– ∀v ∈ V ∃w inB : wSv ... There is a path from v
to any other element of V

– B minimal with relation to (w.r.t) ⊆ ... no subset of
B is a node base

Remark. The node base of G can be constructed from
the node bases of GR. {K1...Ki} node base of GR =⇒
{{b1, ..., bi|bi ∈ V (Ki)}} ... set of all node bases of G
... Take one node of every component of the node base
of GR

Definition 1.29. Node base of GR is {K ∈
VR|d−GR

(K) = 0} of a acyclic graph.

1.2 TREES AND FORESTS

Definition 1.30. forest
A forest is a undirected graph without cycles.

Definition 1.31. tree
A tree is a connected forest.

Definition 1.32. rooted tree
One vertex of the tree is considered as the root.

Remark. The root node is never considered to be a leaf.

Definition 1.33. plane tree
A tree that is embeddded into the plane. This means the
left and right order of the tree is important.
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Definition 1.34. isomorphism
Two graphs G, H are isomorphic G ∼= H if ∃ϕV (G)→
V (H) where

– ϕ is bijective (1 to 1 correspondance between the
vertices of the first and the second graph)

– (v, w) ∈ E(G) ⇐⇒ (ϕ(v), ϕ(w)) ∈ E(H)
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Definition 1.35. leaf
A leaf is a vertex of degree 1

Lemma 1.3. T is a Tree and |V (T )| ≥ 2 =⇒ T has at
least 2 leaves

Proof. .

– Tree of size two: Only possible tree is a tree with
one edge between the two vertices. Therefore both
vertices have degree 1.

Remark. This is only true for unrooted trees, since
a root is never considered to be a leaf

– T ≥ 3 start at any Vertex; thre must be at least one
neighbor..

1. remove of a leave: |V (T )| = k + 1 =⇒
|V (T ′| = k =⇒ T ′ has 2 leaves

2. remove of a node: =⇒ T ′, T ′′ =⇒ two
new trees with each of them must have ≥ 2
leafes

Definition 1.36. characterization
A characterization is a neccessary sufficient definition.

Definition 1.37. bridge
Removal of a bridge would increase the numer of com-
ponents in the graph.
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Theorem 1.4. The following 5 statements are equivalent

1. T is a Tree

2. ∀v, w ∈ V (T )∃! (exists only one) path from v to w

3. T is connected an |V | = |E|+ 1

4. T is a minimal connected graph (every edge is a
bridge)

5. T is a maximal acyclic graph

Proof. of (1) =⇒ (3); induction on n = α0 = |V (T )|

– n = 1: The only possible graph is a vertex with no
edges

– n → n + 1: choose a leaf v of T . T ′ = T without
the leaf. T ′ is a tree because removing a leaf does
not induce a cycle. =⇒ |V (T ′)| = |E(T ′)|+ 1
|V (T )| = |V (T ′)|+ 1
|E(T )| = |E(T ′)|+ 1

To complete the proof of the equivalence (3) =⇒ (1)
needs also to be profed.

1.2.1 spanning subgraph

Definition 1.38. spanning forrest:
G is a undirected graph. F is a spanning forrest of
G ⇐⇒

1. V (F ) = V (G)
E(F ) ⊆ E(G)

2. F is a forrest

3. F has the same connected components as G

Definition 1.39. spanning tree:
If F is connected then F is a spanning tree.

Example 1.2. Construction of a spanning subgraph

1 2

34

a

b

c

d e

Ã =


0 a d e
a 0 0 b
d 0 0 c
e b c 0

 (24)

From the adjacency matrix the row sum matrix is formed.

D̃ =


a+ b+ e 0 0 0

0 a+ b 0 0
0 0 c+ d 0
0 0 0 b+ c+ e

 (25)

D̃ − Ã =


a+ b+ e −a −d −e
−a a+ b 0 −b
−d 0 c+ d −c
−e −b −c b+ c+ e


(26)

Erste Zeile und erste Spalte werden gestrichen. Daraus
dann die Determinante bestimmt.∣∣∣∣∣∣
a+ b 0 −b

0 c+ d −c
−b −c b+ c+ e

∣∣∣∣∣∣ =
bcd+ abc+ abd+ acd+
ace+ ade+ bce+ bde

(27)
Every term represets a sanning tree.

Example 1.3. To calculate the number of spanning trees
set a = b = c = d = e = 1

Ã→ A (28)

D̃ → D =

3 0 0
0 3 0
0 0 3

 = 8 (29)

Theorem 1.5. Matrix-Tree-Theorem (Kirchoff)
G is a undirected connected graph. V =
{v1, v2, .., vn};A = adjecency matrix; D = degree ma-
trix. =⇒ |det ((D−))′)| = number of spanning trees
of G. The ′ notates the deletion of one column and one
row no matter which one. If G is not connected then do
it for every component and multiply→ spanning forest

Definition 1.40. Minimal spanning treee (from mst.pdf)
The unique spanning tree T of a weighted graph G =
(V,E,w) is the tree that minimizes

∑
e∈T w(e).

Algorithm 1.6. Kruskals MST algorithm

Algorithm 1.7. Prim’s MST algorithm

1.2.2 Matroids and greedy algorithms

Remark. Kruskal and prim’s are greedy algorithms for
maximization or minimization.

Definition 1.41. Matroid
A structure such that greedy algorithms work

In kruskals algorithm the edges are sorted in decreas-
ing order. We take them in a greedy way but such that no
cycles are induced.
G = (V,E), S = {F ⊆ E|F is a forrest}, ∅ ∈ S.

Kuskals constructs a set T such that T = T ∪ {e} if T ∪
{e} ∈ S. Where T ∪ {e} ∈ S means that the tree with
the edge e is still a forrest or a empty set.

Definition 1.42. independence system
(E,S) is a independence system if S ⊆ 2E and S is
closed under inclusion (i.e. A ∈ S,B ∈ A =⇒ B ∈ S.
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Definition 1.43. independence set
S set of independent sets. If a edge-set contains cycles, it
is a dependend set. A set is independent if it contains no
cycles (is a forrest).

Definition 1.44. optimization problem
(E,S);w : E → R+;A ⊆ E;w(A) =∑
e∈A w(e);w(A) → max′(min′), A ∈ S,Amax w.r.t

⊆

Example 1.4. (E,S) Edge set of forrestss =⇒
independent system.
The generalized kruskal: GREEDY(E,S,w, T )

1. sort elements of E by weight (decreasing)
E = {e1, e2, ..., e3}
w(e1) ≥ w(e2) ≥ ... ≥ w(en)

2. T := ∅

3. for k = 1 to m do
if T ∪ {ek} ∈ S then T := T ∪ {ek}

end

In general greedy fails, but it works or spanning trees,
so there must be more in the properties of spanning trees
which makes greedy work.

Definition 1.45. The independence system M = (E,S)
is called a matroid if A,B ∈ S such that |B| = |A| +
1 =⇒ ∃v ∈ B \A with A ∪ {v} ∈ S.

Remark. The matroid property holds for A,B ∈ S such
that |A| < |B| as well.

Definition 1.46. A ∈ S is a basis of M ⇐⇒ A is a
maximal independent set w.r.t. ⊆

Remark. A,B basis of M =⇒ |A| = |B| = r(M)
while r(M) denotes the rank of M .

Theorem 1.8. G = (V,E) is a graph, S = {F ⊆
E|F forrest} =⇒ (E,S) is a matroid.

Proof. F1, F2 ⊆ E;F2 ∈ S, F1 ⊆ F2 =⇒ F1 ∈ S
matroid property: F1, F2 ∈ S |F2| = |F1|+ 1
F1, ...m components Ti = (Vi, Ei) i = 1..n
Observe:
V = V1∪V2∪...∪Vm, F1 = A1∪...∪Am, |Ai| = |Vi|−1
F2 is a forrest =⇒ there are at most |Vi−1| edges in F2

which connect v, w ∈ Vi, F2 > F1 =⇒ ∃ edge e which
connects two components→ F1 ∪ {e} forrest.

Theorem 1.9. LetM = (E,S) be a matroid with weight
function w : E → R =⇒ GREEDY solves A maxi-
mal w.r.t. ⊆ such that w(A) is minimal (max) correctly.
GREEDY computes the basis with minimal(max) weight.

Proof. A = {a1, a2, ..., ar} set after computing
GREEDY =⇒

1. A basis : A ∈ S by construction.
A is not maximal =⇒ ∃e ∈ E such thatA∪{e} ∈
S =⇒ contradiction

2. w(a1) ≤ w(a2) ≤ ... true because sorted

3. w(A) is minimal

LOOKUP THIS PROOF!

Theorem 1.10. M = (E,S) independence system
Assume: GREEDY solves the optimization problem A
max such that w(A) is max correctly for all weight func-
tions. =⇒ M is a matroid

Proof. Assume M is not a matroid =⇒ ∃A,B ∈ S :
|B| = |A|+ 1 ∧ ∀x ∈ B \A : A ∪ {x} /∈ S
We set w(e) such that:

w(e) =


|A|+ 2 if e ∈ A
|A|+ 1 if e ∈ B
0 otherwise

(30)

=⇒ w(A) = |A| + (|A| + 2) < (|A| + 1)2 ≤ w(B)
while |B| = |A|+ 1
=⇒ A neighter a solution of the optimization problem
nor w(A) := maximum

GREEDY chooses x ∈ A first because w(A) < w(B)
thenw(A) can not be increased onymore x ∈ B\A =⇒
A ∪ {x} /∈ S.
x ∈ A ∪B =⇒ GREEDY arrives eventually at a set N
such that w(N) = w(A) is not maximal.
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