
On synchronising Garbage Collection
across language boundary

Florian Freitag

Abstract
Garbage collection is broadly used by programming languages to find unused

memory and deallocate it. This automatic memory management is well researched
but becomes more complex if multiple languages are involved. This paper compares
two works of research in which synchronization is used to fix edge cases in garbage

collection across language boundary.

Introduction
Since the invention of automatic memory man-
agement (also known as garbage collection) in
the 1960s by McCarthy[1] a lot of research
went into improving and advancing this tech-
nology. For example, the infamous Garbage
Collection Handbook builds on a corpus of over
2500 publications [2].

Today, most programming language runtimes
use some kind of automatic memory manage-
ment [2]. While this improves developer com-
fort, it increases the complexity of integrating
languages with each other. Moreover, cyclic
references across the runtime border can cause
leaks, if the garbage collectors (GCs) are not
properly synchronized [3].

Modern garbage collectors either use tracing,
reference counting or a hybrid solution of both
[2]. Synchronizing both approaches into a sin-
gle collector might be necessary to when inte-
grating with foreign APIs [4].

This paper compares two approaches of syn-
chronization of garbage collection. In Col-
lecting Cyclic Garbage across Foreign Func-
tion Interfaces the authors synchronize two
garbage collectors to avoid leaks and improve
performance [3]. While in Efficient Cycle De-
tection on a Partially Reference Counted Heap
the author introduces a novel algorithm to
extend a tracing GC to interact with refer-
ence counted objects [4]. Finally, the paper
discusses the possibility of combining both ap-
proaches in future papers.

Background
Garbage collection
All data that no longer can be accessed is con-
sidered garbage. In most languages this means
there is no variable pointing to that object and
no other accessible object has a reference to it.

1

2

3

4

5

6

7

8

def getPaul():
 food = Food("schnitzel")
 city = City("VIE")
 return Person("Paul", city)

def main():
 paul = getPaul()
 paulClone = paul

Listing 1: Creation of unreachable data.

In Listing 1 the function getPaul creates a
Person object to which two variables point.
Even though no variable points to the City
object created in line 3 it is reachable by either
dereferencing paul.city or paulClone.city.
However, the Food object created in line 2 can
no longer be reached and is therefore consid-
ered garbage.

It is the task of the garbage collector to even-
tually detect this and deallocate the object to
avoid that the program uses unnecessary re-
sources.

When and how the collector does this is a
trade-off between throughput, pause time and
space and different strategies might be advan-
tageous for different use cases [2].

1

Tracing collection
The first garbage collection algorithm devel-
oped was the tracing garbage collector [1].
This one is also often called a Mark and Sweep
collector, for the two stages that make them
up.

In the marking phase the collector starts at
the roots (which commonly are all variables
that are currently in scope) and marks the ob-
jects which they reference. Next it recursively
marks all object which can be reached from
already marked objects.

In the sweeping phase the collector traverses
all objects that were allocated and frees all
that aren’t marked, as they are no longer
reachable.

This is the simplest form of a tracing garbage
collector and many more advanced variants ex-
ists which might use concurrency, generations,
partitioning, compacting and other techniques
to improve performance [2]. However, they all
have in common that they (at least partially)
traverse (trace) the reference graph.

Figure 1: Reference graph for Listing 1.

After line 8 in Listing 1 the reference graph
looks like in Figure 1. If a collection would
be triggered at that point the tracing would
start roots which in this case are just the two
variables in scope. From there it would mark
first the Person and then the City object and
therefore deallocating the unmarked Food ob-
ject in the sweeping phase.

The advantage of correctly implemented trac-
ing collectors is their soundness (they will
never free used objects) and completeness
(they will find all garbage). However, they
introduce some pause time on the program,
therefore reducing throughput and require
more space since it might be a while till the
next collection is triggered.

Reference counting
Reference counting addresses some of the
shortcomings of tracing garbage collectors [5].
Here, each object holds their own reference
count which stores how many other objects or
variables point to it. Once the reference count
reaches zero it can no longer be reached and
can therefore be safely deallocated.

Data in those systems is therefore collected
as soon as it becomes garbage, reducing the
memory load. In general, this also removes the
need for pauses on the program (often called
the mutator) as there is no need to trace the
reference graph.

Figure 2: Reference counters for Listing 1.

Figure 2 depicts the state off all reference
counters after line 8 has run. Of course, at that
point the Food object would no longer exist as
it has already been freed.

While reference counters solve some problems
from tracing collectors, they come with their
own set of limitations. The most significant
one is that they are not complete and leak
cyclic garbage [2].

1

2

3

4

5

def friends():
 a = Person()
 b = Dog()
 a.friend = b
 b.friend = a

Listing 2: Creation of unreachable object

For example, consider the function in List-
ing 2. In line 2 the Person object has a refer-
ence count of 1 as the variable a points to it.
Similarly line 3 initializes Dog with one refer-
ence. After the lines 4 and 5 both objects have
a reference count of 2 as they point to each
other and each have a variable. Now, once the
function returns, both variables are no longer
in scope and therefore the reference count of
both objects are set to 1.

2

However, both objects should be considered
garbage since they are no longer reachable, but
because of the cyclic references they hold each
other alive.

This is a known problem and there are a couple
of solutions [2]. For example, some languages
push the problem to the programmer which
is instructed to use weak references in cyclic
data structures, which don’t increase the ref-
erence counter of the object they are pointing
to. Some other implementations combine ref-
erence counting with occasional tracing collec-
tion. However, the most common solution is
trial deletion [2].

Trial deletion
Trial deletion is a partial tracing algorithm
which does not need to traverse the complete
reference graph but only a sub graph where
garbage is suspected.

There are two laws which trial deletion ex-
ploits [2]. First, in any cyclic garbage structure
all references to any object must be from other
objects inside the structure. Second, garbage
cycles can only be created from a pointer dele-
tion that leaves a reference count greater than
zero (because otherwise the object would al-
ready be deallocated).

Trial deletion starts by temporary decrement-
ing the reference counter of one object in
the suspected garbage structure. Next, it re-
cursively traverses all reachable objects and
decrements their reference count accordingly.
If at the end all objects in the structure have
a reference count of zero, the whole structure
can be deallocated. Otherwise, there must be
an external reference to the structure and all
temporary reference count changes will be re-
versed.

Foreign function interface
It is quite common that a language needs to
interact with another. For example, many lan-
guages have a C based foreign function inter-
face (FFI) since some operating systems only
expose system APIs as C code (Windows, ma-
cOS).

Figure 3: Proxy object for FFI.

If both languages share a heap, they can di-
rectly access all fields on the objects and call
methods on remote objects. If they don’t share
a heap it might make sense to introduce proxy
objects. A proxy object hides the communica-
tion with the runtime in which the remote ob-
ject lives. Therefore, accessing a field on the
proxy object will send a message to the foreign
runtime, access the field on the remote object
and return its value [3]. Figure 3 shows such a
proxy object pC for C.

In runtimes with tracing collectors, foreign
function interfaces become even more complex
because neither collector has access to the
complete reference graph. For example, Fig-
ure 3 wouldn’t work as intended. While the
Ruby runtime knows that C is still reachable
via x and y, the Javascript runtime doesn’t
know that and would wrongly deallocate the
object making the garbage collection unsound.

Figure 4: Export table for GCs with FFI.

To solve this problem each runtime keeps an
export table reachable from it’s root set. It mir-
rors all remote references to a local object and
therefore keeps the objects alive even if they
are just reachable from a remote runtime.

3

Synchronizing two collectors
In their paper Collecting Cyclic Garbage
across Foreign Function Interfaces the authors
synchronies two tracing garbage collectors [3].

The authors identified two problems with
the status qou. First, cyclic garbage across
language boundary is never freed and refer-
ence structures with many boundary cross-
ings (which is referred to as zigzag garbage in
the paper) needs many collection cycles to be
freed.

For cyclic garbage the problem arises from the
export table which behaves like a simplified
reference counter and therefore introduces the
same problem reference counters have.

Figure 5: Zigzag garbage.

Figure 5 shows a chain of five objects with
four boundary crossings, since none of the ob-
jects are reachable from the root set, they are
all considered garbage. Now when the garbage
collector in the ruby runtime runs it will only
deallocate the A object and the proxy object
pB. Deallocating pB will also remove the ref-
erence from the export table to B inside the
Javascript runtime. However, since the ruby
collector doesn’t have any information about
the reference graph on the Javascript side it
cannot know C and E are also no longer needed
and leaves them alive. This means before C can
be freed, Javascript must run a collection and
free B first. Therefore, to deallocate the com-
plete structure five garbage collection cycles in
the desired order have to run.

Figure 6: Mirrored reference graph
(left before, right after).

The novel solution ReGraph described in the
paper solves all those issues by giving one run-
time access to the complete reference graph.

Right before Ruby is ready to trigger a col-
lection it builds its current reference graph,
compresses it to just include necessary infor-
mation and sends it over to Javascript. There
the graph is rebuild and the references from
the export table are removed. Now, a collec-
tion is forced which has all the information to
free all its objects of cyclic garbage or zigzag
garbage at once. Once the Javascript finished
its collection Ruby finally collects it’s garbage.

In their paper the authors also prove that their
algorithm is sound and complete.

To implement ReGraph they only needed to
modify 63 lines of code to CRuby, exposing
some internal APIs and the rest is imple-
mented in Ruby and Javascript without mod-
ifying the Javascript runtime.

In benchmarks ReGraph almost always re-
duces the heap size in programs with remote
references, sometimes quite drastically. In pro-
grams without remote references, it only mar-
ginally increases the heapsize.

However, the improvement on runtime is much
less admirable. Often runtime is increased and
in one especially complex benchmark by over
300%.

4

Synchronising two ap-
proaches
In Efficient Cycle Detection on a Partially
Reference Counted Heap the author extends
PyPy’s default mark and sweep garbage col-
lection algorithm to better integrate reference
counted objects from CPython extensions [4].

CPython is the most common Python imple-
mentation and uses reference counting to man-
age it’s heap. To detect and free cyclic garbage
CPython has a special tracing garbage collec-
tor [6]. CPython, allows developers to easily
integrate with Python code with C code of
which many libraries take advantage.

Therefore, to allow such libraries to continue
working in the PyPy runtime, it is forced to
support reference counted objects.

Figure 7: Cyclic garbage in PyPy.

By default the PyPy doesn’t trace reference
counted objects at all and therefore leaks all
cyclic garbage structures that contain at least
on reference counted object [4]. Figure 7 shows
such a structure with one traced object A and
one reference counted object B. Here A cannot
be freed as it is kept alive by the export table
(the author calls this Links in his paper, but
for consistency and clarity I will stick to ex-
port table).

Trial deletion can resolve cycles entirely made
up of reference counted objects but would fail
at structured of mixed object as seen in Fig-
ure 7. Tracing garbage collection already can
take care of cyclic garbage entirely made up of
traced objects.

The author now combines both algorithms by,
interleaving steps from both, therefore extend-
ing the default garbage collection to also trace
reference counted objects.

In the paper the author provides a semi-formal
proof for completeness and many benchmarks.

In applications with many cyclic structures
the algorithm can decrease memory footprint
and computation time. However, the addi-
tional complexity increases pause times as the
marking phase has more work to do and can
even increase memory footprint [4].

Conclusion and Future Work
While both papers solve problems of leaking
cyclic structures around language borders, the
context is so different that the solutions have
remarkably little overlap.

Even though the paper Collecting Cyclic
Garbage across Foreign Function Interfaces
solves its problem across two different lan-
guages, that detail is only important to the
point that there need to be two different
garbage collectors that cannot share a heap
space. However, the research could also be ap-
plied to distributed computing with two in-
stances of the same runtime.

The authors, acknowledge the similarity of
their problem space to distributed garbage col-
lection and compare their implementation to
some approaches in that field [3]. However, the
authors don’t discuss if ReGraph is applica-
ble as a distributed garbage collector, which it
should be.

While the implementation of Efficient Cycle
Detection on a Partially Reference Counted
Heap is impressive, algorithmically it does-
n’t provide much value as the paper is often
focused on implementation details and the
knowledge that tracing can find cycles in ref-
erence counted objects is known [2].

5

Related Work
In Collecting Cyclic Garbage across Foreign
Function Interfaces the authors synchronize
two garbage collectors by sending the reference
graph of one runtime to the other. Therefore,
the receiving runtime has a complete graph an
can detect cycles [3].

Efficient Cycle Detection on a Partially Refer-
ence Counted Heap the author extends a trac-
ing garbage collector to incorporate and trace
foreign reference counted objects [4].

McCarthy introduced the concept of auto-
matic memory management and the first trac-
ing garbage collector in Recursive functions of
symbolic expressions and their computation by
machine [1].

To tackle some problems of tracing collectors
and their overhead Collins invents reference
counting in A method for overlapping and era-
sure of lists [5].

The garbage collection handbook is one of the
most comprehensive summaries in the field of
automatic memory management and not only
explains many algorithms but also discusses
their applications and shortcomings [2].

References
[1] J. McCarthy, “Recursive functions of sym-

bolic expressions and their computation
by machine, part I”, Communications of
the ACM, vol. 3, no. 4, pp. 184–195, 1960.

[2] R. Jones, A. Hosking, and E. Moss, The
garbage collection handbook: the art of au-
tomatic memory management. CRC Press,
2023.

[3] T. Yamazaki, T. Nakamaru, R. Shioya,
T. Ugawa, and S. Chiba, “Collecting
Cyclic Garbage across Foreign Function
Interfaces: Who Takes the Last Piece of
Cake?”, Proceedings of the ACM on Pro-
gramming Languages, vol. 7, no. PLDI, pp.
591–614, 2023.

[4] S. Beyer, “Efficient cycle detection on a
partially reference counted heap”, 2020.

[5] G. E. Collins, “A method for overlapping
and erasure of lists”, Communications of
the ACM, vol. 3, no. 12, pp. 655–657, 1960.

[6] P. S. Foundation, “Garbage Collec-
tor Design”. [Online]. Available: https://
devguide.python.org/internals/garbage-
collector/index.html

6

https://devguide.python.org/internals/garbage-collector/index.html
https://devguide.python.org/internals/garbage-collector/index.html
https://devguide.python.org/internals/garbage-collector/index.html

	Introduction
	Background
	Garbage collection
	Tracing collection
	Reference counting
	Trial deletion
	Foreign function interface

	Synchronizing two collectors
	Synchronising two approaches
	Conclusion and Future Work
	Related Work
	References

