Introduction to Cryptography

(Lecture 1: Admin, introduction, historical ciphers)

Georg Fuchsbauer

Administrativia

• Lectures + exercises

Lectures Thursday, 12:00 – 14:00 FAV1

- presence not mandatory, but encouraged
- recorded, slides and recordings on TUWEL

Exercises

- TAs: Fabian Regen, Marek Sefranek,
 Andreas Weninger, Stefano Trevisani
- 4 groups: Thursday, 10:00-12:00, FAV3
 - Thursday, 16:00-18:00, FAV3
 - Friday, 9:00-11:00, El 1
 - Friday, 11:00-13:00, El 1

Exercises

• 1st sheet: on TUWEL, to be done by 9 Oct

1st exercise mandatory to register for a group

- Group registration opens next week (TUWEL)
- from 16 Oct: in-presence exercise sessions
- In total: 9 exercise sheets (see TISS for exercise dates)

Exercise mode

- ullet Presence is mandatory (if you cannot attend o email TA)
- Tick solved (sub)problems
- Upload pdf (1 subproblem per sheet) on TUWEL
- Use TUWEL forum for questions
- In session: a student who ticked will be asked to present

Exercise grading

- Presentations:
 - Students explain their solutions
 - If a student cannot explain (or obviously did not write) their solution, the points for the sheet will be withdrawn.
 - If this happens a 2nd time, the student fails the course.
- To pass, you need to tick at least 50% of all exercises.
- You must not use Al tools to solve exercises.
 (Contact us if you need an exception.)

Exams

- If at least 50% of first 5 sheets solved
- → Midterm exam ("closed book")
 3 Dec, 14:00 16:00 (Audi. Max.)

- If at least 50% of all exercises solved
- → Final exam ("closed book")
 30 Jan, 10:00 12:00 (Audi. Max.)

Retake exam ("closed book")

 You can retake one of the two exams (which will "overwrite" the result of the retaken exam)

27 Feb, 12:00 – 14:00 (Audi. Max.)

Grading

- For a positive grade, you require at least 50% **on average** on two exams
- Total points:

50% exercise percentage

+50% exam percentage

Total points	Grade
Some requirement not fulfilled	5
$\geq 50.0\%$	4
$\geq 62.5\%$	3
$\geq 75.0\%$	2
$\geq 87.5\%$	1

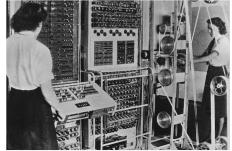
Cryptography

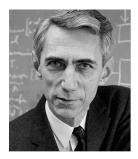
History

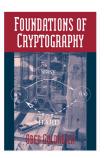
- Encryption of messages since ancient times
- Until 1970s: military, governments

• 1975: DES

Cryptography is now a science



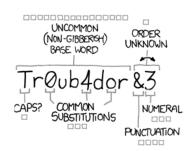




Modern cryptography

authentication, integrity





encryption

Private-key Secret communication between parties that share a secret ("key")

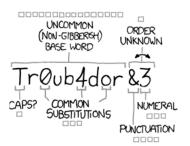
public-key cryptography

— e-cash, "cryptocurrencies"

- IBE, MPC, FHE, ZKP, . CASH

Modern cryptography

authentication, integrity



Cryptography... deals with mechanisms for ensuring integrity, techniques for exchanging secret keys, protocols for authenticating users, electronic auctions and elections, digital cash, and more. Without attempting to provide a complete characterization, we would say that modern cryptography involves the study of mathematical techniques for securing digital information, systems, and distributed computations against adversarial attacks.

 $[\S 1.1]$

− IBE, MPC, FHE, ZKP, . ②CASH

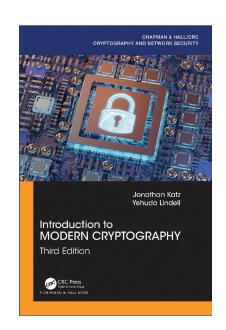
Overview

Reference book:

Katz, Lindell: *Introduction to Modern Cryptography* (3rd edition)

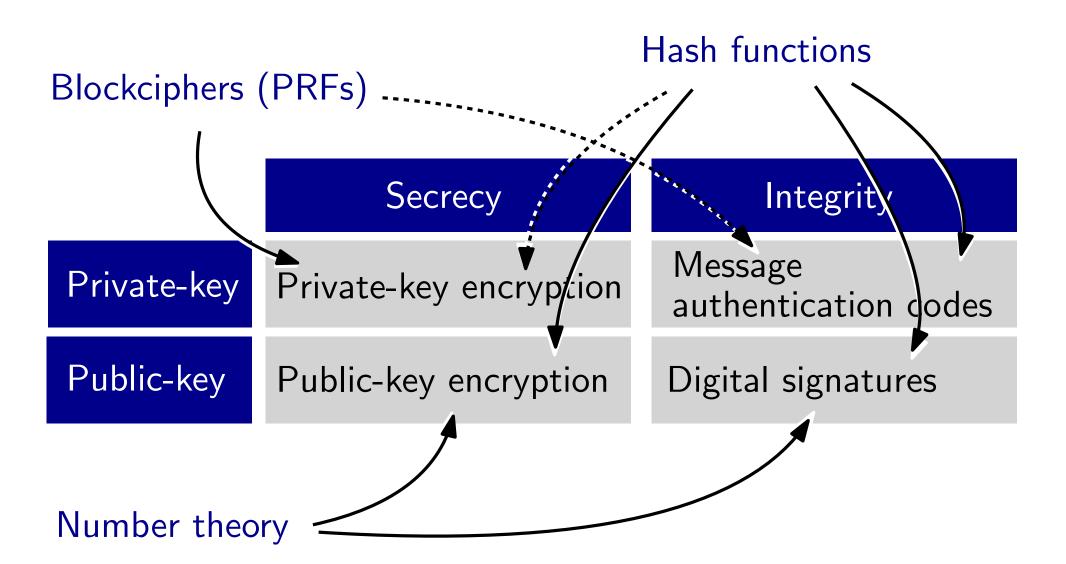
This lecture series:

- History, one-time pad
- Blockciphers (PRFs): DES, AES
- Computational security, proofs by reduction
- Private-key encryption, MACs
- Hash functions
- Number theory, public-key encryption
- Digital signatures



8

Topics



Goals

Understand cryptography

as used in the real world

taking a rigorous approach (schemes that are used) ("provable security" paradigm)

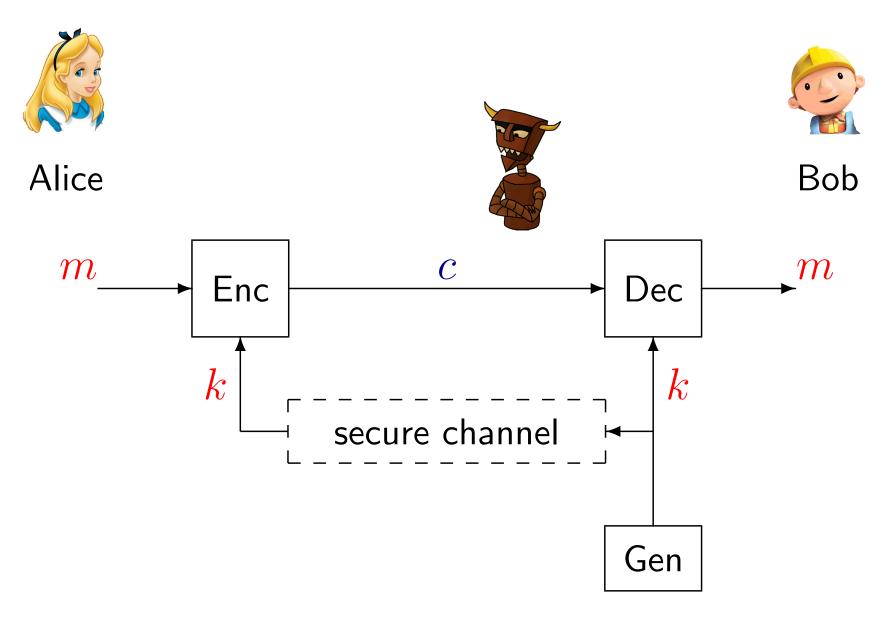
Use cryptography

- which primitives are there
- what precise security guarantees do they provide

Private-key Encryption

Private-key encryption

("Symmetric encryption")



Private-key encryption

Definition ($\S 1.2$). A private-key encryption scheme is defined by a message space \mathcal{M} and three algorithms:

Gen (key-generation) is probabilistic and outputs key k

Enc (encryption) takes key \emph{k} and message (plaintext) \emph{m} and outputs ciphertext \emph{c}

$$c \leftarrow \mathsf{Enc}_{\pmb{k}}(\pmb{m})$$

Dec (decryption) takes key k and ciphertext c and outputs m

$$m := \mathsf{Dec}_{k}(c)$$

Correctness:

For all $k \leftarrow \mathsf{Gen}$ and all $m \in \mathcal{M}$: $\mathsf{Dec}_k(\mathsf{Enc}_k(m)) = m$

Kerckhoffs' Principle

Kerckhoffs' Principle: (1883)

Enc and Dec are public and the secrecy of m, given c, depends entirely on the secrecy of k

[The system] should not require secrecy, and it should not be a problem if it falls into enemy hands

Arguments:

- Easier to keep keys secret
 (algorithms will not stay secret reverse engineering...)
- Easier to replace key than scheme
- Schemes can be standardized
 - compatibility
 - public scrutiny

Scytale (Spartans)key = "circumference"

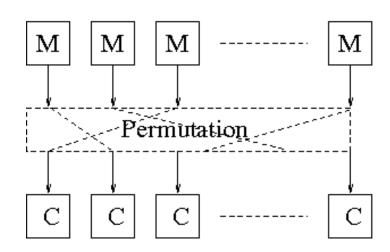
Scytale (Spartans)key = "circumference"

(only certain permutations possible)

Scytale (Spartans)key = "circumference"

• Permutation:

The key defines a "rearranging" of the message



 Monoalphabetic substitution (e.g. Caesar cipher, ROT13)

$$\Sigma = \{A, \dots, Z\}$$
Key: bijection $\pi \colon \Sigma \to \Sigma$ π : $A \to K$

$$\operatorname{Enc}(\pi, m_1 m_2 \dots m_n)$$

$$= \pi(m_1) \pi(m_2) \dots \pi(m_n)$$

$$= \pi(m_1) \pi(m_2) \dots \pi(m_n)$$

$$= \pi^{-1}(c_1) \pi^{-1}(c_2) \dots \pi^{-1}(c_n)$$

$$\vdots$$

 $A \sim 0$

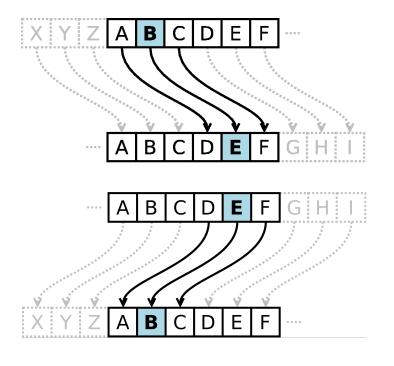
 $B \sim 1$

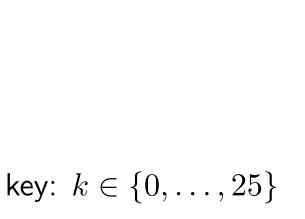
 $Z\sim25$

• Shift ciphers

 $(\subseteq substitution ciphers)$

Caesar cipher





Caesar: k=3

$$\operatorname{Enc}(k, m) := (m + k) \mod 26$$
$$\operatorname{Dec}(k, c) := (c - k) \mod 26$$

Cryptanalysis

Breaking shift ciphers

- how many possible keys?
- only 26 (!)
- given c, try all keys k, which m = Dec(k, c) makes sense?

"Brute force" attack (or exhaustive search)

⇒ key space must be large enough

- Key length for Mifare Crypto-1: 48 bits
- **Examples:** 2^{48} Mifare Crypto-1 (breakable on phone)
 - 2⁵⁶ DES (...laptop)
 - Key size of the AES: 2^{128} or 2^{256}

Breaking monoalphabetic substitution (not just shifts!)

- every letter replaced by other (arbitrary) letter
- how many keys? $26! (> 2^{88}) (\# \text{ of permutations})$

Cryptanalysis: statistical analysis (← frequency of letters)

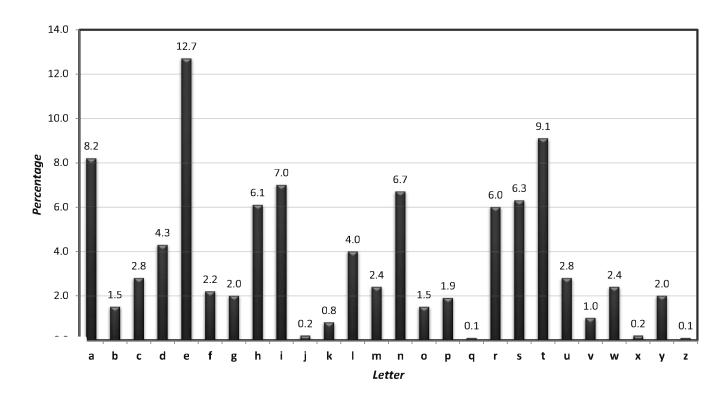


Fig. 1.3

Polyalphabetic substitution

- key: $k = (\pi_1, ..., \pi_\ell)$
- $\operatorname{Enc}(k, m_1 m_2 \dots m_n)$ = $\pi_1(m_1)\pi_2(m_2)\dots\pi_{\ell}(m_{\ell})\pi_1(m_{\ell+1})\dots$

Polyalphabetic substitution

- key: $k=(\pi_1,\ldots,\pi_\ell)$
- $\operatorname{Enc}(k, m_1 m_2 \dots m_n)$ = $\pi_1(m_1)\pi_2(m_2)\dots\pi_{\ell}(m_{\ell})\pi_1(m_{\ell+1})\dots$

Vigenère Cipher (1553): (⊆ polyalphab. substitution)

Polyalphabetic substitution

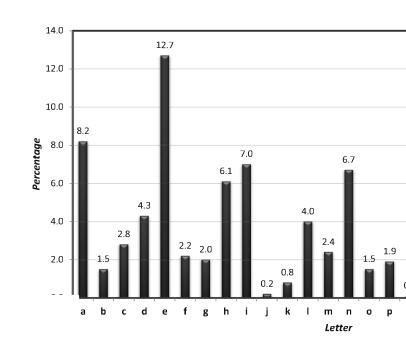
- key: $k = (\pi_1, ..., \pi_\ell)$
- $\operatorname{Enc}(k, m_1 m_2 \dots m_n)$ = $\pi_1(m_1)\pi_2(m_2)\dots\pi_{\ell}(m_{\ell})\pi_1(m_{\ell+1})\dots$

Vigenère Cipher (1553): (⊆ polyalphab. substitution)

```
M E S S A G E C L A I R
C L E C L E C L E
D P W U L K G N P C T V

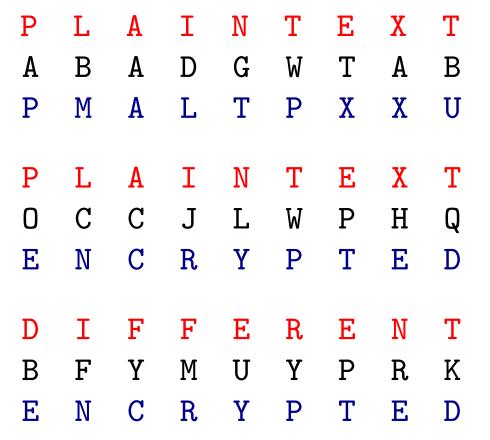
12 04 18 18 00 06 04 02 11 00 08 17
02 11 04 02 11 04 02 11 04 02 11 04
14 15 22 20 11 10 06 13 15 02 19 21
```

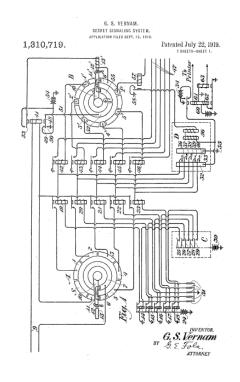
Cryptanalysis: statistical attacks



Vernam Cipher (cf. one-time pad)

 key: random sequence of same length as message



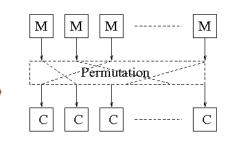


$$c_i := (m_i + k_i) \bmod 26$$

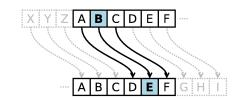
Overview:

Permutation (of message blocks / letters)

```
E.g. scytale(few possible permutations)
```



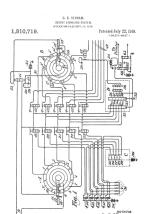
- Substition (of message blocks / letters by others)
 - Monoalphabetic
 Shift (Caesar) or random bijection



Polyalphabetic (substitute depends on location)

Vigenère (key "repeats") or Vernam (long key)

```
M E S S A G E C L A I R C L E C L E C L E C L E
```



Introduction to Cryptography

(Lecture 2: Modern cryptography, the one-time pad)

Georg Fuchsbauer

Modern cryptography

- Vernam Cipher (1917)
- Information theory, perfect secrecy (Shannon 1949)
- Encryption standard: DES (Feistel 1977)
- Public-key cryptography (Diffie, Hellman 1976)
- RSA (Rivest, Shamir, Adleman 1978)
- Semantic security (Goldwasser, Micali 1984)
- Digital signatures (Goldwasser, Micali, Rivest 1986)
- Multiparty computation (Yao, Goldreich, Micali, Wigderson1986)
- Zero-knowledge proofs (Goldwasser, Micali, Rackoff 1989)
- Standards: AES (2000) SHA-2 (2001) SHA-3 (2015)
- Bitcoin (Nakamoto 2008), E-cash (Chaum, 1982)
- Lattice-based crypto (Ajtai, Dwork 1996)
- Fully homomorphic encryption (Gentry 2009)
- Obfuscation (Garg, Gentry, Halevi, Raykova, Sahai, Waters '13)

This course

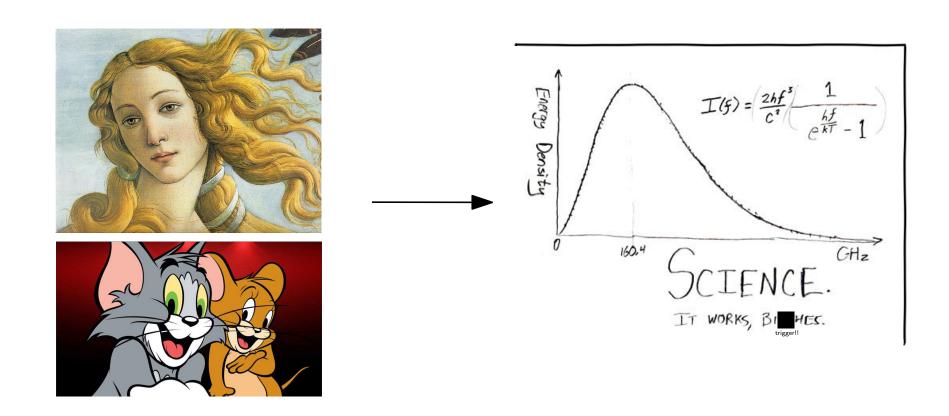
192.115

Advanced Crypto

"Modern" Cryptography

 $\S 1.4$

Modern Cryptography



 \sim 1980: cryptography: art \rightarrow science

Modern Cryptography

Provable Security (a.k.a. reductionist security):

- **Definitions:** What is *security goal*, what is *threat model* (e.g. find message, seeing several encryptions)
- Assumptions: Computational assumptions (e.g. factoring large integers is hard)
- **Security proof:** Mathematical proof that construction achieves *definition* under *assumptions*.

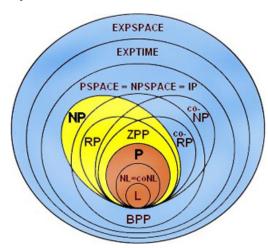
Provable Security (a.k.a. reductionist security):

- **Definitions:** What is *security goal*, what is *threat model* (e.g. find message, seeing several encryptions)
- understand what we want to achieve!
- evaluate and compare schemes
- use schemes as component (modularity!)

Provable Security (a.k.a. reductionist security):

• Assumptions:

(e.g. factoring is hard)



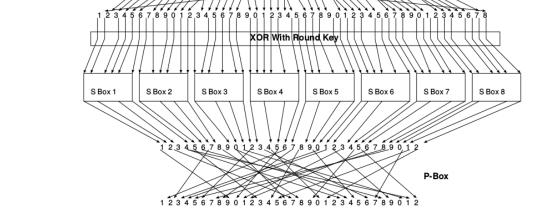
- on the impossibility of solving a certain problem efficiently
- precisely defined \Rightarrow study, validation
- comparison between schemes

 $P \stackrel{?}{=} NP$: are there problems where finding a solution is harder than verifying it?

Provable Security (a.k.a. reductionist security):

Assumptions:

(e.g. factoring is hard)



- Security of any (interesting) cryptographic scheme implies $P \neq NP$.
- need "hardness assumptions" for proving security

Expansion Permutation

- **Public-key crypto:** "mathematical" (factoring, discrete logarithm, ...)
- Symmetric crypto: typically ad-hoc

Provable Security (a.k.a. reductionist security):

• **Security proof:** Mathematical proof that construction achieves *definition* under *assumptions*.

Provably secure scheme can still "fail" if

- assumption was wrong, or (e.g., quantum computers efficiently factor)
- definition did not reflect real requirements (e.g., scheme secure when key only used once, but saw two ciphertext)

Advantages:

- well-defined problems to analyze
- base security of new scheme on well-studied assumptions!

Security definitions

Security definitions

Kerckhoffs' Principle: The adversary knows the scheme

Auguste Kerckhoffs: La cryptographie militaire (1883)

Adversary's goals:

- Find the key?

- Recover the plaintext
- Guess a single letter of the plaintext
- Obtain any information about the plaintext
- Adversary's **power:**

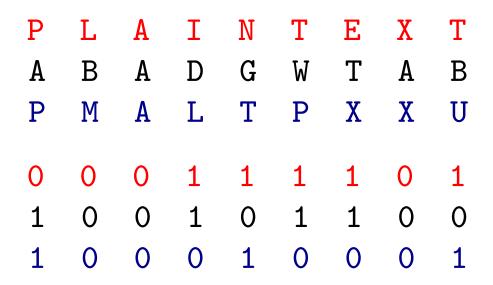
- Sees ciphertexts (one/many)
- Has seen plaintext/ciphertext pairs
- Has chosen the plaintexts
 - ...and can ask for decryption

 $\operatorname{Enc}(k, m_1 || m_2)$:= $\operatorname{AES}(k, m_1) || m_2$

Perfectly secret encryption

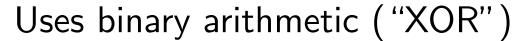
One-time pad

- Red phone between Kremlin and White House
- Perfectly secure (if used correctly)
- Not practical



One-time pad

- Red phone between Kremlin and White House
- Perfectly secure (if used correctly)
- Not practical



\Box	0	1
0	0	1
1	1	0

$$(x+y) \mod 2$$



- Message: $m \in \{0,1\}^{\ell} =: \mathcal{M}$
- ullet Encryption: $c:=k\oplus m=k_1\oplus m_1\|\ldots\|k_\ell\oplus m_\ell$
- Decryption: $m := k \oplus c$

One-time pad

Message space: $\mathcal{M} := \{0,1\}^{\ell}$

 $\mathsf{Gen}(\ell)$:

- $k \leftarrow \{0,1\}^{\ell}$ // choose uniformly random ℓ -bit string
- return k

 $\mathsf{Enc}(k,m): \ \ /\!/\ k,m \in \{0,1\}^{\ell}$

- ullet for $i=1\dots \ell$ do $c_i:=k_i\oplus m_i$
- return (c_1, \ldots, c_ℓ)

 $\mathsf{Dec}(k,c): \ /\!/\ k,c \in \{0,1\}^{\ell}$

- ullet for $i=1\dots \ell$ do $m_i:=k_i\oplus c_i$
- return (m_1,\ldots,m_ℓ)

$$\begin{aligned} \mathsf{Dec}(k, \mathsf{Enc}(k, m)) &= \\ &= k \oplus (k \oplus m) \\ &= (\underbrace{k \oplus k}) \oplus m \\ &= 0, \dots, 0 \\ &= m \end{aligned}$$

Security? Definition!

Probability theory

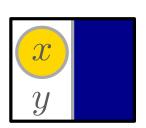
Random variable X

 $\Pr[X=x]$... probability that X takes value x

§A.3

Conditional probability:

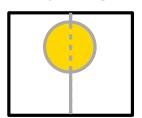
$$\Pr[X = x \mid Y = y] := \frac{\Pr[X = x \land Y = y]}{\Pr[Y = y]}$$



Day Nght

Bayes' Theorem:

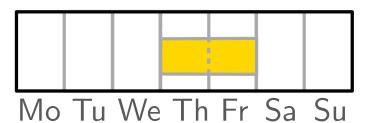
$$\Pr[X = x \mid Y = y] = \Pr[Y = y \mid X = x] \cdot \frac{\Pr[X = x]}{\Pr[Y = y]}$$



Mon Tue

X and Y are independent if

$$\forall x, y : \Pr[X = x \mid Y = y] = \Pr[X = x]$$



Total probability: $\sum_{y_i} \Pr[Y = y_i] = 1$

$$\Rightarrow \Pr[X=x] = \sum_{y_i} \Pr[X=x \mid Y=y_i] \cdot \Pr[Y=y_i]$$

Regardless of any information an attacker already has, a ciphertext should leak no additional information about the underlying plaintext

Let M be a random variable representing known information about message

Example.
$$\Pr[M = \text{``buy''}] = 0.7$$

$$\Pr[M = \text{``sell''}] = 0.3$$

• Let K be random variable denoting the key value, i.e. $\Pr[K=k] = \Pr[k \leftarrow \mathsf{Gen}]$

We assume that K and M are independent

Example 2.1 Shift cipher $(k \in \{0, \dots, 25\}, \Pr[K = k] = 1/26)$ Assume $\Pr[M = \mathsf{B}] = 0.7$ and $\Pr[M = \mathsf{D}] = 0.3$ $\Pr[C = \mathsf{F}] = ?$ $= \Pr[M = \mathsf{B} \, \wedge \, K = 4] + \Pr[M = \mathsf{D} \, \wedge \, K = 2]$ $\stackrel{M, \, K \text{ indep.}}{=} 0.7 \, \cdot \, 1/26 \, + \, 0.3 \, \cdot \, 1/26$ $= (0.7 + 0.3) \cdot 1/26 = 1/26$

- Let C be random variable denoting the ciphertext resulting:
 - choose m from distribution M
 - $-k \leftarrow \mathsf{Gen}$
 - $-c \leftarrow \mathsf{Enc}_k(m)$

Example 2.1. Shift cipher $(k \in \{0, \dots, 25\}, \Pr[K = k] = 1/26)$ Assume $\Pr[M = \mathbb{B}] = 0.1$ and $\Pr[M = \mathbb{D}] = 0.9$ $\Pr[C = \mathbf{G}] = ?$ $= \Pr[M = \mathbb{B} \wedge K = \mathbf{5}] + \Pr[M = \mathbb{D} \wedge K = \mathbf{3}]$ $\stackrel{M, K \text{ indep.}}{=} 0.1 \cdot 1/26 + 0.9 \cdot 1/26 = (0.1 + 0.9) \cdot 1/26 = 1/26$

- Let C be random variable denoting the ciphertext resulting:
 - choose m from distribution M
 - $-k \leftarrow \mathsf{Gen}$
 - $-c \leftarrow \mathsf{Enc}_k(m)$

Regardless of any information an attacker already has, a ciphertext should leak no additional information about the underlying plaintext

- ullet Let M be a random variable representing **known** information about message
- Let C be random variable denoting the resulting ciphertext

Def. 2.3. An encryption scheme is **perfectly secret** if for every probability distribution over the message space \mathcal{M} , every $m \in \mathcal{M}$ and every ciphertext c with $\Pr[C = c] > 0$:

$$\Pr\left[M=m \mid C=c\right] = \Pr\left[M=m\right]$$

(Adversary's power: only sees one ciphertext)

Theorem 2.10. The one-time pad is perfectly secret.

 $\mathsf{Gen}(\ell):\mathsf{return}\ k \leftarrow \{0,1\}^{\ell}$

 $\mathsf{Enc}_k(m) := k \oplus m$

 $\mathsf{Dec}_k(c) := k \oplus c$

Theorem 2.10. The one-time pad is perfectly secret.

$$(\forall M, m, c : \Pr[M=m \mid C=c] = \Pr[M=m])$$

Proof:

Keys random
$$\Rightarrow \Pr[K = k] = 1/2^{\ell}$$
 for all k (*)

Let M, m and c be arbitrarily fixed. We have

$$\Pr[C = c \mid M = m] = \Pr[K \oplus M = c \mid M = m] = \Pr[K \oplus m = c \mid M = m]$$
$$= \Pr[K = m \oplus c \mid M = m] \stackrel{K,M \text{ indep.}}{=} \Pr[K = m \oplus c] \stackrel{(*)}{=} 1/2^{\ell} \ (**)$$

$$\Pr[C = c] \stackrel{\text{tot. prob.}}{=} \sum_{m'} \Pr[C = c \mid M = m'] \cdot \Pr[M = m']$$

$$\stackrel{(***)}{=} 1/2^{\ell} \cdot \sum_{m'} \Pr[M = m'] = 1/2^{\ell} \quad (***)$$

$$\Pr[M = m \mid C = c] \overset{\mathsf{Bayes}}{=} \, \frac{\Pr[C = c \mid M = m] \cdot \Pr[M = m]}{\Pr[C = c]} \, \overset{(**) \text{ and }}{=} \, \overset{(***)}{=} \, \Pr[M = m]}{} \, \Pr[M = m]$$

What if key is used twice?

$$c = k \oplus m$$
 $c' = k \oplus m'$
 $\Rightarrow c \oplus c' = \underbrace{k \oplus k}_{=0,...,0} \oplus m \oplus m' = m \oplus m'$

Bad?

$$m$$
: "B" = 100 0010 or "S" = 101 0011 ("buy" or "sell") m' : "Y" = 101 0110 or "N" = 100 1110 ("yes" or "no") $c \oplus c' = 001 0100 \Rightarrow m = B \quad m' = Y$ $c \oplus c' = 000 0101 \Rightarrow m = ? \quad m' = ?$

What if key is used twice?

$$c = k \oplus m$$
 $c' = k \oplus m'$
 $\Rightarrow c \oplus c' = \underbrace{k \oplus k}_{=0,...,0} \oplus m \oplus m' = m \oplus m'$

Drawbacks of the one-time pad:

- key as long as message
- key can only be used once

- ⇒ requires long true random values
- ⇒ key distribution
- \Rightarrow key destruction

Limitations of perfect secrecy

Theorem 2.11. For any perfectly secret encryption: $|\mathcal{K}| \geq |\mathcal{M}|$

Theorem 2.12 (Shannon). An encryption scheme with $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$ is perfectly secret *if and only if*

- every key is equiprobable and
- for all m and c there is a unique k such that $\operatorname{Enc}_k(m)=c$
 - key as long as message
 - key can only be used once

for any perfectly secret encryption scheme secure against adversaries with infinite power!

...and if we want **practical** schemes secure against **bounded** adversaries?

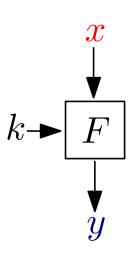
Introduction to Cryptography

(Lecture 3: Block ciphers)

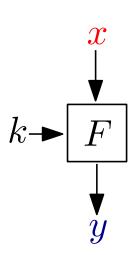
Elena Andreeva

§7.2

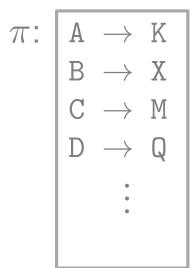
• Main **building block** of private-key encryption schemes, MACs, ...

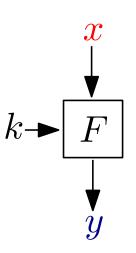


- Main **building block** of private-key encryption schemes, MACs, . . .
- Encrypts blocks of fixed size

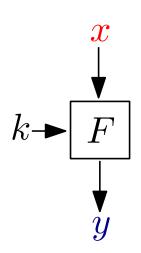


- Main building block of private-key encryption schemes, MACs, . . .
- Encrypts blocks of fixed size
 (substitution cipher: block = 1 letter)





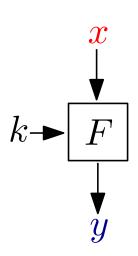
- Main building block of private-key encryption schemes, MACs, . . .
- Encrypts blocks of fixed size



Setting. Adversary knows algorithm (Kerckhoffs)

has seen (chosen) plaintext/ciphertext pairs

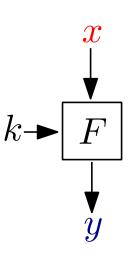
- Main building block of private-key encryption schemes, MACs, . . .
- Encrypts blocks of fixed size



Setting. Adversary knows algorithm (Kerckhoffs)

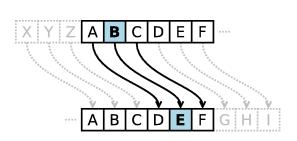
has seen (chosen) plaintext/ciphertext pairs

- Main **building block** of private-key encryption schemes, MACs, ...
- Encrypts blocks of fixed size

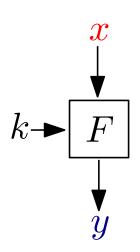


Setting. Adversary knows algorithm (Kerckhoffs)

has seen (chosen) plaintext/ciphertext pairs



- Main **building block** of private-key encryption schemes, MACs, ...
- Encrypts blocks of fixed size

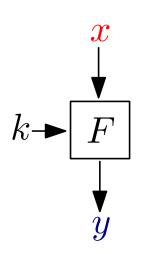


Setting. Adversary knows algorithm (Kerckhoffs)

has seen (chosen) plaintext/ciphertext pairs

- Exhaustive search on the keys
 - \Rightarrow Number of possible keys must be large ($\geq 2^{128}$) (1 quintillion (10^{18}) keys /s \Rightarrow takes age of universe)

- Main **building block** of private-key encryption schemes, MACs, ...
- Encrypts blocks of fixed size



Setting. Adversary knows algorithm (Kerckhoffs)

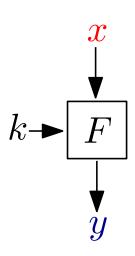
has seen (chosen) plaintext/ciphertext pairs

Generic attacks:

- Exhaustive search on the keys
 - \Rightarrow Number of possible keys must be large ($\geq 2^{128}$)

(1 quintillion (10¹⁸) keys /s $\frac{14.0}{12.0}$ $\frac{12.7}{10.0}$ $\frac{12.7}{10.0$

- Main **building block** of private-key encryption schemes, MACs, ...
- Encrypts blocks of fixed size



Setting. Adversary knows algorithm (Kerckhoffs)

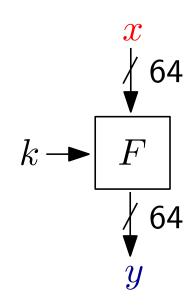
has seen (chosen) plaintext/ciphertext pairs

- Exhaustive search on the keys
 - \Rightarrow Number of possible keys must be large ($\geq 2^{128}$) (1 quintillion (10^{18}) keys /s \Rightarrow takes age of universe)
- **Dictionary attacks** \Rightarrow Block size ℓ must be large (≥ 64 bits)

Ideal cipher

key defines random permutation

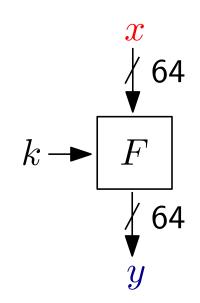
$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$

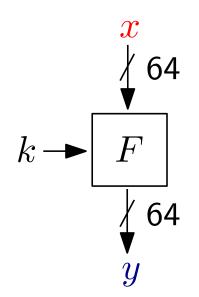


inputs	outputs	
0000	1010	
0001	0011	
0010	0110	
•	•	
1110	1100	
1111	0001	

Ideal cipher

• key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



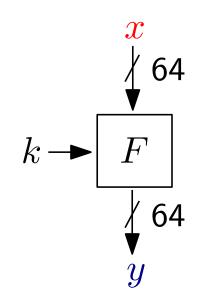
Compare to one-time pad:

inputs		outputs	1
0000		1010	
0001		0011	
0010		0110	
•		•	
1110		1100	
1111		0001	

Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



Compare to **one-time pad**:

inputs

0...000

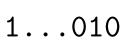
0...001

0...010

1...110

1...111

outputs



1...011

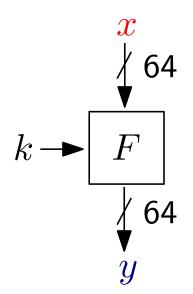
1...000

•

Ideal cipher

• key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



Compare to **one-time pad**:

• one x/y pair determines all pairs!

0...000

0...010

1...110

1...111

outputs



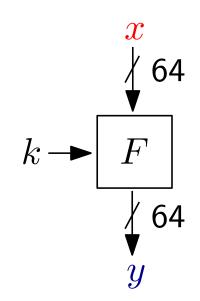
1...000

•

Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



inputs	outputs	
0000	1010	
0001	0011	
0010	0110	
•	•	
1110	1100	
1111	0001	

Ideal cipher

• key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$

 $k \longrightarrow F$ $\downarrow 64$ $\downarrow 64$ $\downarrow 64$ y

• after seeing x/y pairs, what do we learn?

inputs	outputs	
0000	1010	
0001	0011	
0010	0110	
•	•	
1110	1100	
1111	0001	

Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$

 $k \longrightarrow \boxed{F}$ $\downarrow 64$ $\downarrow 64$ $\downarrow 64$ y

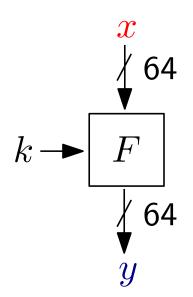
• after seeing x/y pairs, what do we learn?

inputs	outputs	
0000	1010	
0001	0011	
0010	0110	
•	•	
1110	1100	
1111	0001	

Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



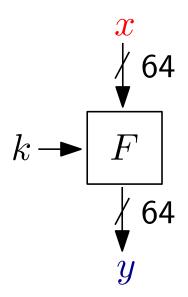
- after seeing x/y pairs, what do we learn?
- security is "ideal", but...

inputs	outputs	
0000		1010
0001		0011
0010		0110
•		•
1110		1100
1 111		0 001

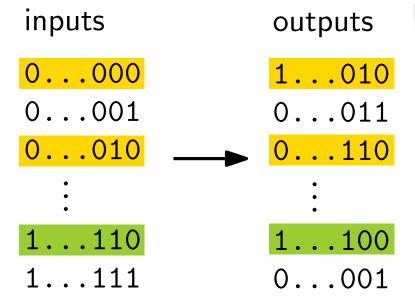
Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



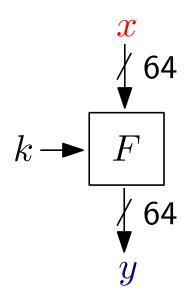
- after seeing x/y pairs, what do we learn?
- security is "ideal", but...
- Number of permutations:



Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



- after seeing x/y pairs, what do we learn?
- security is "ideal", but...
- Number of permutations: $2^{\ell}!$ $\ell = 64$: $|k| \approx 2^{70}$ (*)

inputs

0...000

0...001

0...010

1...110

1...111

outputs

0...011

0...110

•

1...100

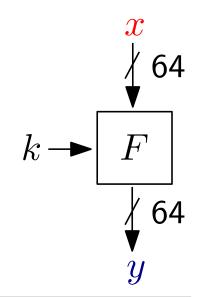
0...001

 $(*) \approx 150$ million TB

Ideal cipher

key defines random permutation

$$F_k \colon \{0,1\}^\ell \to \{0,1\}^\ell$$



Goal:

Construct an **efficiently computable** (keyed) permutation F with **short** keys that "**behaves**" like the ideal cipher

Methods

Goals (Shannon):

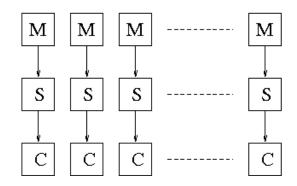
- ullet Confusion: relation between x and y "obscured"
- Diffusion: every bit of y depends on many bits of x.

Methods

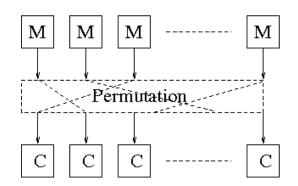
Goals (Shannon):

- ullet Confusion: relation between x and y "obscured"
- Diffusion: every bit of y depends on many bits of x.

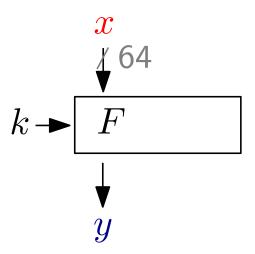
Principles:



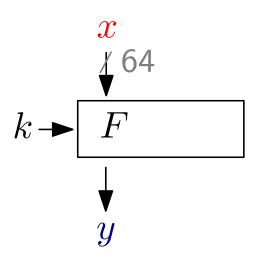
Substitution⇒ confusion

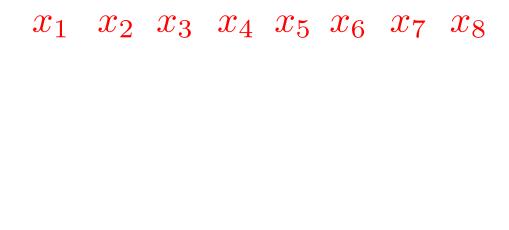


Permutation ⇒ diffusion

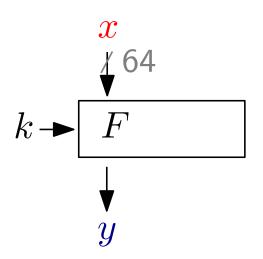


• Split the input into (8-bit) blocks

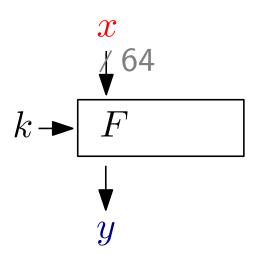


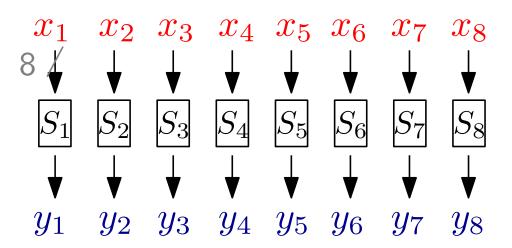


• Split the input into (8-bit) blocks

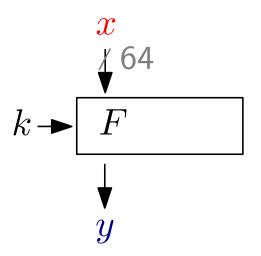


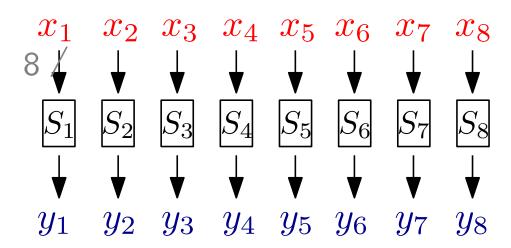
- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks



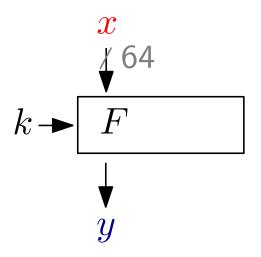


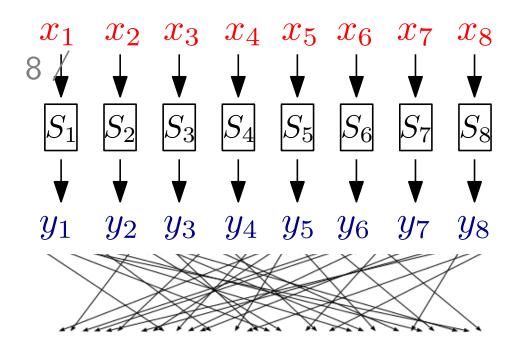
- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks



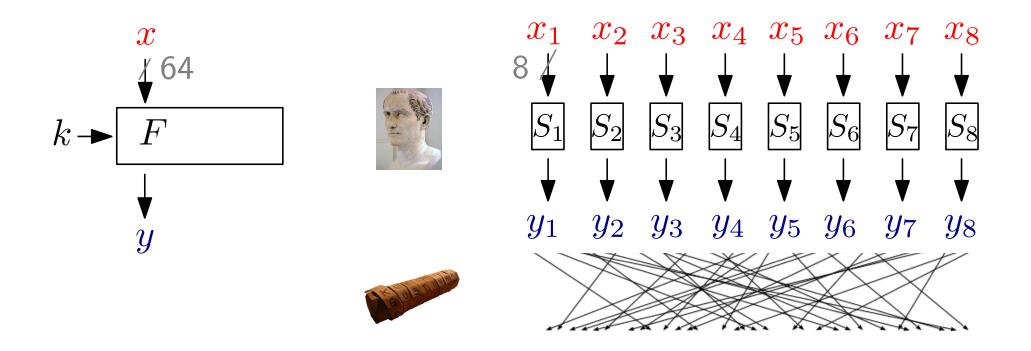


- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks
- Mix the ouptut bits

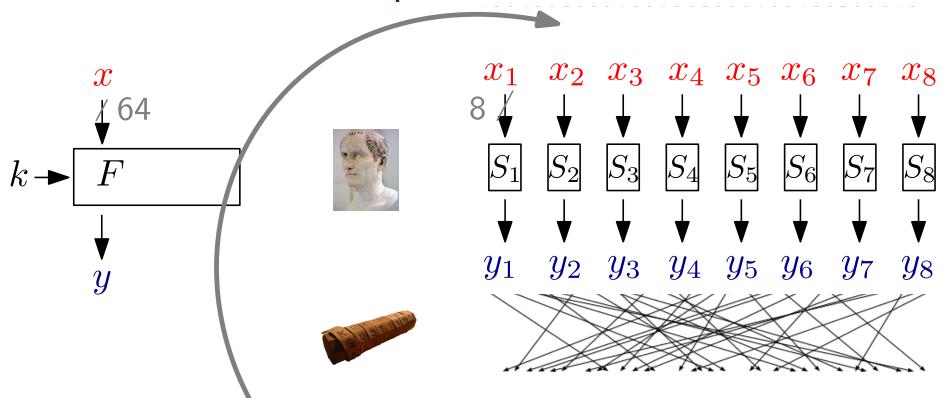




- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks
- Mix the ouptut bits



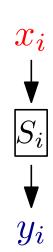
- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks
- Mix the ouptut bits



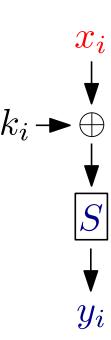
- Split the input into (8-bit) blocks
- Apply (random) substitution to small blocks
- Mix the ouptut bits
- Start again ... (using different S_i 's)

- Instead of $y_i := S_i(x_i)$, use **fixed** function S
- E.g., in AES: $S: \{0,1\}^8 \to \{0,1\}^8$

- Instead of $y_i := S_i(x_i)$, use **fixed** function S
- E.g., in AES: $S: \{0,1\}^8 \to \{0,1\}^8$
- Set $y_i := S(x_i \oplus k_i)$



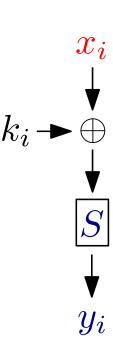
- Instead of $y_i := S_i(x_i)$, use **fixed** function S
- E.g., in AES: $S: \{0,1\}^8 \to \{0,1\}^8$
- Set $y_i := S(x_i \oplus k_i)$



- Instead of $y_i := S_i(x_i)$, use **fixed** function S
- E.g., in AES: $S: \{0,1\}^8 \to \{0,1\}^8$
- Set $y_i := S(x_i \oplus k_i)$

S-Box (Substitution-box)

- central component of block ciphers
- adds confusion (non-linearity)



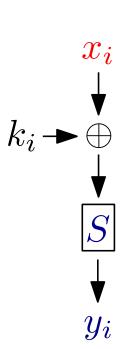
- Instead of $y_i := S_i(x_i)$, use **fixed** function S
- E.g., in AES: $S: \{0,1\}^8 \to \{0,1\}^8$
- Set $y_i := S(x_i \oplus k_i)$

S-Box (Substitution-box)

- central component of block ciphers
- adds confusion (non-linearity)

Iterative encryption:

- proceed in rounds
- round i: apply **invertible** function $f_{k_i}: \{0,1\}^\ell \to \{0,1\}^\ell$ where k_i is **subkey** derived from k



(Data Encryption Standard), 1977

- Motivated by commercial applications
- 1972: call by NBS (\rightarrow NIST)
- 1974: candiates, among them:

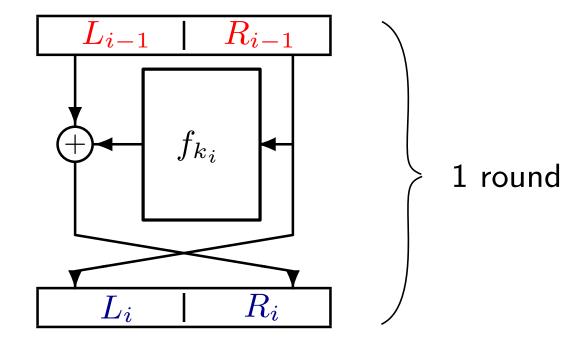
Lucifer by IBM (Feistel)

(Data Encryption Standard), 1977

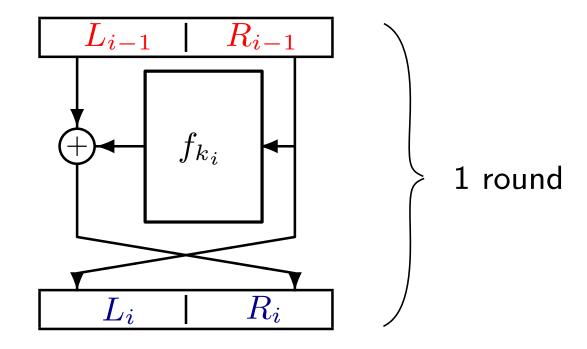
- Motivated by commercial applications
- 1972: call by NBS (\rightarrow NIST)
- 1974: candiates, among them:

Lucifer by IBM (Feistel)

- NSA "helped" (key length $128 \rightarrow 56$)
 - $\rightarrow \mathsf{DES}$
- 1977: standard published (but criteria unknown)
- Standard prolonged until 1999

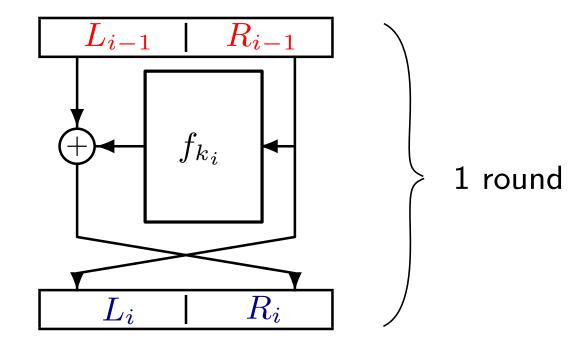


Feistel:
$$L_i=R_{i-1}, \quad R_i=L_{i-1}\oplus f_{k_i}(R_{i-1})$$
 (Must f be invertible?)



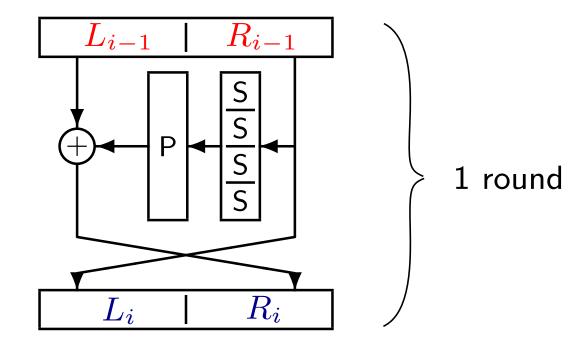
Feistel:
$$L_i=R_{i-1}, \quad R_i=L_{i-1}\oplus f_{k_i}(R_{i-1})$$
 (Must f be invertible?)

Decryption for Feistel?



Feistel:
$$L_i=R_{i-1}, \quad R_i=L_{i-1}\oplus f_{k_i}(R_{i-1})$$
 (Must f be invertible?)

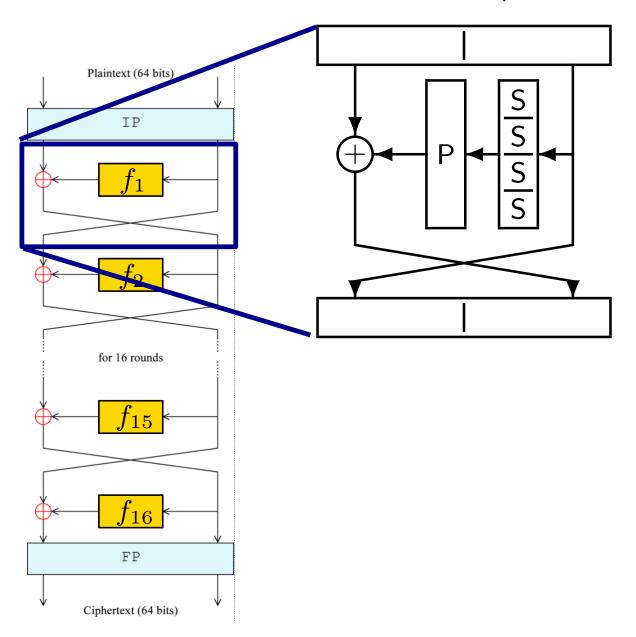
Decryption for Feistel? $L_{i-1}=R_i\oplus f_{k_i}(L_i)$, $R_{i-1}=L_i$



Feistel:
$$L_i=R_{i-1}, \quad R_i=L_{i-1}\oplus f_{k_i}(R_{i-1})$$
 (Must f be invertible?)

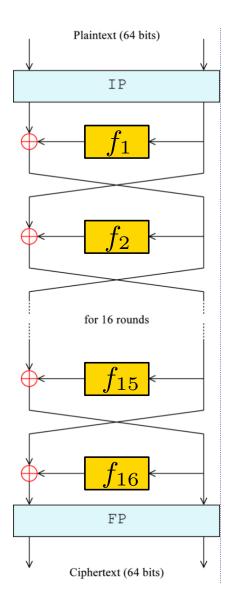
Decryption for Feistel? $L_{i-1} = R_i \oplus f_{k_i}(L_i)$, $R_{i-1} = L_i$

(Data Encryption Standard), 1977



Block size: 64 bits

Key size: 56 bits



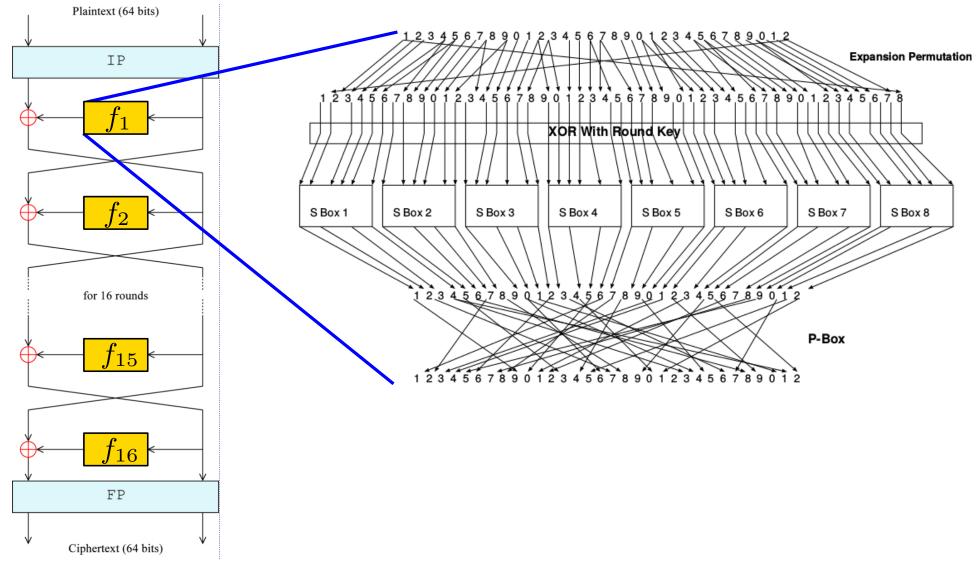
DES

(Data Encryption Standard), 1977

Block size: 64 bits

Key size: 56 bits

(Data Encryption Standard), 1977 Plaintext (64 bits)



Block size: 64 bits

Key size: 56 bits

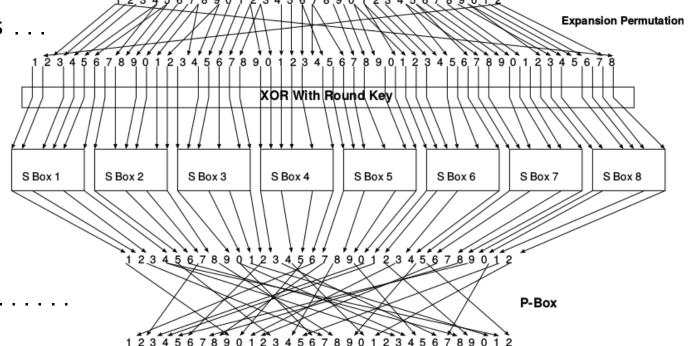
(Data Encryption Standard), 1977

Round function:

• Expansion $32 \rightarrow 48$ bits . . .

• XOR with subkeys

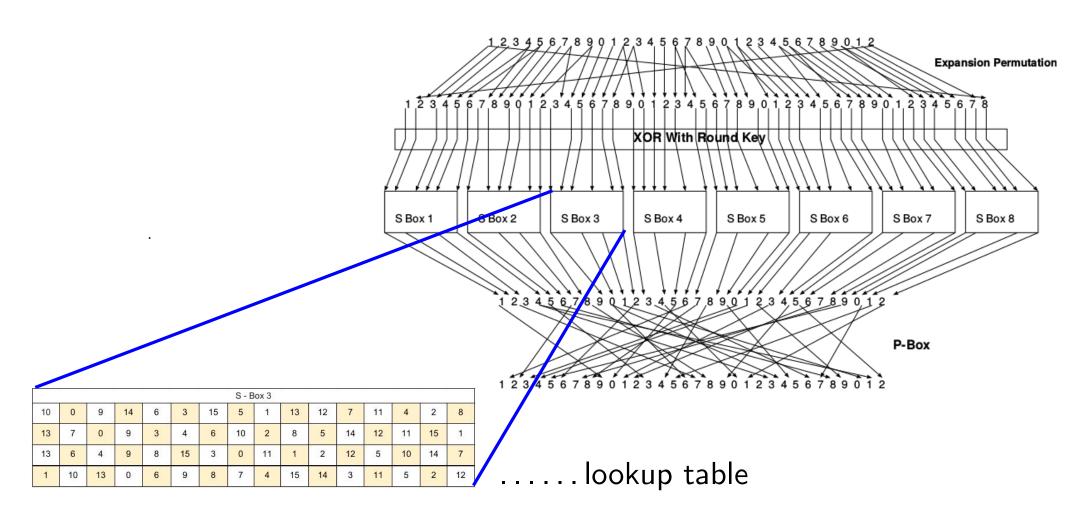
• 8 S-boxes in parallel...



Block size: 64 bits

Key size: 56 bits

(Data Encryption Standard), 1977



Attacks

§7.2.6

Differential cryptanalysis^a (Biham and Shamir, 1990)

• impractical, but shows (theoretical) weakness

DES: requires 2^{47} ciphertext for *chosen* plaintexts

^a192.124 Symmetric Cryptography 2026S

Attacks

§7.2.6

Differential cryptanalysis^a (Biham and Shamir, 1990)

• impractical, but shows (theoretical) weakness

DES: requires 2^{47} ciphertext for *chosen* plaintexts

^a192.124 Symmetric Cryptography 2026S

Attacks

§7.2.6

Differential cryptanalysis (Biham and Shamir, 1990)

• impractical, but shows (theoretical) weakness DES: requires 2^{47} ciphertext for *chosen* plaintexts (known by IBM/NSA in 70's!)

Linear cryptanalysis^a (Matsui, 1993)

known-plaintext attack

DES: requires 2^{43} plaintext/ciphertext pairs

^a192.124 Symmetric Cryptography 2026S

Attacks

§7.2.6

Differential cryptanalysis (Biham and Shamir, 1990)

• impractical, but shows (theoretical) weakness DES: requires 2^{47} ciphertext for *chosen* plaintexts (known by IBM/NSA in 70's!)

Linear cryptanalysis (Matsui, 1993)

known-plaintext attack

DES: requires 2^{43} plaintext/ciphertext pairs

Best attack:

exhaustive search

^a192.124 Symmetric Cryptography 2026S

Attacks

§7.2.6

Differential cryptanalysis (Biham and Shamir, 1990)

• impractical, but shows (theoretical) weakness DES: requires 2^{47} ciphertext for *chosen* plaintexts (known by IBM/NSA in 70's!)

Linear cryptanalysis (Matsui, 1993)

known-plaintext attack

DES: requires 2^{43} plaintext/ciphertext pairs

Best attack:

exhaustive search

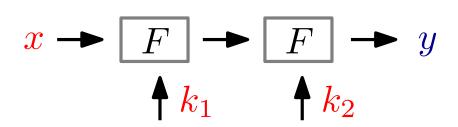
- 1997: 69 days (1000's of computers)
- 1999: Deep Crack (ASICs): 22 hours
- now: minutes (with preprocessing)

^a192.124 Symmetric Cryptography 2026S

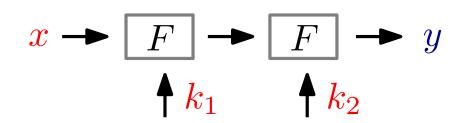
- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$

- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!

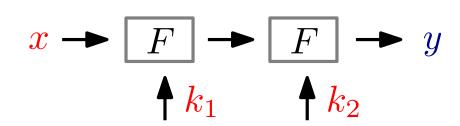
- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt twice?Key length?



- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!
 - Encrypt twice?Key length? 112 bits



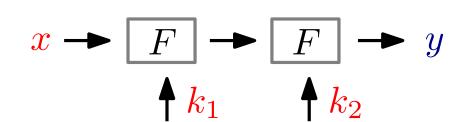
- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!
 - Encrypt twice?Key length? 112 bits



Meet-in-the-middle attack

Given
$$x$$
 and y with $y = F_{k_2}(F_{k_1}(x)) \Rightarrow F_{k_1}(x) = F_{k_2}^{-1}(y)$

- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!
 - Encrypt twice?Key length? 112 bits

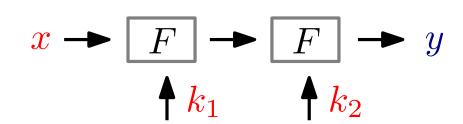


Meet-in-the-middle attack

Given x and y with $y = F_{k_2}(F_{k_1}(x)) \Rightarrow F_{k_1}(x) = F_{k_2}^{-1}(y)$

- list $F_{k_1}(\mathbf{x})$ for all k_1
- compute $F_{k_2}^{-1}(y)$ for all k_2
- ullet if match $o (k_1,k_2)$

- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!
 - Encrypt twice?Key length? 112 bits



Meet-in-the-middle attack

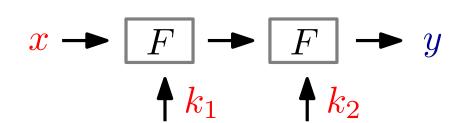
Given x and y with $y = F_{k_2}(F_{k_1}(x)) \Rightarrow F_{k_1}(x) = F_{k_2}^{-1}(y)$

- list $F_{k_1}(\mathbf{x})$ for all k_1
- compute $F_{k_2}^{-1}(y)$ for all k_2
- ullet if match $o (k_1,k_2)$

Complexity:

Space: 2^{56}

- Design withstood attacks, but keys too short
- ullet Brute-force: given $oldsymbol{x}$ and $oldsymbol{y}$ find k such that $F_k(oldsymbol{x}) = oldsymbol{y}$
- Longer keys!
 - Encrypt twice?Key length? 112 bits



Meet-in-the-middle attack

Given x and y with $y = F_{k_2}(F_{k_1}(x)) \Rightarrow F_{k_1}(x) = F_{k_2}^{-1}(y)$

- list $F_{k_1}(\mathbf{x})$ for all k_1
- compute $F_{k_2}^{-1}(y)$ for all k_2
- ullet if match $o (k_1,k_2)$

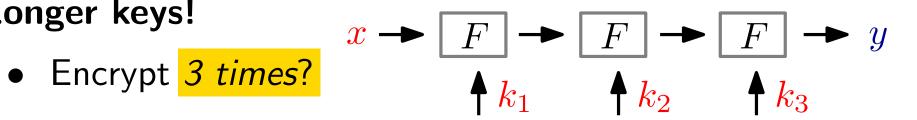
Complexity:

Space: 2^{56}

Time: 2^{57} DES $^{(-1)}$ eval's

 \Rightarrow insecure!

- Design withstood attacks, but keys too short
- ullet Brute-force: given ${m x}$ and ${m y}$ find k such that $F_k({m x})={m y}$
- Longer keys!



- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt 3 times?

Triple DES: (still used)

 $y = \mathsf{DES}_{k_1}(\mathsf{DES}_{k_2}^{-1}(\mathsf{DES}_{k_1}(x)))$ Security: 112 (NIST: 80) bits

Keys: 112 bits,

- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt 3 times?

Triple DES: (still used)

 $y = \mathsf{DES}_{k_1}(\mathsf{DES}_{k_2}^{-1}(\mathsf{DES}_{k_1}(x)))$ Security: 112 (NIST: 80) bits

Keys: 112 bits,

• Why only two keys?

- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt 3 times?

Triple DES: (still used)

 $y = \mathsf{DES}_{k_1}(\mathsf{DES}_{k_2}^{-1}(\mathsf{DES}_{k_1}(x)))$ Security: 112 (NIST: 80) bits

Keys: 112 bits,

• Why only two keys? because meet-in-the-middle with 2^{112} possible anyway

- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt 3 times?

Triple DES: (still used)

$$y = \mathsf{DES}_{k_1}(\mathsf{DES}_{k_2}^{-1}(\mathsf{DES}_{k_1}(x)))$$
 Security: 112 (NIST: 80) bits

Keys: 112 bits,

- Why only two keys? because meet-in-the-middle with 2^{112} possible anyway
- Why DES $^{-1}$?

- Design withstood attacks, but keys too short
- Brute-force: given x and y find k such that $F_k(x) = y$
- Longer keys!
 - Encrypt 3 times?

Triple DES: (still used)

$$y = \mathsf{DES}_{k_1}(\mathsf{DES}_{k_2}^{-1}(\mathsf{DES}_{k_1}(x)))$$
 Security: 112 (NIST: 80) bits

Keys: 112 bits,

- Why only two keys? because meet-in-the-middle with 2^{112} possible anyway
- Why DES $^{-1}$? backwards compatibility: $k_1 = k_2 \implies DES$

DES versus AES

- S-P network, iterated cipher,
 Feistel structure
- 64-bit blocks56-bit keys
- 8 different S-boxes
- non-invertible round function
- optimized for hardware implementations
- secret design choice

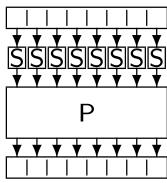
DES versus AES

DES

- S-P network, iterated cipher,
 Feistel structure
- 64-bit blocks56-bit keys
- 8 different S-boxes
- non-invertible round function
- optimized for hardware implementations
- secret design choice

AES (Rijndael)

- S-P network, iterated cipher
- 128-bit blocks
 128- or 192- or 256-bit keys
- 1 S-box
- invertible round function
- optimized for "byte-orientated" implementations
- open design and evaluation (NIST competition, standardized in 2001)



(Advanced Encryption Standard) - Rijndael

Key length: 128 or 192 or 256 bits

Number of rounds: 10 or 12 or 14

Rijmen, Daemen

(Advanced Encryption Standard) - Rijndael

Key length: 128 or 192 or 256 bits

Number of rounds: 10 or 12 or 14

Round transformation consists of

- Byte substitution
- Shift rows
- Mix columns
- Round key addition

Rijmen, Daemen

(Advanced Encryption Standard) — Rijndael

Key length: 128 or 192 or 256 bits

Number of rounds: 10 or 12 or 14

Round transformation consists of

Byte substitution — confusion

- Mix columns
- Round key addition

Rijmen, Daemen

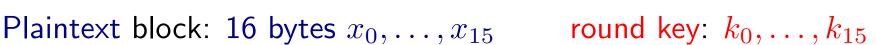
(Advanced Encryption Standard) — Rijndael

Key length: 128 or 192 or 256 bits

Number of rounds: 10 or 12 or 14

Round transformation consists of

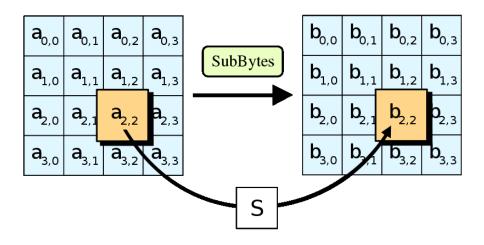
- Byte substitution confusion
- Shift rows diffusion
- Mix columns
- Round key addition



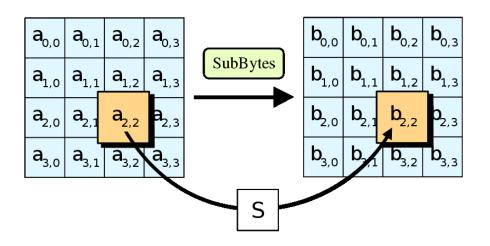
$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix}$$

Rijmen, Daemen

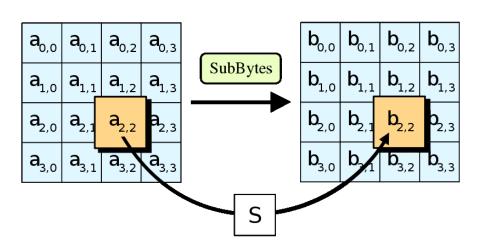
$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{bmatrix} \begin{bmatrix} k_0 & k_1 & k_2 & k_3 \\ k_4 & k_5 & k_6 & k_7 \\ k_8 & k_9 & k_{10} & k_{11} \\ k_{12} & k_{13} & k_{14} & k_{15} \end{bmatrix}$$

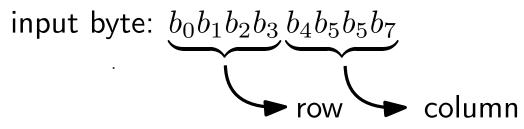


19 - 1



							AES	5 S-k	юх							
	00	01	02	03	04	05	06	07	80	09	0a	0b	0с	0d	0e	Of
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	е9	ce	55	28	df
fO	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

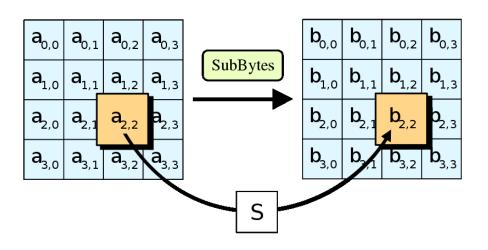




							AES	5 S-k	юх							
	00	01	02	03	04	05	06	07	80	09	0a	0b	0с	0d	0e	Of
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fO	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

AES S-box

											_								/		- CA							
							AE	3-k	JOX								04	-									0e	
	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	Of	fa	59	47	c5 f0		01 d4	67 a2	2b af		d7 a4	ab 72	
															00		36		f7	СС		a5	e5	f1	71		31	
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76	18	96	05	9a	07	12	80	e2	eb	27	b2	75
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0	1b	6e	5a	a0	52	3b	d6	b3	29	e3		84
20	b7	fd	93	26	36	3f	f7	СС	34	a5	e5	f1	71	d8	31	15	43	fc 4d	b1 33	5b 85	6a 45	cb f9	be 02	39 7f	4a 50	4c 3c		cf
20	D7	Iu	93	20	30	اد	17	CC	34	as	62	11	/ 1	uo	21	13	92	9d	38	65 f5	bc	b6	da	21	10		f3	a8 d2
30	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75	5f	97	44			a7	7e	3d			19	
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
F 0	F 2	ala	00	- al	20	£	h 1	r la	C =	ala	la a	20	1-	1.5	F.0	-E	49	06	24	5c	c2	d3	ac	62	91			79
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf	8d 1c	d5 a6	4e b4	a9 c6	6c e8	56 dd	f4 74	ea 1f	65	7a bd		08 8a
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8	48		f6	0e		35		b9	86		1d	
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
																	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73												
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db												
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79												
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08												
c0	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a												
40	70	7.0	b E	66	40	0.2	£C	00	61	25	F 7	b0	0.6	61	1 4	00												
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e												
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df												
fO	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16												



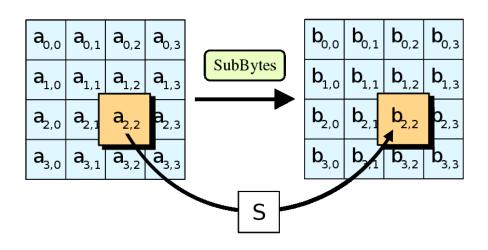
Definition of S-Box:

interpret bytes as elements from

$$GF(2^8) = \mathbb{Z}_2[X]/(X^8 + X^4 + X^3 + X + 1)$$

							AES	5 S-k	юх							
	00	01	02	03	04	05	06	07	08	09	0a	0b	0с	0d	0e	Of
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fO	8c	a1	89	0d	bf	е6	42	68	41	99	2d	Of	b0	54	bb	16

AFC S-hov



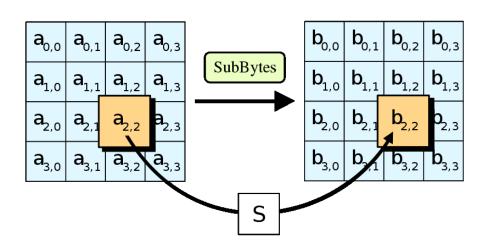
Definition of S-Box:

interpret bytes as elements from

$$GF(2^8) = \mathbb{Z}_2[X]/(X^8 + X^4 + X^3 + X + 1)$$

AES S-DOX																
	00	01	02	03	04	05	06	07	80	09	0a	0b	0с	0d	0e	Of
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	СС	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fO	8c	a1	89	0d	bf	е6	42	68	41	99	2d	Of	b0	54	bb	16

$$a = (a_0, a_1, \dots, a_7) = a_7 X^7 + a_6 X^6 + a_5 X^5 + a_4 X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0$$



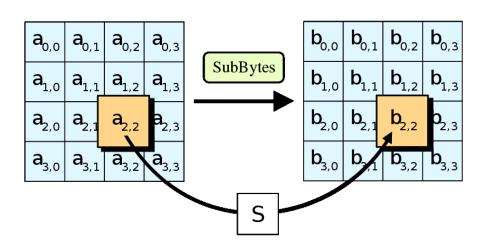
Definition of S-Box:

interpret bytes as elements from

$$GF(2^8) = \mathbb{Z}_2[X]/(X^8 + X^4 + X^3 + X + 1)$$

• let a' be inverse of a in $GF(2^8)$

							AES	S S-k	ЮХ							
	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	е9	ce	55	28	df
f0	8c	a1	89	0d	bf	е6	42	68	41	99	2d	Of	b0	54	bb	16



Definition of S-Box:

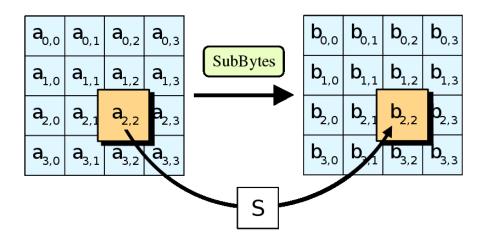
interpret bytes as elements from

$$GF(2^8) = \mathbb{Z}_2[X]/(X^8 + X^4 + X^3 + X + 1)$$

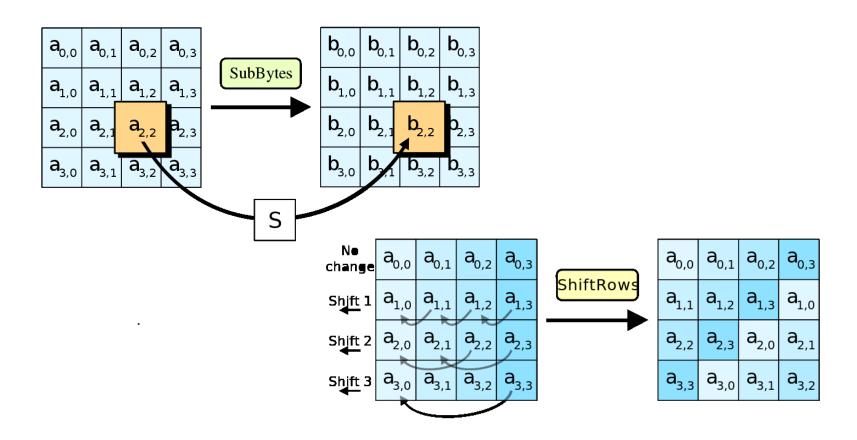
- let a' be inverse of a in $GF(2^8)$
 - \bullet define b as

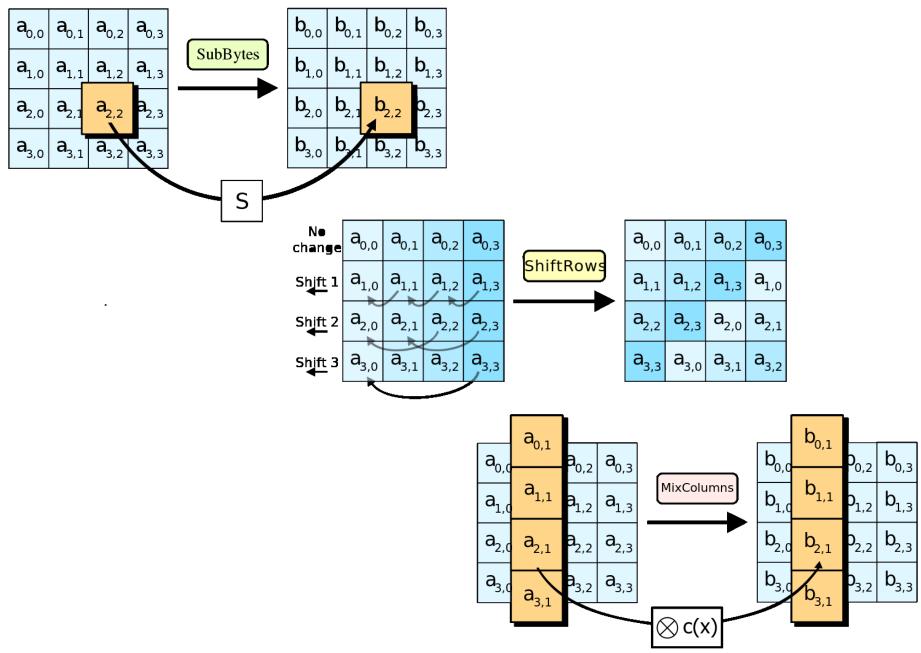
$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix} =$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 1 1 1 1	0 0 1 1 1 1	0 0 0 1 1 1		1 1 0 0 0 1	1 1 1 0 0 0	1 1 1 1 0 0	$\begin{bmatrix} a'_0 \\ a'_1 \\ a'_2 \\ a'_3 \\ a'_4 \\ a'_5 \\ a' \end{bmatrix}$	+	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	
$\begin{bmatrix} b_5 \\ b_6 \\ b_7 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1 0 0	1 1 0	1 1 1	1 1 1	1 1 1	0 1 1	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} a_5' \\ a_6' \\ a_7' \end{bmatrix}$		1 1 0	

							AES	5 S-k	юх							
	00	01	02	03	04	05	06	07	08	09	0a	0b	0с	0d	0e	Of
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9с	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	с7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	е3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3е	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
е0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
f0	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16



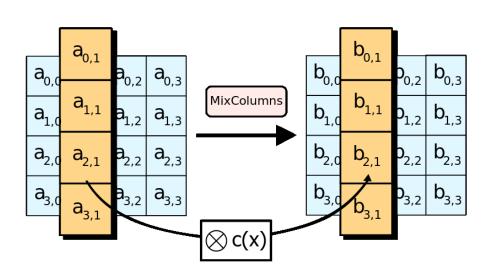
20 - 1



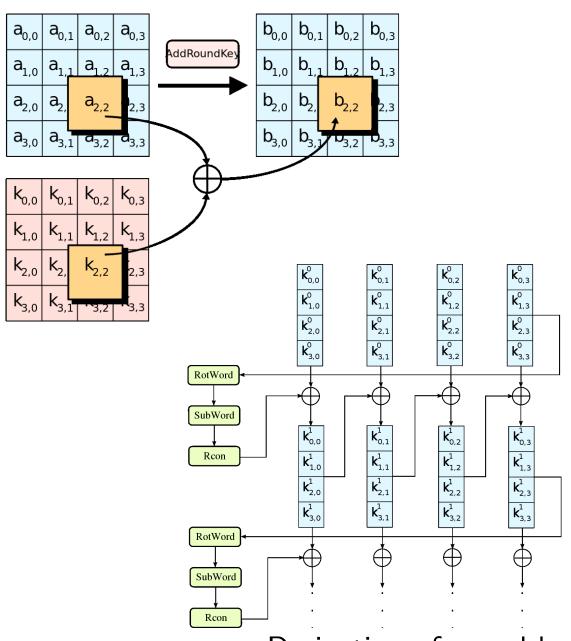


$$\begin{bmatrix} b_{0,j} \\ b_{1,j} \\ b_{2,j} \\ b_{3,j} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a_{0,j} \\ a_{1,j} \\ a_{2,j} \\ a_{3,j} \end{bmatrix} \qquad 0 \le j \le 3$$

$$a_{i,j}, b_{i,j} \in GF(2^8)$$



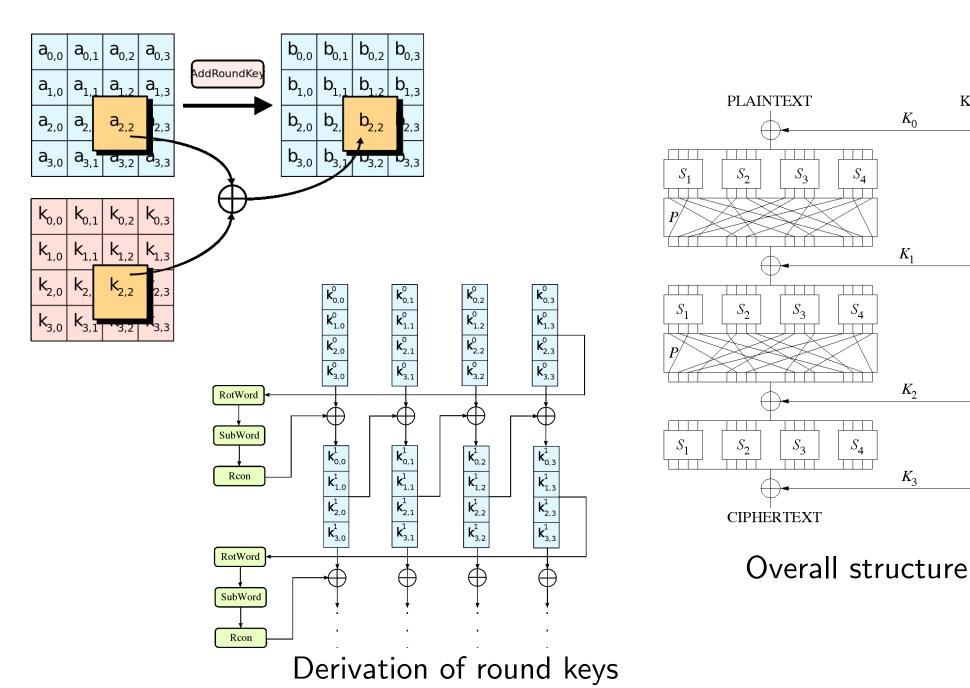
Rijndael – Round-key addition



Derivation of round keys

Rijndael – Round-key addition

KEY



Attacks

Cryptanalysis

- ullet 2009, related-key attack with complexity $2^{99.5}$
- 2011, biclique attack (MIM) faster than brute force, $2^{126.2}$ AES calls to recover an AES-128 key

22

Introduction to Cryptography

(Lecture 4: Stream ciphers and computational security)

Elena Andreeva

§7.1

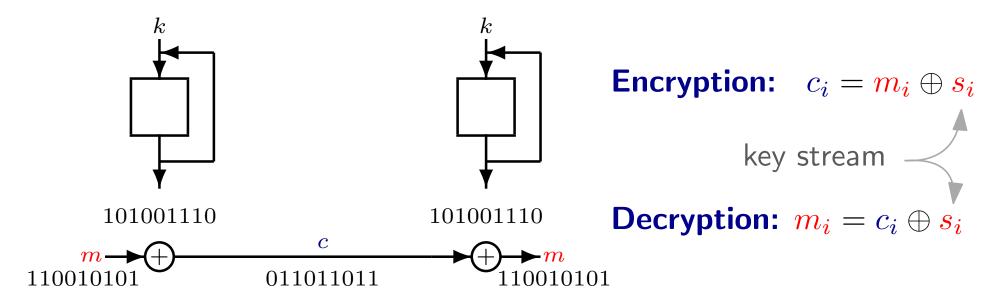
Key stream generator:

- takes a random string (the key)
- produces a potentially infinite string that seems random

Encryption: like one-time pad, but:

replace (long) random key by

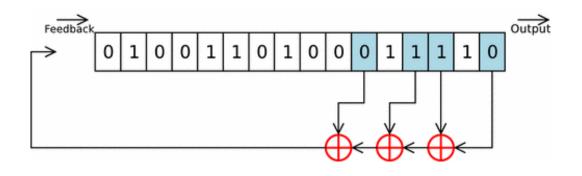
a **pseudo-random** string generated by a random **seed**



Key stream generator:

- takes a random string (the key)
- produces a potentially infinite string that seems random

Linear-feedback shift register (LFSR):



```
0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0
0\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1
1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 0\ 1
0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1
0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1
```

- very efficient in hardware
- linear \Rightarrow attacks

Key stream generator:

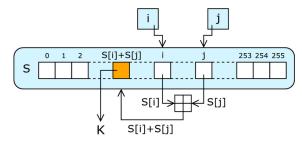
- takes a random string (the key)
- produces a potentially infinite string that seems random

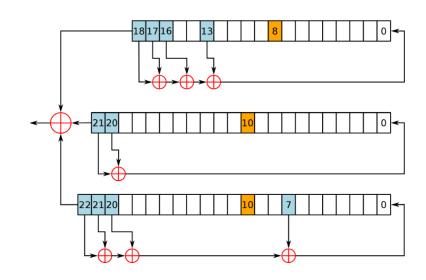
Implementation:

 Combination of LFSRs (e.g. A5/1 (GSM)) or

... broken

• RC4 (used in WEP) or





ullet Block cipher mode of operation (o later)

§3.1

Modern Cryptography

Provable Security (a.k.a. reductionist security):

- **Definitions:** What is *security goal*, what is *threat model* (e.g. indistinguishability under chosen-plaintext attack)
- Assumptions: Computational assumptions (e.g. factoring large integers is hard)
- **Security proof:** Mathematical proof that construction achieves *definition* under *assumptions*.

Private-key encryption

Syntax of encryption schemes:

 \mathcal{K} ... key space

 \mathcal{M} ... plaintext space

 \mathcal{C} ...ciphertext space

Gen: $\rightarrow \mathcal{K}$ key-generation (randomized)

Enc: $\mathcal{K} \times \mathcal{M} \to \mathcal{C}$ encryption algorithm (possibly randomized)

Dec: $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$ decryption algorithm (deterministic)

Correctness: $\forall k \in \mathcal{K} \ \forall m \in \mathcal{M} : \mathsf{Dec}_k(\mathsf{Enc}_k(m)) = m$

Security?

- Threat model (adversary's capabilities)
- Adversary's goal

previously...

Kerckhoffs' Principle: The adversary knows the scheme Auguste Kerckhoffs: *La cryptographie militaire* (1883)

• Adversary's **goals**:

- Find the key?
- Recover the plaintext
- Guess a single letter of the plaintext
- Obtain any information about the plaintext

• Adversary's **power:**

- Sees ciphertexts (one/many)
- Has seen plaintext/ciphertext pairs
- Has chosen the plaintexts

...and can ask for decryption

previously...

Kerckhoffs' Principle: The adversary knows the scheme Auguste Kerckhoffs: *La cryptographie militaire* (1883)

- Adversary's goals:
 - Find the key?
 - Recover the plaintext
 - Guess a single letter of the plaintext
 - Obtain any information about the plaintext
- Adversary's **power:**
 - ciphertext-only attack ("eavesdropping")
 - Has seen plaintext/ciphertext pairs
 - chosen-plaintext attack
 - chosen-ciphertext attack n

Indistinguishability

The adversarial indistinguishability experiment

 $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}$

where $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$

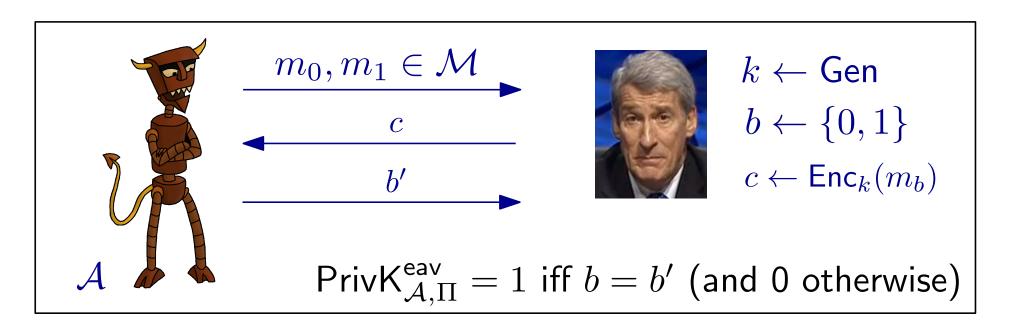


Indistinguishability

The adversarial indistinguishability experiment

 $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}$

where $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



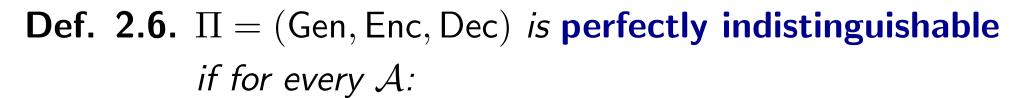
Def. 2.6. $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ *is* **perfectly indistinguishable** *if for every* A:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] = \frac{1}{2}$$

Indistinguishability

Def. 2.3. Π is **perfectly secret** if for every probability distribution over \mathcal{M} , every $m \in \mathcal{M}$ and every ciphertext c with $\Pr[C=c] > 0$: $\Pr\left[M=m \mid C=c\right] = \Pr\left[M=m\right]$

Lemma 2.7. An encryption scheme is perfectly secret if and only if it is perfectly indistinguishable.



$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] = \frac{1}{2}$$

Perfect secrecy requires: (Shannon)

- key as **long** as message
- ullet key can only be used **once** \Rightarrow not practical

Computational security relaxes this:

1. only considers computationally bounded adversaries

Example: brute-force key space (one key per clock cycle)

- PC $\approx 2^{32} \cdot 2^{25} = 2^{57}$ keys p.a.
- supercomputer $\approx 2^{60} \cdot 2^{25}$ p.a.
- ... since Big Bang $\approx 2^{85} \cdot 2^{33} = 2^{118}$

	Year	Supercomputer	Rmax (TFlop/s)	Location
	2022	Cray/HPE Frontier	1,102,000.0	Oak Ridge, U.S.

Perfect secrecy requires: (Shannon)

- key as **long** as messagekey can only be used **once**

Computational security relaxes this:

2. adversaries could succeed with very small probability

Example: Security fails with probability 2^{-60}

- sender is struck by lightning: more probable
- 1 event per second: wait 100 000 000 000 years

Concrete approach: "any adversary running in time t can succeed with probability at most ε "

Example: (Gen, Enc, Dec) is (t, ε) -indistinguishable if for all adversaries \mathcal{A} running in time at most t, we have:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] \leq \frac{1}{2} + \varepsilon$$

- + relevant for real-world applications
- security cannot be ajusted
- not robust (which computational model?)

Asymptotic approach:

- assumes **security parameter** $n \in \mathbb{N}$, known to everyone (think key length; bigger $n \Rightarrow$ more secure)
- running times (users and \mathcal{A}) and success probability are functions of n

- t Adversaries (and users) assumed to run in **probabilistic polynomial time in** n
 - there exists polynomial p s.t. the adversary, on input of length n, runs in time at most p(n)
 - adversary (like Gen) can make random choices

Adversaries (and users) assumed to run in ${f probabilistic\ polynomial\ time\ in\ }n$

Problem with **concrete** security:

- how to count running time *t*?
 - Turing machines?
 - random access machines?
 - which CPU; how many?

Strong Church-Turing thesis: every physically realizable computation can be simulated on a Turing machine *with at most polynomial slowdown*.

 \Rightarrow All that can be "realistically" computed can be computed in (probabilistic) polynomial time 15-2

Adversaries (and users) assumed to run in probabilistic polynomial time in n

Security holds except with probability negligible in n

Def. 3.4. $f: \mathbb{N} \to \mathbb{R}^+$ is *negligible* if for every positive polynomial p there exists N s.t. for all n > N: $f(n) < \frac{1}{p(n)}$

Examples:

 $\left. \begin{array}{l} \bullet \ 2^{-n} \\ \bullet \ 2^{-\sqrt{n}} \\ \bullet \ n^{-\log(n)} \end{array} \right\} < n^{-c} \ \text{for any c for sufficiently large n}$

Adversaries (and users) assumed to run in ${f probabilistic\ polynomial\ time\ in\ }n$

 $|\varepsilon|$ Security holds except with probability **negligible in** n

Def. 3.4. $f: \mathbb{N} \to \mathbb{R}^+$ is *negligible* if for every positive polynomial p there exists N s.t. for all n > N: $f(n) < \frac{1}{p(n)}$

Closure properties:

- $p(\cdot), q(\cdot)$ poly., then $p(\cdot) \times q(\cdot)$ and $p(q(\cdot))$ again poly.
- $p(\cdot)$ poly. and $\mu(\cdot)$ negl., then $p(\cdot) \times \mu(\cdot)$ negl.

• Increase $n \Rightarrow$ running time of algorithms increases moderately (polynomially) but adversary's success prob. decreases fast

Example 3.3. Suppose:

- Honest parties run in $10^6 \cdot n^2$ cycles
- Adversary, after $10^8 \cdot n^4$ cycles, succeeds with prob. $\leq 2^{-n/2}$

Assume everyone has <u>2GHz</u> CPUs and $\underline{n=80}$

- Honest parties run in 3.2 sec.
- Adversary, after 3 weeks, succeeds with prob. 2^{-40}

Assume everyone has ${\color{red} 8GHz}$ CPUs and ${\color{red} n=160}$

- Honest parties again run in 3.2 sec.
- Adversary, after $\frac{13}{2}$ weeks, succeeds with prob. $\frac{2^{-80}}{2^{-80}}$

Parametrized encryption schemes

(Revised) syntax of encryption schemes:

Definition 3.7. A private-key encryption scheme consists of three probabilistic polynomial-time (p.p.t.) algorithms:

 $k \leftarrow \mathsf{Gen}(1^n)$: Gen takes security parameter in *unary*, returns key k with $|k| \geq n$

 $c \leftarrow \operatorname{Enc}_k(m)$: Enc takes key and message $m \in \{0,1\}^*$, returns ciphertext

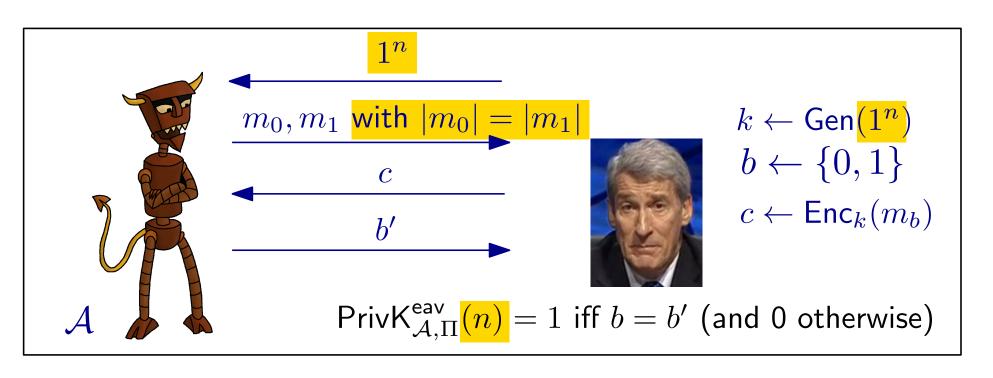
 $m := \mathsf{Dec}_k(c)$: Dec is w.l.o.g. deterministic

Computational indistinguishability

The adversarial indistinguishability experiment

$$\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)$$

where $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



Definition 3.8. Π is (computationally) **indistinguishable** in the presence of an eavesdropper if for every p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$:

function in
$$n$$

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{eav}}(n)=1\right] \leq \frac{1}{2} + \varepsilon(n)$$
 18

Plaintext length

- We want schemes that encrypt arbitrary-length messages
- Even one-time pad reveals message length
- Encryption, in general, does not hide the plaintext length (not possible)
 - → reflected in the definition

Leaking the plaintext length can be a problem!

- yes/no
- database search . . .
 - \Rightarrow take care of by other means

Semantic security

- What guarantees does indistinguishability yield?
- Can formalize notion that "ciphertext leaks nothing to poly.-time adversary except with negl. probability"
- → "Semantic security" (see Def. 3.12 in Katz-Lindell)

Theorem 3.13. A private-key encryption scheme is semantically secure (in the presence of an eavesdropper) if and only if it satisfies computational indistinguishability (in the presence of an eavesdropper)

Introduction to Cryptography

(Lecture 5: Pseudorandomness, security proofs)

Georg Fuchsbauer

Pseudorandomness

 $\S 3.3.1$

What is random?

Which bitstring is *uniformly* random?

- 0000000000000000
- 0110110010110110

If sampled *uniformly* from $\{0,1\}^{16}$ then both sampled with prob. 2^{-16}

Randomness is a property of distributions:

A distribution (on n-bit strings) is a function

$$D: \{0,1\}^n \to [0,1] \text{ with } \sum_{x \in \{0,1\}^n} D(x) = 1$$

The uniform distribution:

$$U_n: \{0,1\}^n \to [0,1]$$

 $x \mapsto 2^{-n}$

Pseudorandomness

• "cannot be distinguished from uniform"

Notation. $x \leftarrow D$ means "sample x according to D"

Historically, a distribution D was considered *pseudorandom* if it passed statistical tests: $T_i(\cdot)$

$$\Pr_{x \leftarrow D} \left[T_i(x) = 1 \right] \approx \Pr_{x \leftarrow U_n} \left[T_i(x) = 1 \right] \text{ for } i = 1, \dots$$

Cryptography: don't know which test adversary uses

⇒ must pass <u>all</u> efficient tests

Pseudorandomness

Pseudorandomness (concrete)

- Let $D: \{0,1\}^n \to [0,1]$ be a distribution
- D is (t, ε) -pseudorandom if for all \mathcal{A} running in time $\leq t$:

$$\left| \Pr_{x \leftarrow D} \left[\mathcal{A}(x) = 1 \right] - \Pr_{x \leftarrow U_n} \left[\mathcal{A}(x) = 1 \right] \right| \le \varepsilon$$

Pseudorandomness (asymptotic) \leftarrow security parameter n

- Consider sequence of distributions $\{D_n\}_{n\in\mathbb{N}}=\{D_1,D_2,\dots\}$ with $D_n\colon\{0,1\}^{\ell(n)}\to[0,1]$ for polynomial ℓ
- $\{D_n\}_{n\in\mathbb{N}}$ is **pseudorandom** if for all p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$ s.t.

$$\left| \Pr_{x \leftarrow D_n} \left[\mathcal{A}(x) = 1 \right] - \Pr_{x \leftarrow U_{\ell(n)}} \left[\mathcal{A}(x) = 1 \right] \right| \le \varepsilon(n)$$

PRGs

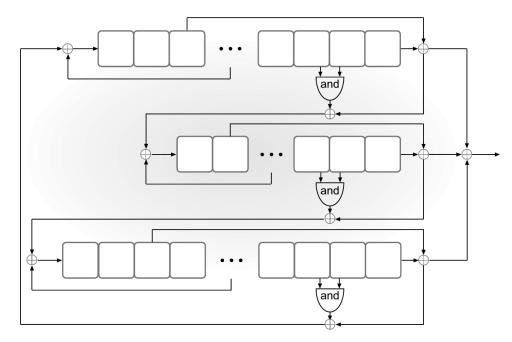
A pseudorandom (number)

generator is a

(deterministic) poly.-time

algorithm, which

• takes a uniform seed and



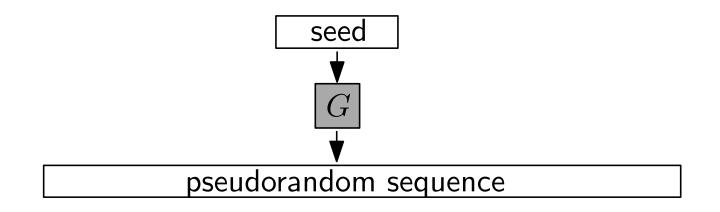
Trivium $\{0,1\}^{80} \to \{0,1\}^{2^{64}}$

- expands it into a (longer) pseudorandom output
 - From a "few" true random bits
 - → get lots of pseudorandom bits

PRGs

Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

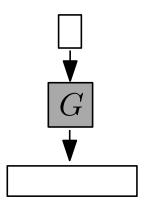
- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is uniform distrib. over n-bit strings (a sequence of distributions which is) pseudorandom



Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is (a sequence of distributions which is) pseudorandom

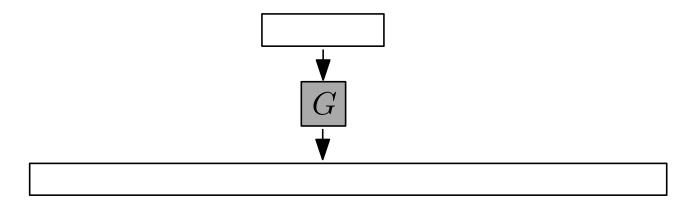
G defines sequence of distributions: $G(U_1)$,



Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is (a sequence of distributions which is) pseudorandom

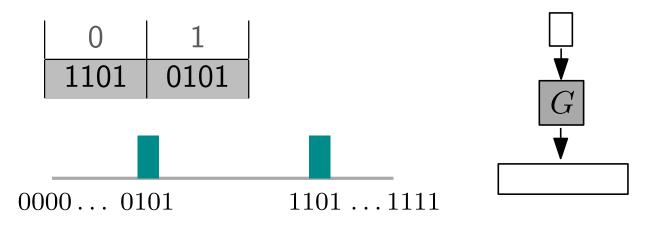
G defines sequence of distributions: $G(U_1), G(U_2), \ldots$



Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is (a sequence of distributions which is) pseudorandom

G defines sequence of distributions: $G(U_1)$,



Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is (a sequence of distributions which is) pseudorandom

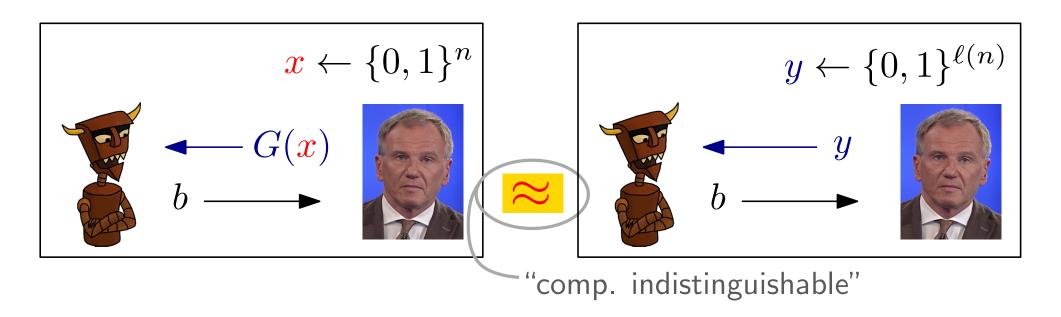
Recall: $\{D_n\}$ pseudorandom if for all p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$ s.t.

$$\left| \Pr_{x \leftarrow D_n} \left[\mathcal{A}(x) = 1 \right] - \Pr_{x \leftarrow U_{\ell(n)}} \left[\mathcal{A}(x) = 1 \right] \right| \le \varepsilon(n)$$

Definition 3.14. A (deterministic) poly.-time algorithm G with $|G(x)| = \ell(|x|)$ for all x is a **pseudorandom generator** if it is:

- ullet expanding: $\ell(n) > n$ for all n, and
- pseudorandom: $\{G(U_n)\}_{n\in\mathbb{N}}$ is (a sequence of distributions which is) pseudorandom that is, for all p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$ s.t.

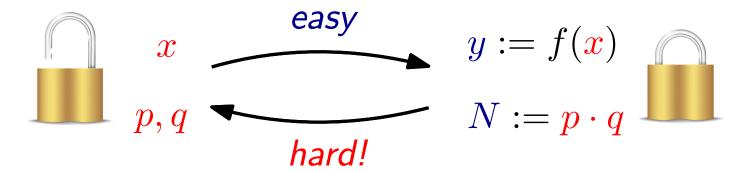
$$\left| \Pr_{x \leftarrow U_n} \left[\mathcal{A}(\overline{G(x)}) = 1 \right] - \Pr_{x \leftarrow U_{\ell(n)}} \left[\mathcal{A}(x) = 1 \right] \right| \le \varepsilon(n)$$



for all p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$ s.t.

$$\left| \Pr_{x \leftarrow U_n} \left[\mathcal{A}(G(x)) = 1 \right] - \Pr_{x \leftarrow U_{\ell(n)}} \left[\mathcal{A}(x) = 1 \right] \right| \le \varepsilon(n)$$

- Do PRGs exist? We don't know $(\exists PRG \Rightarrow P \neq NP)$



This lecture:

- We assume certain constructions are PRGs
- Then use PRGs to construct encryption schemes overcoming shortcomings of perfectly secret schemes

Proofs of security

 $\S 3.3.2$

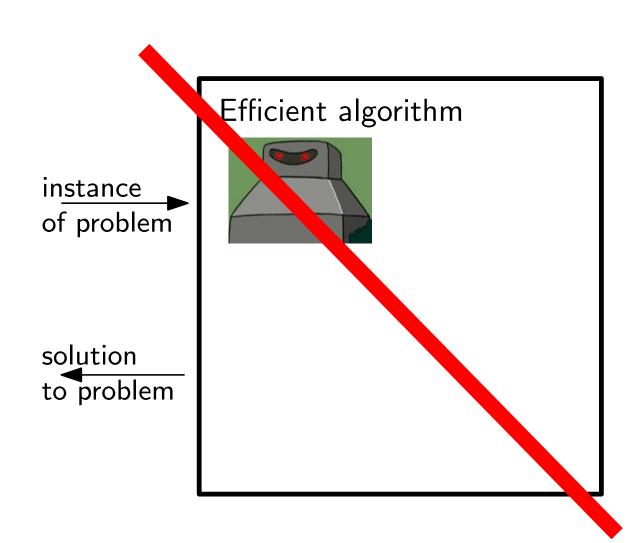
Proofs by reduction

• Want to show that:

problem hard to solve \implies construction hard to break

Assume:

problem hard



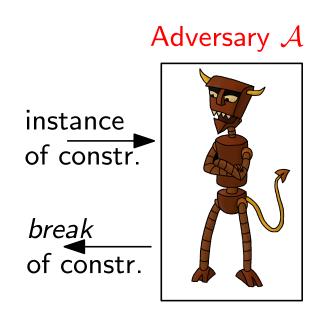
Proofs by reduction

• Want to show that:

problem hard to solve \implies construction hard to break

Assume:

- problem hard
- exists efficient adversary \mathcal{A} against construction



Proofs by reduction

• Want to show that:

problem hard to solve \implies construction hard to break

Assume:

- problem hard
- exists efficient adversary \mathcal{A} against construction instance

Construct:

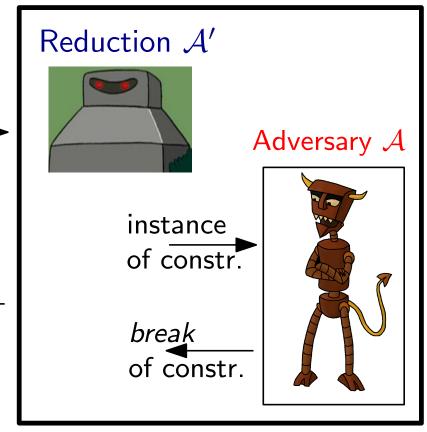
- algorithm \mathcal{A}' against problem using \mathcal{A}

solution to problem

of problem

 \Rightarrow No such \mathcal{A} exists

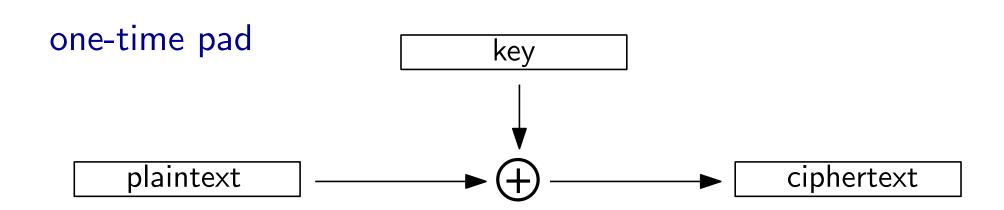
Q.E.D.



The pseudo one-time pad

 $\S 3.3.3$

Encryption with short keys



Encryption with short keys

Construction 3.17. Let G be a PRG with $|G(k)| = \ell(|k|)$

Gen (1^n) : $k \leftarrow \{0,1\}^n$; return ksec.par = n $\Rightarrow \mathcal{M} = \{0, 1\}^{\ell(n)}$ $\operatorname{Enc}_{k}(m)$: return $c := G(k) \oplus m$ $\operatorname{Dec}_{k}(c)$: return $m := G(k) \oplus c$ short! "pseudo" one-time pad pseudorand. pad bitwise XOR plaintext ciphertext

• Want to show that:

If G is a pseudorandom generator

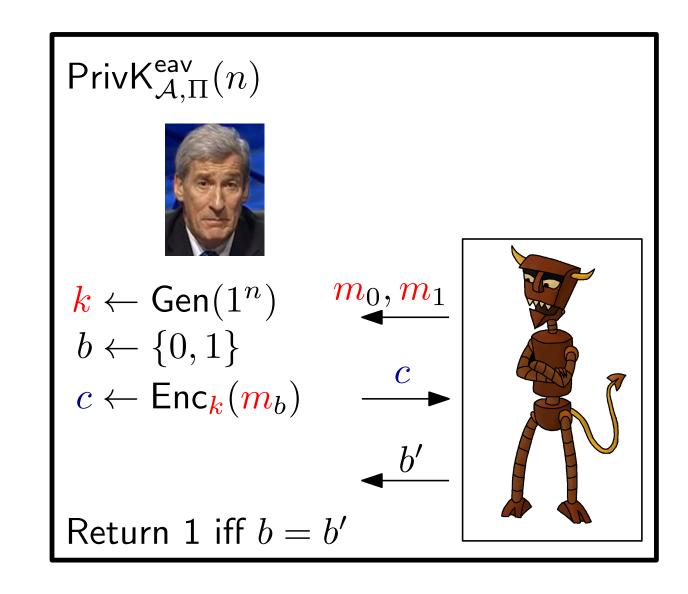
 \Rightarrow the pseudo one-time pad $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is computationally indistinguishable

Definition 3.8. Π is computationally indistinguishable

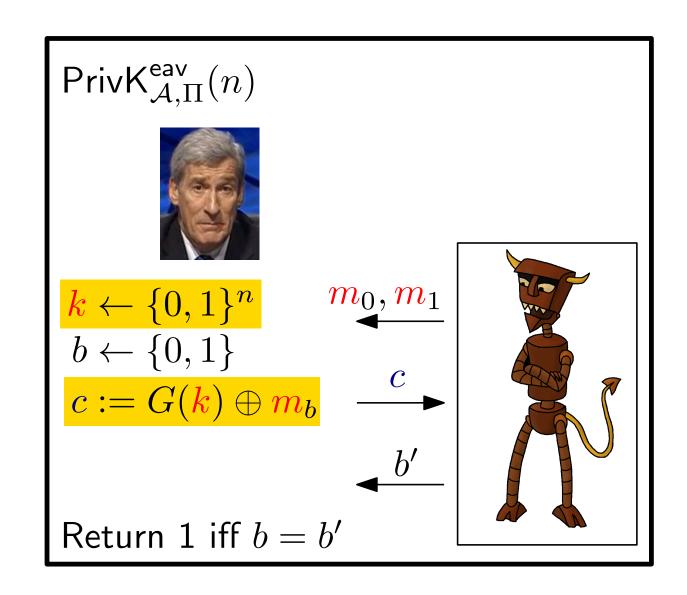
in the presence of an eavesdropper if

for every p.p.t. A there exists negligible $\varepsilon(\cdot)$:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \varepsilon(n)$$



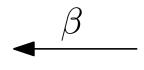
Consider any p.p.t. A playing in PrivK for the pseudo OTP Π



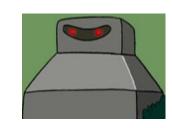
Define reduction \mathcal{A}' against pseudorandomness of G

1.
$$\mathbf{k} \leftarrow \{0, 1\}^n$$
; $y := G(\mathbf{k})$

2. $y \leftarrow \{0, 1\}^{\ell(n)}$



Reduction \mathcal{A}'



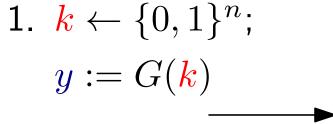
G pseudorandom

 \Rightarrow prob. that $\beta = 1$ close in cases 1. and 2., that is:

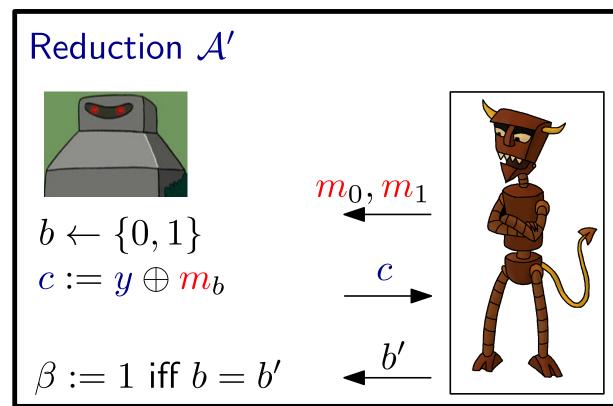
For any p.p.t. \mathcal{A}' there exists negl. $\varepsilon(\cdot)$ s.t.

$$\left| \operatorname{Pr}_{k \leftarrow U_n} \left[\mathcal{A}'(G(k)) = 1 \right] - \operatorname{Pr}_{y \leftarrow U_{\ell(n)}} \left[\mathcal{A}'(y) = 1 \right] \right| \le \varepsilon(n)$$

Define reduction A' against pseudorandomness of G using A

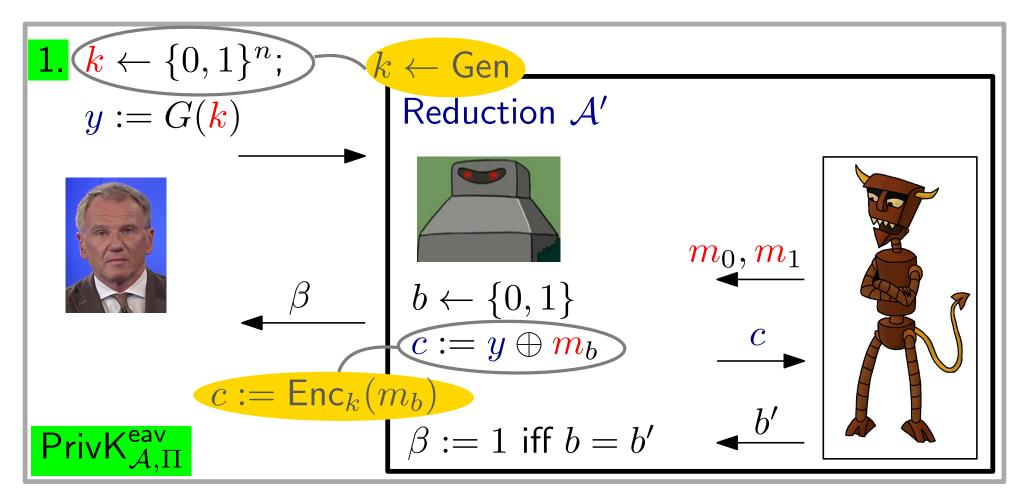


2. $y \leftarrow \{0,1\}^{\ell(n)}$



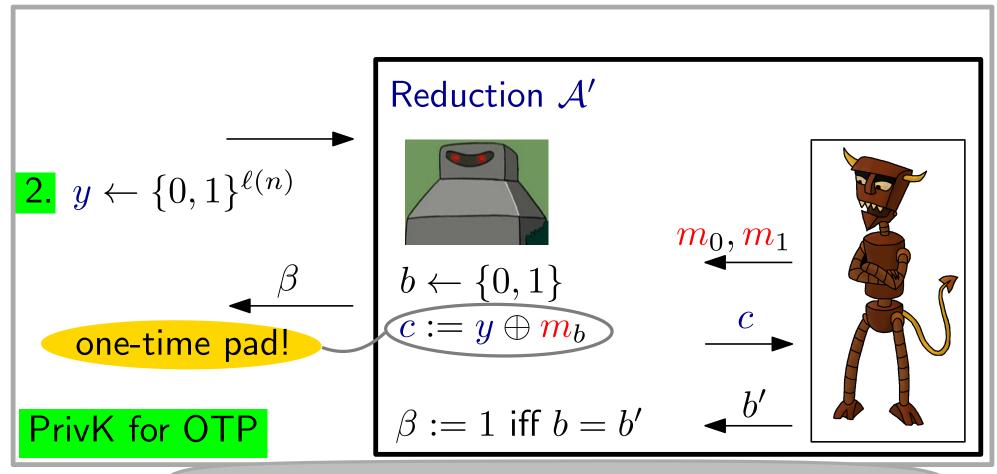
 \mathcal{A} p.p.t. $\Rightarrow \mathcal{A}'$ p.p.t.

Consider the two cases:



$$\Pr_{k \leftarrow U_n} \left[\mathcal{A}'(G(k)) = 1 \right] = \Pr \left[\Pr_{\mathcal{A}, \Pi}(n) = 1 \right]$$

Consider the two cases:



$$\Pr_{k \leftarrow U_n} \left[\mathcal{A}'(G(k)) = 1 \right] = \Pr \left[\PrivK_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 \right]$$

$$\Pr_{y \leftarrow U_{\ell(n)}} \left[\mathcal{A}'(y) = 1 \right] = \frac{1}{2}$$

• We haved showed: for any p.p.t. \mathcal{A} exists p.p.t. \mathcal{A}' s.t.:

$$\Pr_{k \leftarrow U_n} \left[\mathcal{A}'(G(k)) = 1 \right] = \Pr \left[\Pr_{\mathcal{A}, \Pi}(n) = 1 \right]$$

$$\Pr_{y \leftarrow U_{\ell(n)}} \left[\mathcal{A}'(y) = 1 \right] = \frac{1}{2}$$

• $G \ \mathsf{PRG} \Rightarrow \mathsf{for} \ \mathsf{any} \ (\mathsf{and} \ \mathsf{thus} \ \mathsf{for}) \ \mathcal{A}' \ \mathsf{there} \ \mathsf{exists} \ \mathsf{negl.} \ \varepsilon(\cdot)$:

$$\left[\Pr_{k \leftarrow U_n} \left[\mathcal{A}'(G(k)) = 1 \right] - \Pr_{y \leftarrow U_{\ell(n)}} \left[\mathcal{A}'(y) = 1 \right] \right| \le \varepsilon(n)$$

• Together:

$$\left| \Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1 \right] - \frac{1}{2} \right] \right| \leq \varepsilon(n)$$
 and thus:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \varepsilon(n)$$

 \Rightarrow Π satisfies computational indistinguishability

Theorem 3.16. If G is a PRG, then the "pseudo one-time pad" (Construction 3.17) is computationally indistinguishable in the presence of an eavesdropper.

Assumption

what if G is not pseudorandom?

Definition

what if definition is not strong enough?

What if key used more than once?

```
c=G(k)\oplus m m: "B" = 100 0010 or "S" = 101 0011 c'=G(k)\oplus m' ("buy" or "sell") m': "Y" = 101 0110 or "N" = 100 1110 ("yes" or "no")
```

Introduction to Cryptography

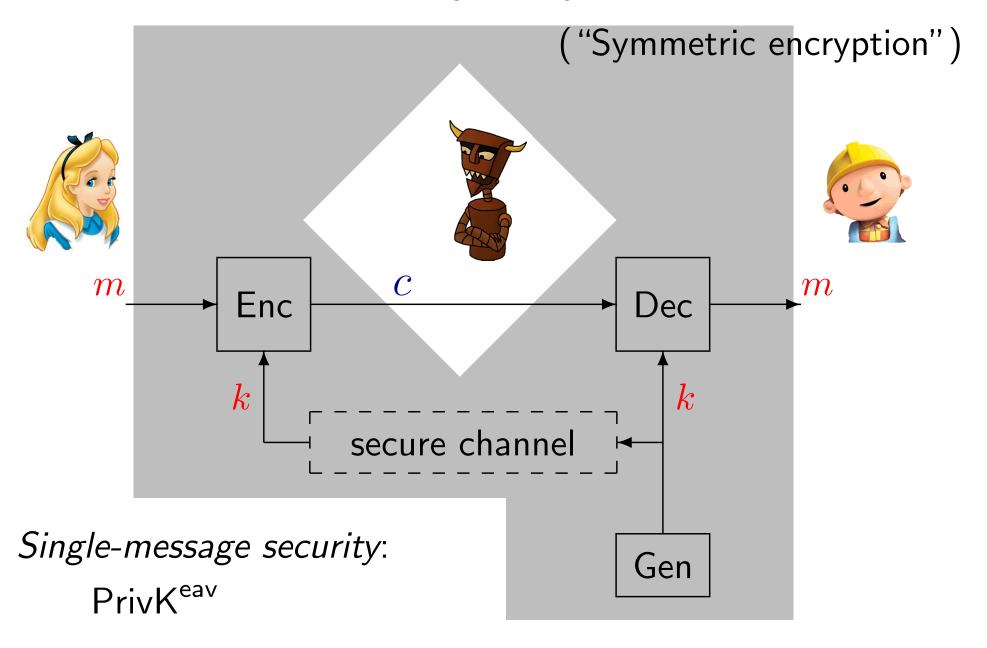
(Lecture 6: PRFs, CPA-secure encryption)

Georg Fuchsbauer

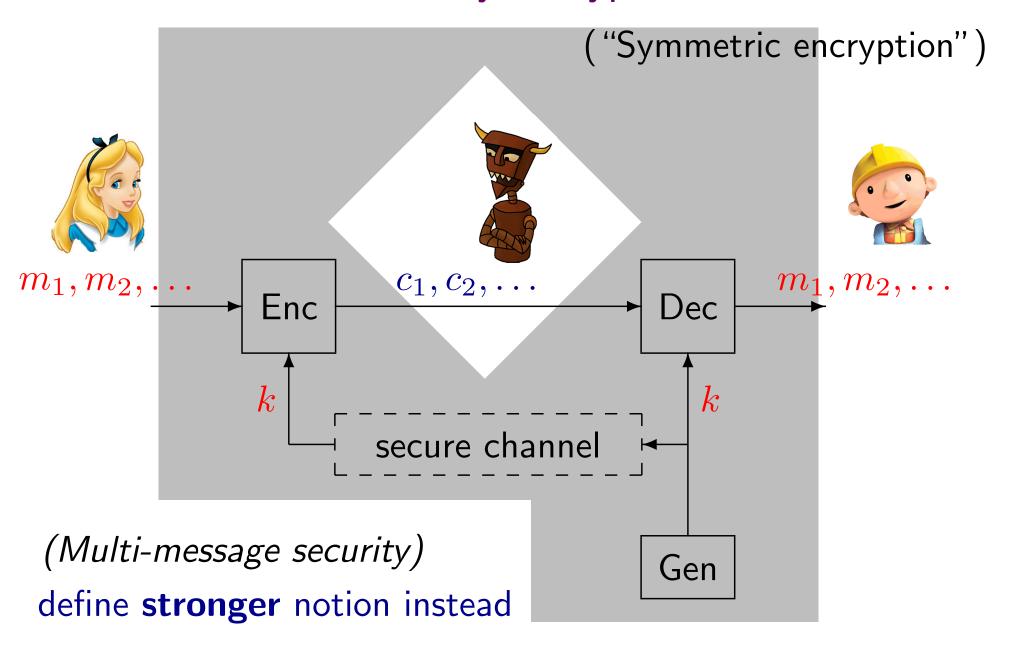
Chosen-plaintext attacks

 $\S 3.4.2$

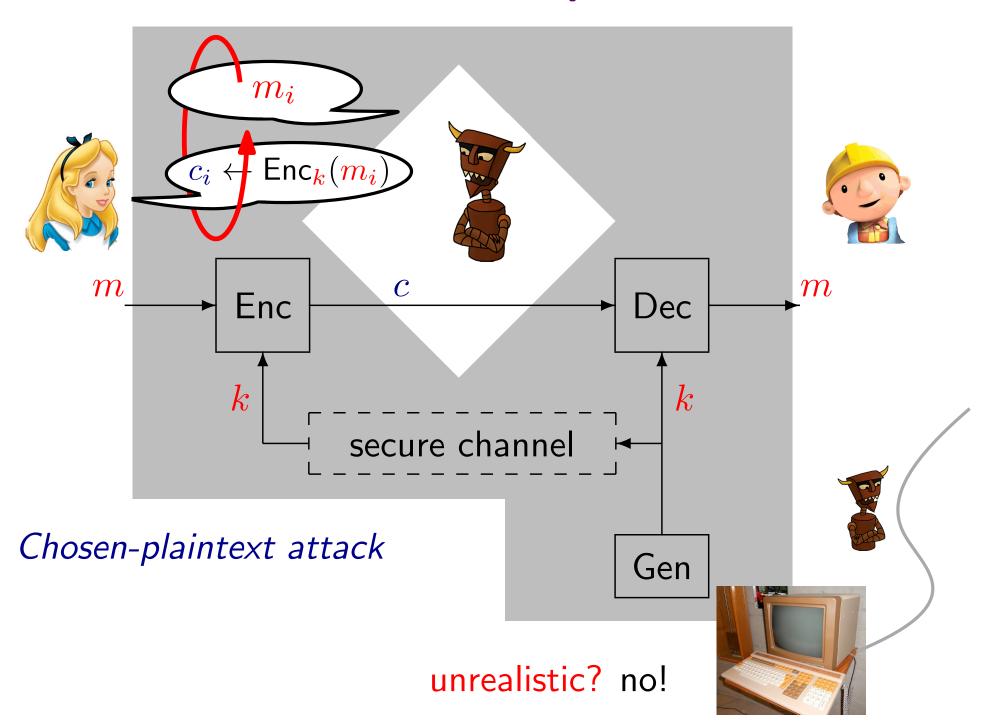
Private-key encryption



Private-key encryption



CPA-security



Recall...

Kerckhoffs' Principle: The adversary knows the scheme

Auguste Kerckhoffs: La cryptographie militaire (1883)

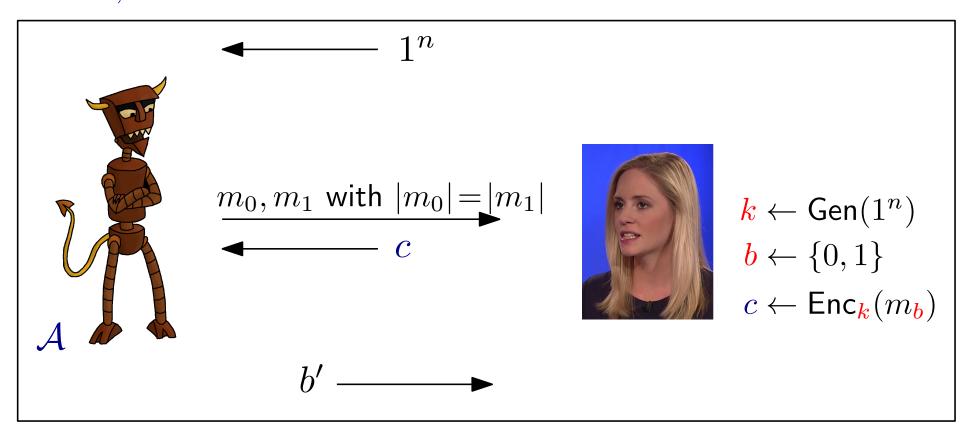
Adversary's goals:

- Find the key?
- Recover the plaintext
- Guess a single letter of the plaintext
- Obtain any information about the plaintext
- Adversary's power:

- Sees ciphertexts (one/many)
- Has seen plaintext/ciphertext pairs
- Has chosen the plaintexts
 - ...and can ask for decryption

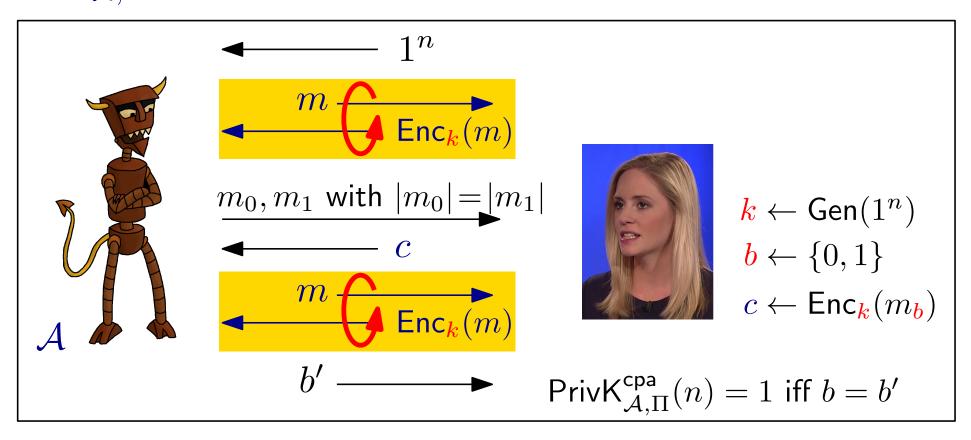
Recall...

 $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) \quad \mathsf{for} \ \Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



CPA-security

$$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$$
 for $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



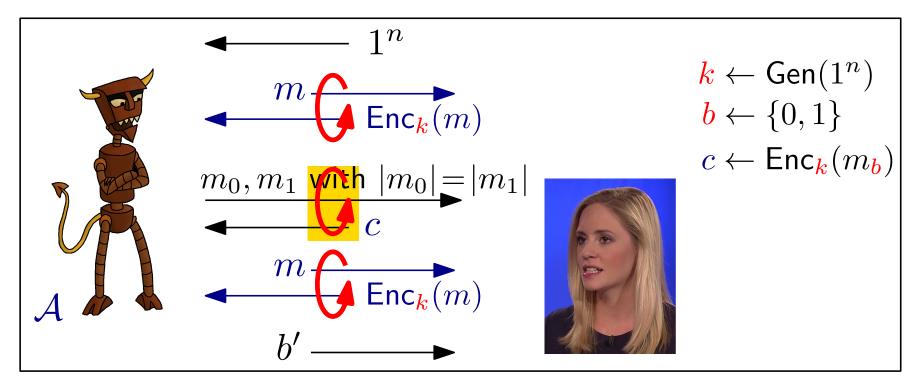
Definition 3.21. Π is secure against chosen-plaintext attacks if for every p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$:

$$\Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1 \right] \leq \frac{1}{2} + \varepsilon(n)$$

Multi-message security

Could define game where adversary

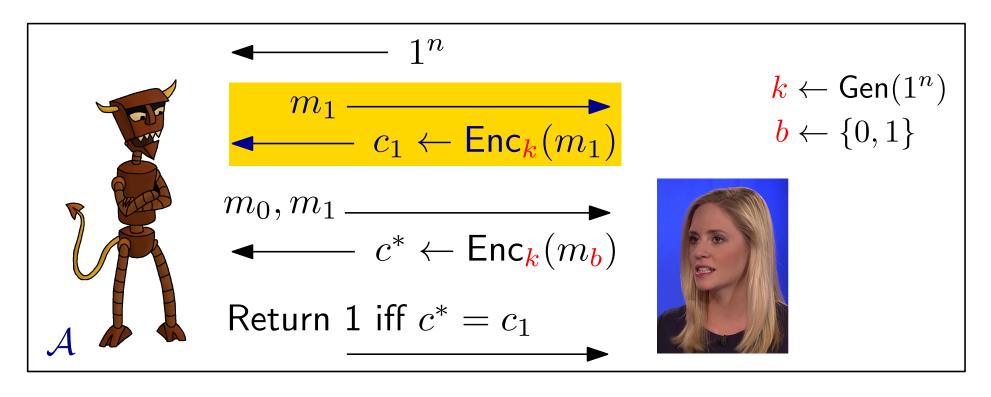
gets multiple challenge ciphertexts



Theorem 3.23. If a private-key encryption scheme is CPA-secure then it is also CPA-secure for multiple encryptions.

Achievable?

Consider the following adversary:



$$\Pr[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{cpa}}(n) = 1] = 1$$

Attack works for any deterministic encryption scheme
Only randomized encryption schemes can be CPA-secure!

Pseudorandom functions

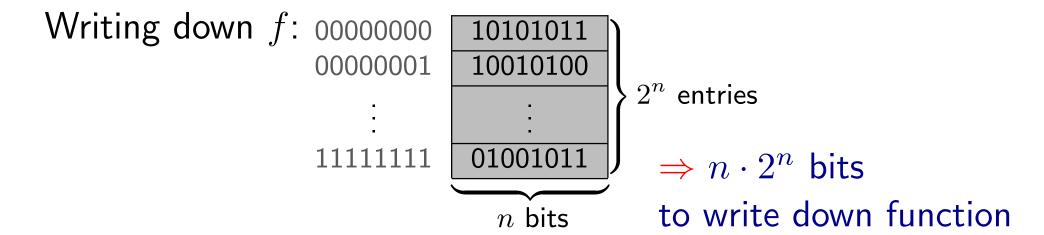
 $\S 3.5.1$

Pseudorandom functions

A pseudorandom function looks like a random function

Random functions: (recall ideal cipher)

$$\mathsf{Func}_n := \{ f \colon \{0,1\}^n \to \{0,1\}^n \}$$



- every $(n 2^n)$ -bit string *uniquely* defines function
- choosing $f \leftarrow \mathsf{Func}_n$ uniformly is same as:
 - \circ for all $x \in \{0,1\}^n$: choose $f(x) \leftarrow \{0,1\}^n$

Pseudorandom functions

Recall: Pseudorandom generator: input random seed

returns string indistinguishable from random string

Definitions.

Keyed function: $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$

• key $k \in \{0,1\}^*$ defines function $F_k : \{0,1\}^* \to \{0,1\}^*$ $x \mapsto F(k,x)$

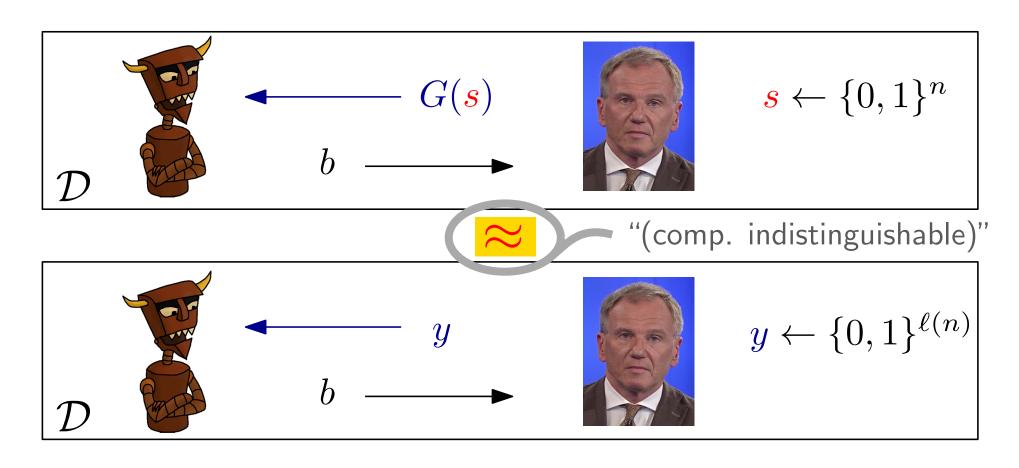
Length-preserving: : $|F(\mathbf{k}, x)| = |\mathbf{k}| = |x|$

• key $k \in \{0,1\}^n$ defines function $F_k : \{0,1\}^n \to \{0,1\}^n$

Pseudorandom function (PRF):

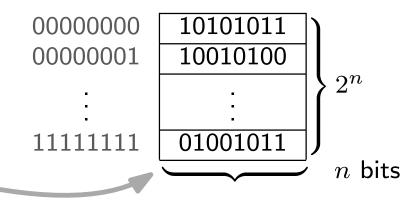
- efficient (poly.-time) keyed function
- for uniform k: F_k indistinguishable from random function

Recall: Pseudorandom generators

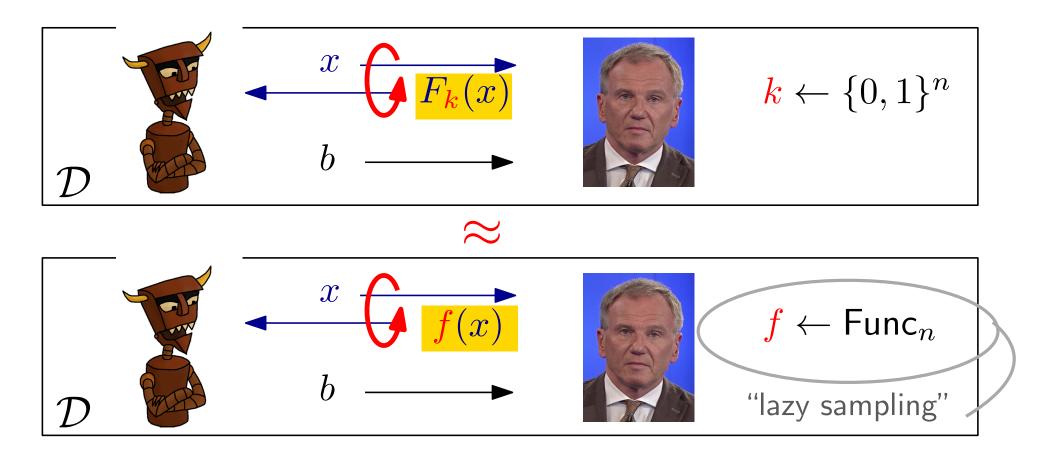


PRF: "give function to adversary"?

exponentially big!



Pseudorandom functions



Definition 3.24. A keyed function F is a **pseudorandom** function (PRF) if for all p.p.t. \mathcal{D} there exists negl. $\varepsilon(\cdot)$:

$$\left| \Pr_{\mathbf{k} \leftarrow \{0,1\}^n} \left[\mathcal{D}^{\overline{F_k(\cdot)}}(1^n) = 1 \right] - \Pr_{\mathbf{f} \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{\overline{\mathbf{f}(\cdot)}}(1^n) = 1 \right] \right| \le \varepsilon(n)$$

Pseudorandom permutations

Consider permutations over $\{0,1\}^n$: Perm_n \subset Func_n

Keyed permutation:

- for every $k: F_k: \{0,1\}^n \to \{0,1\}^n$ is bijective
- F_{k}^{-1} is efficiently computable (in addition to F_{k})

Pseudorandom permutation (PRP):

• F_k , for uniform $k \leftarrow \{0,1\}^n$, is indistinguishable from a uniform $f \leftarrow \operatorname{Perm}_n$

Block ciphers:

Practical constructions of PRPs

block length

• fixed length: $F: \{0,1\}^n \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell$

Best distinguishing attack should take time $\approx 2^n$

brute force

CPA-secure encryption schemes

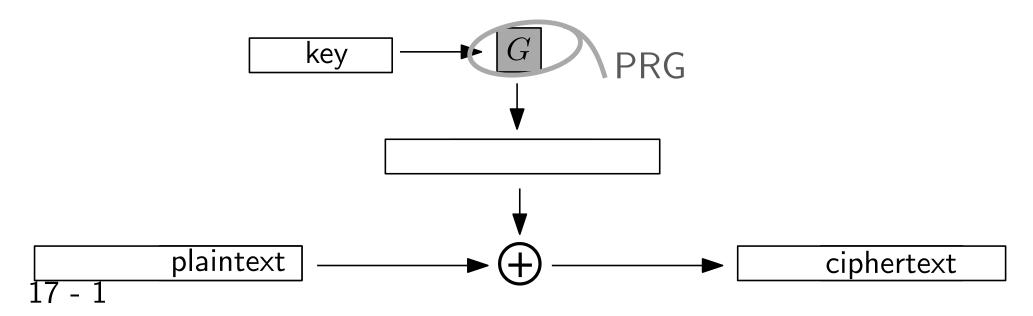
 $\S 3.5.2$

CPA-secure encryption

- Encryption using pseudo-random permutation (blockcipher)
- First idea: given PRP $F \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$, define:
 - $-\operatorname{Enc}_{\boldsymbol{k}}(\boldsymbol{m}):=F_{\boldsymbol{k}}(\boldsymbol{m})$
 - $\operatorname{Dec}_{k}(c) := F_{k}^{-1}(c)$
- Secure?
 - passively secure (indist. in presence of eavesdropper)
 - CPA-secure?no, since *deterministic*!
- ⇒ construct *probabilistic* encryption scheme

CPA-secure encryption from PRFs

Recall: "pseudo" one-time pad



CPA-secure encryption from PRFs

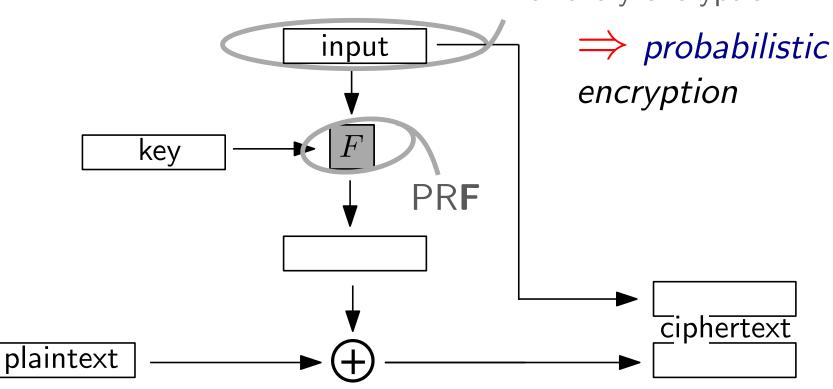
Construction 3.28. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$

 $\mathsf{Gen}(1^n)$: sample $\pmb{k} \leftarrow \{0,1\}^n$; return \pmb{k}

 $\mathsf{Enc}_{\pmb{k}}(\pmb{m})$: sample $\pmb{r} \leftarrow \{0,1\}^n$; return $\pmb{c} := (\pmb{r},\,F_{\pmb{k}}(\pmb{r}) \oplus \pmb{m})$

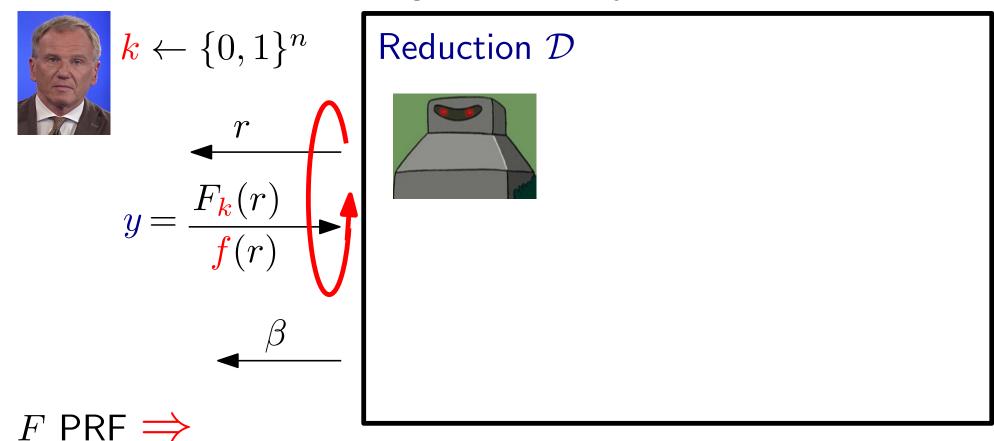
 $\operatorname{Dec}_{\boldsymbol{k}}((r,s))$: return $\boldsymbol{m}:=F_{\boldsymbol{k}}(r)\oplus s$

freshly chosen for every encryption



17 - 2

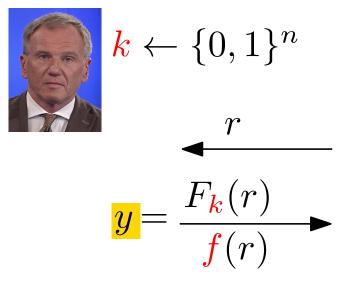
Reduction \mathcal{D} against security of PRF F

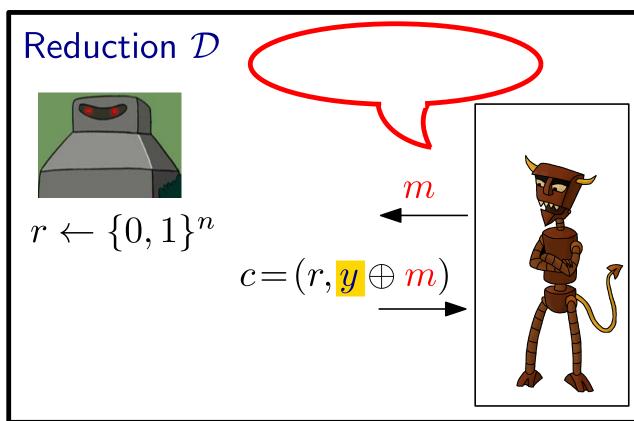


For any p.p.t. \mathcal{D} there exists negl. $\varepsilon(\cdot)$ s.t.

$$\left| \Pr_{\mathbf{k} \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_{\mathbf{k}}(\cdot)} = 1 \right] - \Pr_{\mathbf{f} \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \right] \right| \le \varepsilon(n)$$

Reduction \mathcal{D} against security of PRF F using \mathcal{A}

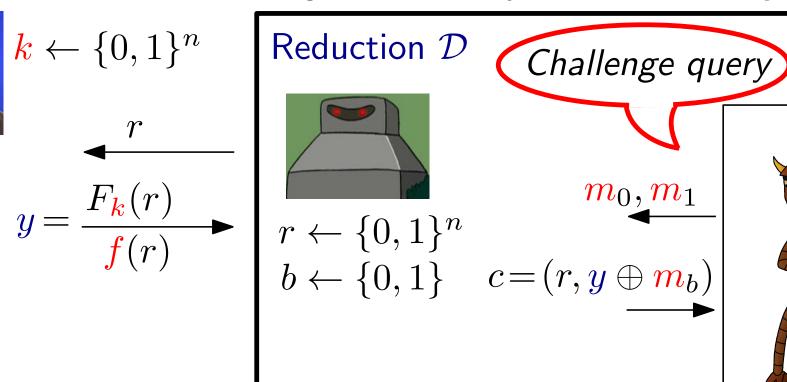




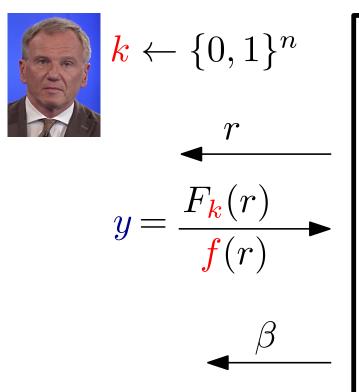
Reduction \mathcal{D} against security of PRF F using \mathcal{A}

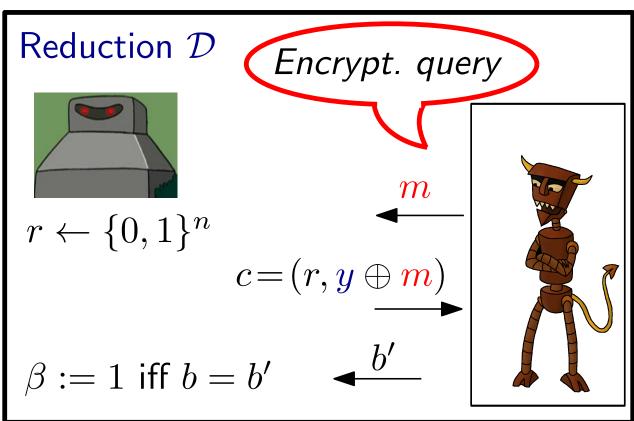
$$\frac{k}{k} \leftarrow \{0,1\}^n$$

$$F_k(r)$$



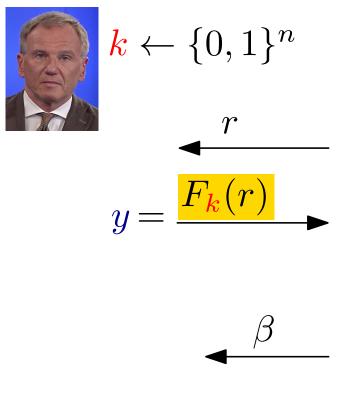
Reduction \mathcal{D} against security of PRF F using \mathcal{A}

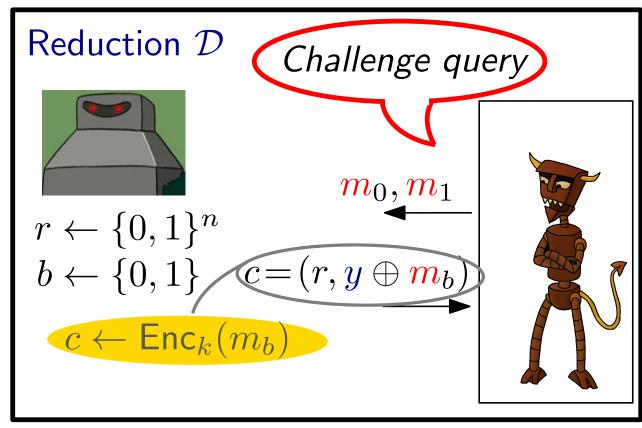




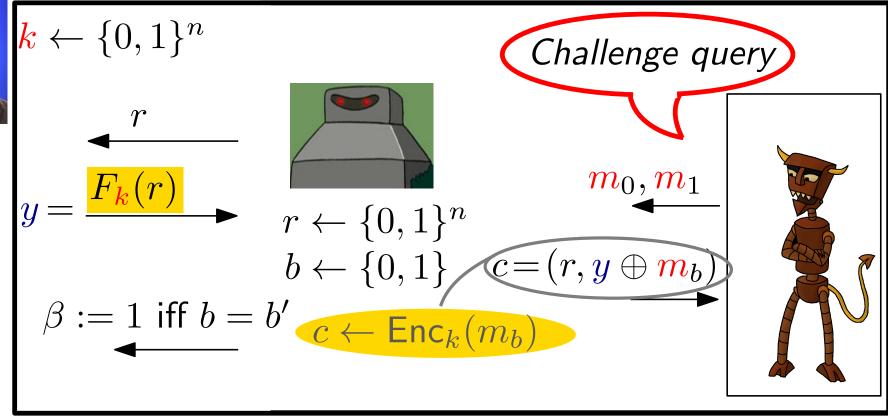
 \mathcal{A} p.p.t. $\Rightarrow \mathcal{D}$ p.p.t.

Consider two cases:





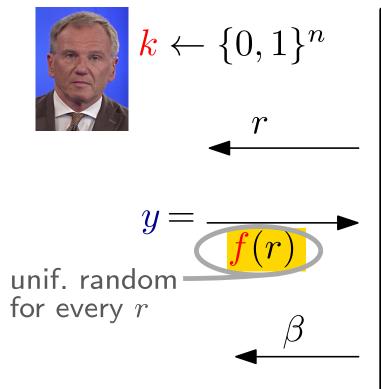
Consider two cases:

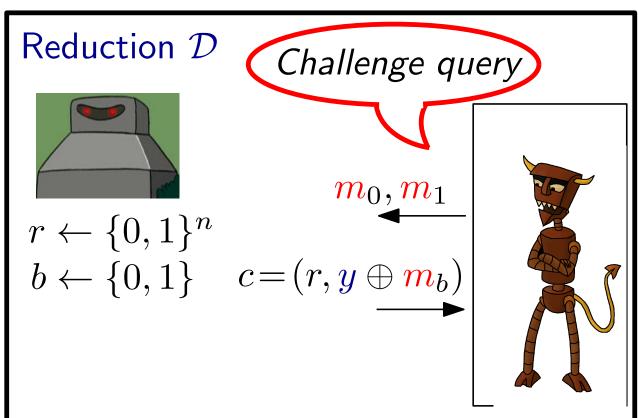


 $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}$

$$\Pr_{\mathbf{k}} \left[\mathcal{D}^{F_{\mathbf{k}}(\cdot)} = 1 \right] = \Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1 \right]$$

Consider two cases:

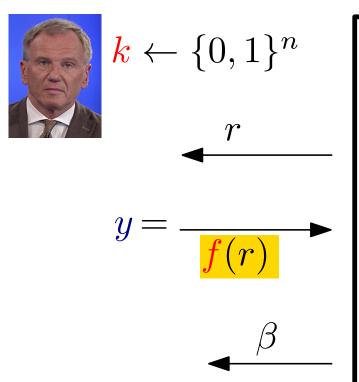


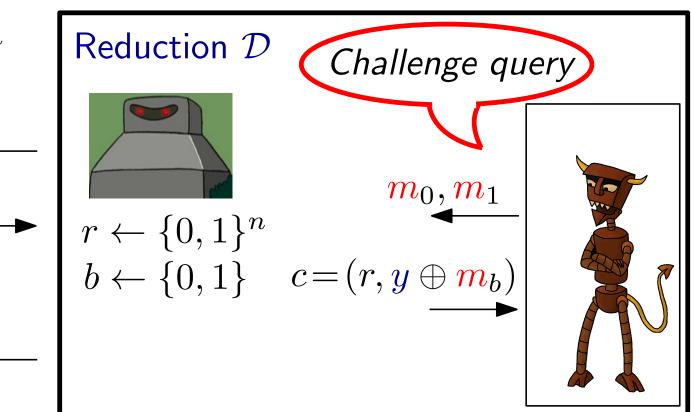


- ullet probability of winning $= rac{1}{2}$?? Let $c^* = f(r^*) \oplus m_b$
- ullet what if r^* chosen another time? $\Rightarrow c \oplus c^* = m \oplus m_b$

Let R ("repeat") denote event; let q(n) upper bound on queries 20 - 3

Consider two cases:





$$\Pr_{\mathbf{f}} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \right] = \Pr_{\mathbf{f}} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \land R \right] + \Pr_{\mathbf{f}} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \land \overline{R} \right]$$

$$\leq \Pr\left[R \right] + \Pr_{\mathbf{f}} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \middle| \overline{R} \right] \leq \frac{q(n)}{2^n} + \frac{1}{2}$$

$$r_i = r_j \quad r_1 \qquad r_3 \qquad \{0,1\}^n \ \Rightarrow \ \leq q(n) \text{ points}$$

Putting everything together: For all p.p.t. \mathcal{D} exists negl. ε :

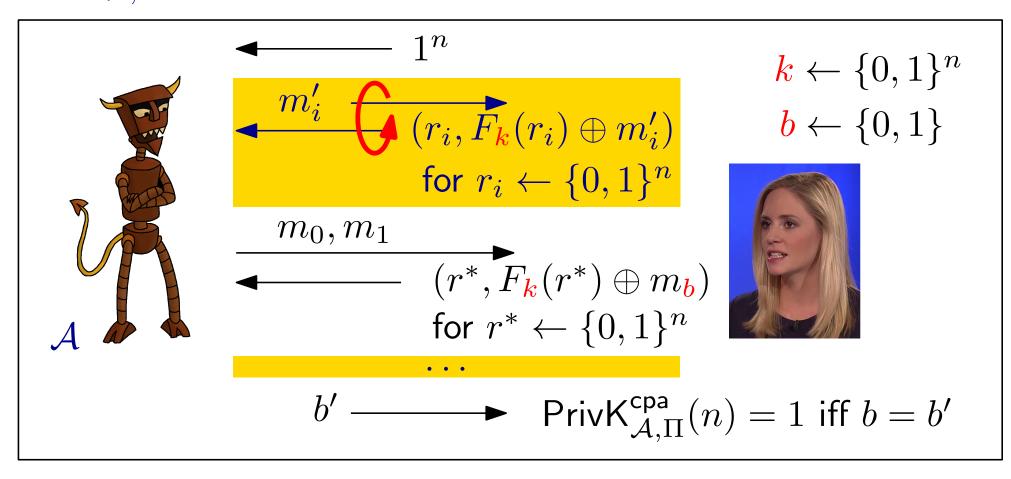
$$\begin{aligned} & \left[\Pr_{\pmb{k}} \left[\mathcal{D}^{F_{\pmb{k}}(\cdot)} = 1 \right] - \Pr_{\pmb{f}} \left[\mathcal{D}^{\pmb{f}(\cdot)} = 1 \right] \right| \leq \varepsilon(n) \\ & = \Pr \left[\Pr_{\pmb{k}} \left[\operatorname{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1 \right] & \leq \frac{q(n)}{2^n} + \frac{1}{2} \end{aligned}$$

 \Rightarrow For all p.p.t. \mathcal{A} exists negl. $\varepsilon'(n) := \varepsilon(n) + q(n) \cdot 2^{-n}$ with $\Pr\left[\operatorname{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \varepsilon'(n)$

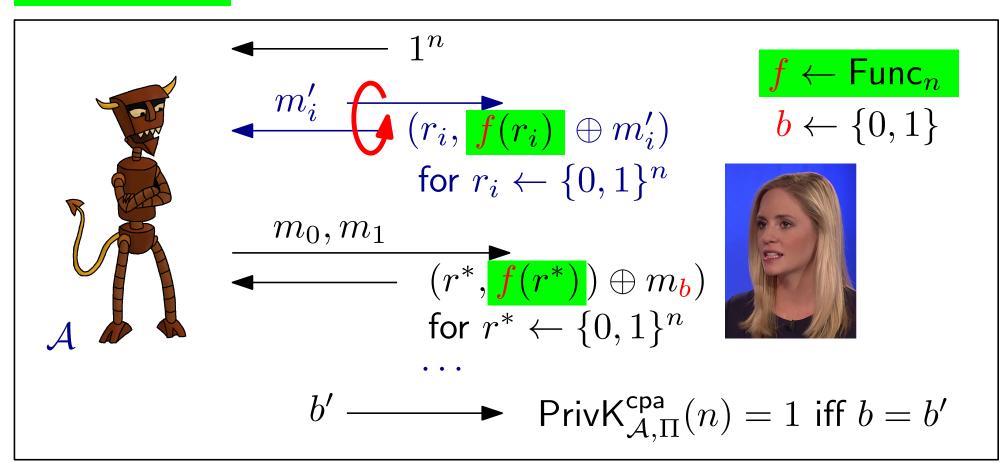
$$\Rightarrow \Pi$$
 is CPA-secure

Theorem 3.29. If F is a pseudorandom function, then Construction 3.28 is a CPA-secure private-key encryption scheme for messages of length n.

 $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$ for $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



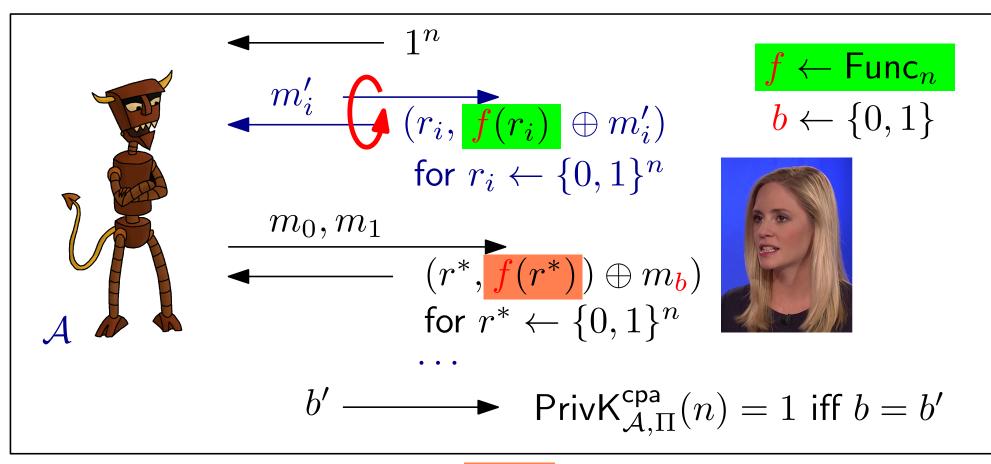
"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



... "indistinguishable" by PRF security

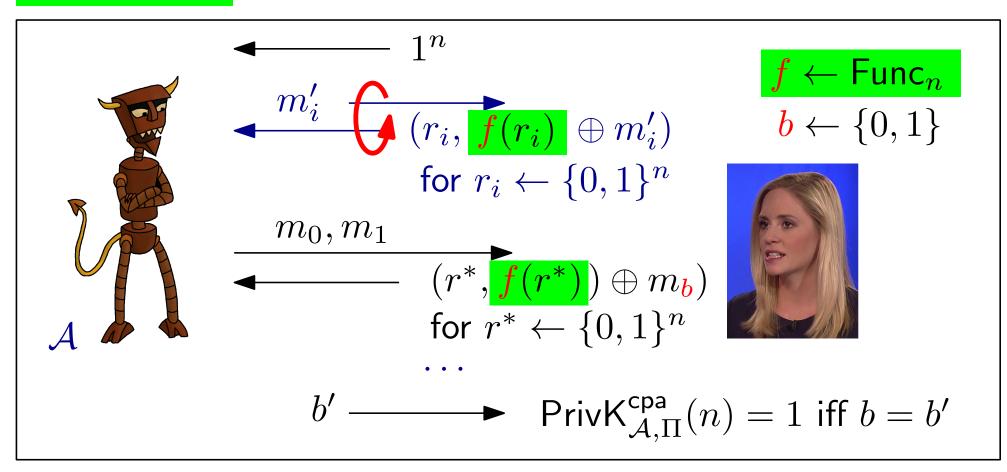
$$\Delta \le \varepsilon(n)$$

"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



can A still win? ... not if $f(r^*)$ is never used elsewhere!

"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



Theorem. For all p.p.t. A:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \tfrac{1}{2} + \underbrace{\varepsilon(n) + q(n)/2^n}_{\mathsf{negligible}}$$

Introduction to Cryptography

(Lecture 7: modes of operation, CCA security)

Elena Andreeva

Recall...

Kerckhoffs' Principle: The adversary knows the scheme

Auguste Kerckhoffs: La cryptographie militaire (1883)

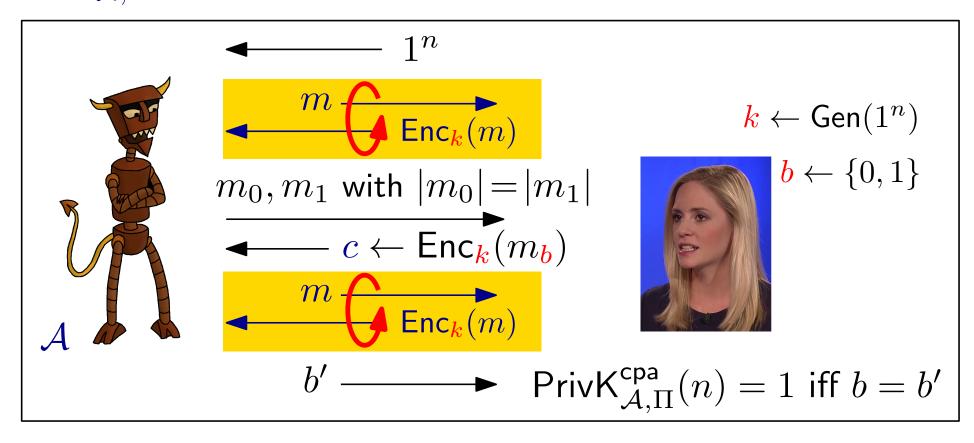
Adversary's goals:

- Find the key?
- Recover the plaintext
- Guess a single letter of the plaintext
- Obtain any information about the plaintext
- Adversary's power:

- Sees ciphertexts (one/many)
- Has seen plaintext/ciphertext pairs
- Has chosen the plaintexts
 - ...and can ask for decryption

Security of encryption

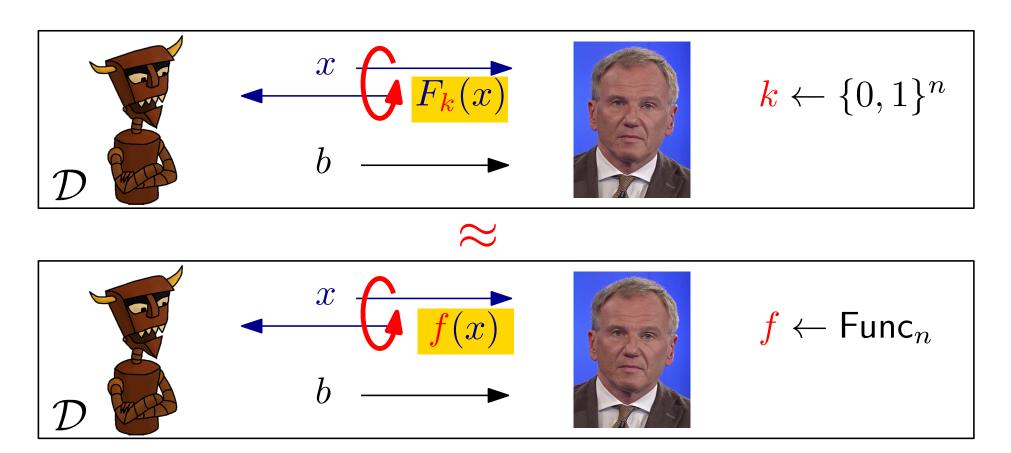
$$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$$
 for $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



Definition 3.21. Π *is* **secure against chosen-plaintext attacks** *if for every p.p.t.* \mathcal{A} *there exists negligible* $\varepsilon(\cdot)$ *:*

$$\Pr[\operatorname{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \varepsilon(n)$$

Pseudorandom functions



Definition 3.24. A keyed function F is a **pseudorandom** function (PRF) if for all p.p.t. \mathcal{D} there exists negl. $\varepsilon(\cdot)$:

$$\Pr_{\mathbf{k} \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_{\mathbf{k}}(\cdot)}(1^n) = 1 \right] - \Pr_{\mathbf{f} \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{\mathbf{f}(\cdot)}(1^n) = 1 \right] \middle| \leq \varepsilon(n)$$

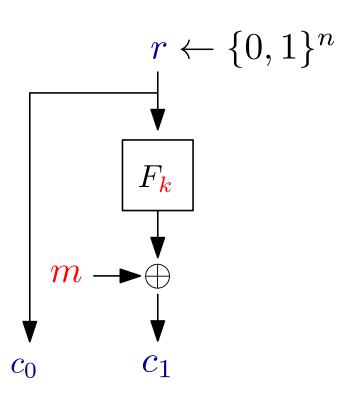
CPA-secure encryption

Construction 3.28. Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ PRF

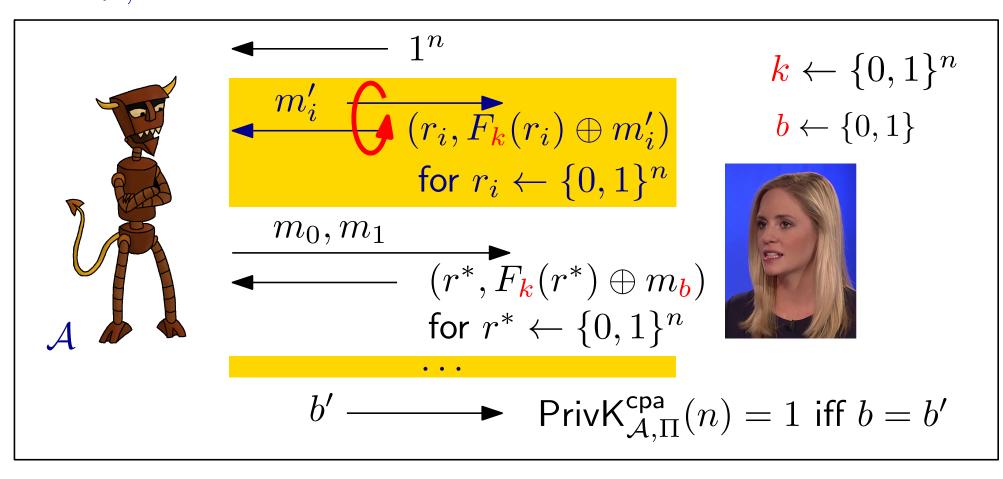
Gen (1^n) : return $k \leftarrow \{0,1\}^n$

 $\mathsf{Enc}_{\pmb{k}}(\pmb{m})$: $r \leftarrow \{0,1\}^n$; return $c := (r, F_{\pmb{k}}(r) \oplus \pmb{m})$

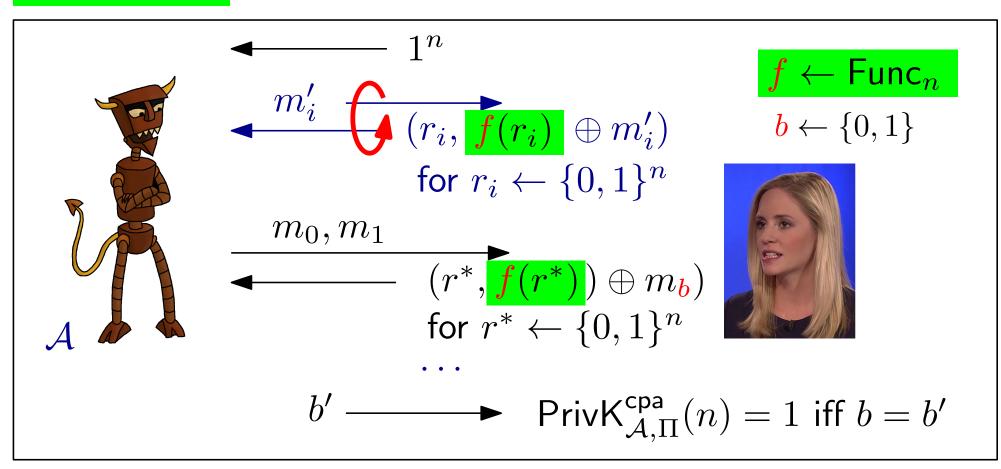
 $\mathsf{Dec}_{\pmb{k}}((c_0,c_1))$: return $\pmb{m}:=F_{\pmb{k}}(c_0)\oplus c_1$



 $\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$ for $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



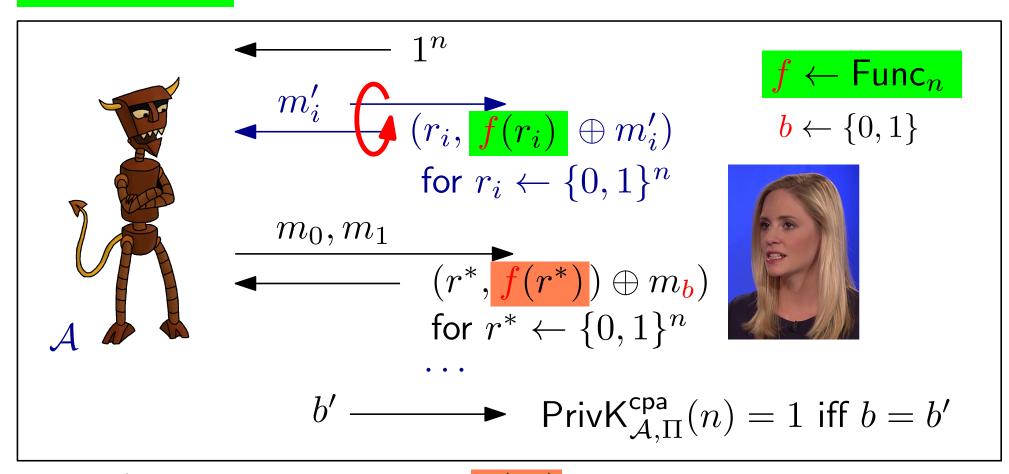
"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



... "indistinguishable" by PRF security

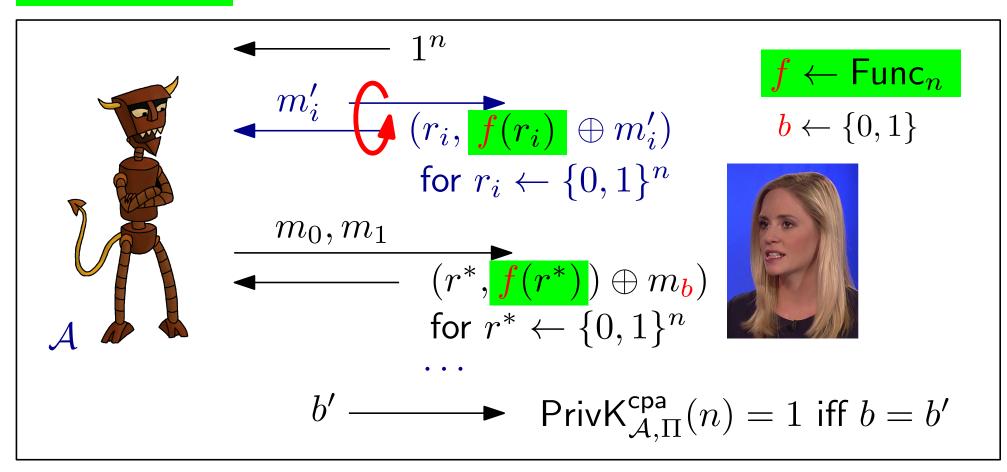
$$\Delta \le \varepsilon(n)$$

"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



can A still win? ... not if $f(r^*)$ is never used elsewhere!

"Ideal game" for $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$



Theorem 3.29. For all p.p.t. A:

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \tfrac{1}{2} + \underbrace{\varepsilon(n) + q(n)/2^n}_{\mathsf{negligible}}$$

CPA-secure encryption

Construct CPA-secure encryption for n-bit messages from PRF (or blockcipher)

• Encrypting longer messages? — split m into n-bit blocks — $\operatorname{Enc}_k(m_1,\ldots,m_t)=\operatorname{Enc}_k(m_1),\ldots,\operatorname{Enc}_k(m_t)$

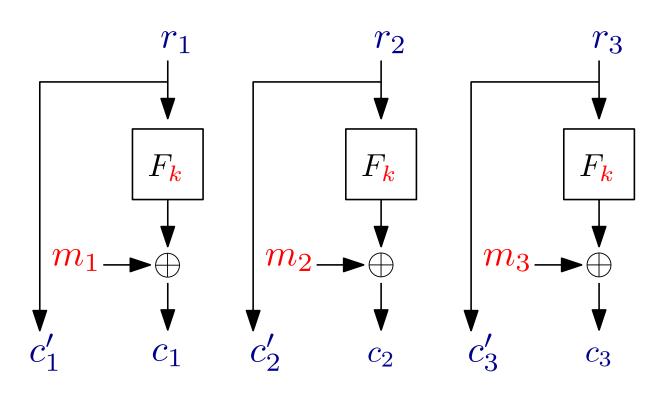
Recall: CPA-security implies multi-message security

- (CPA-)secure?
- efficient?

Ciphertext expansion:

$$|c| = 2 \cdot |m|$$
 (not optimal)

Expansion necessary?



Modes of operation

§3.6.3

Modes of operation

To encrypt messages that are longer than n bits with a $\mathsf{PRP}/\mathsf{block}$ cipher F, one uses a

block-cipher mode of operation. Here:

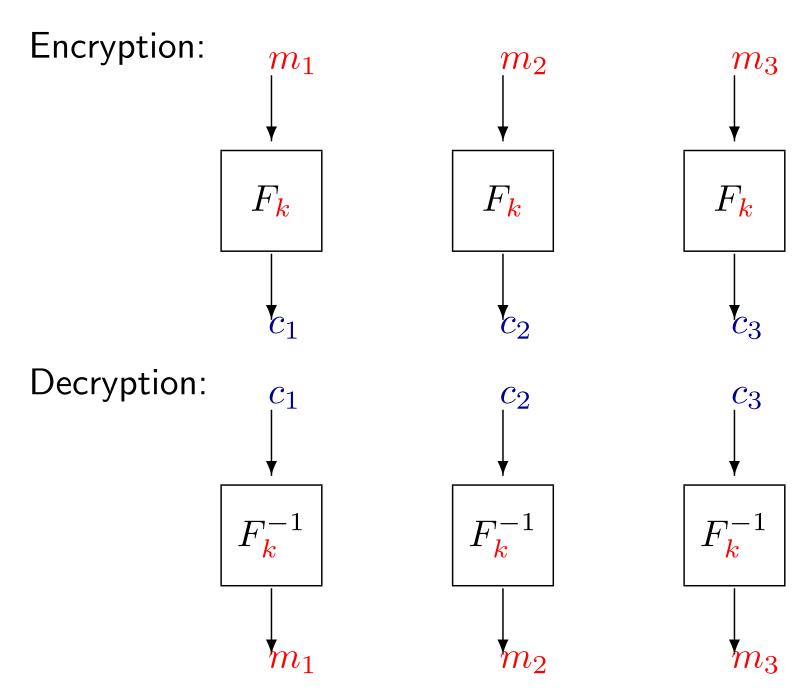
- ECB (electronic code book)
- **CBC** (cipher block chaining)
- CTR (counter mode)

ECB (old standard)

- divide m into t blocks of n bits: m_1, m_2, \ldots, m_t
- use padding if necessary

$$\mathsf{Enc}_{k}(m_{1},\ldots,m_{t})=F_{k}(m_{1}),\ldots,F_{k}(m_{t})$$

ECB mode

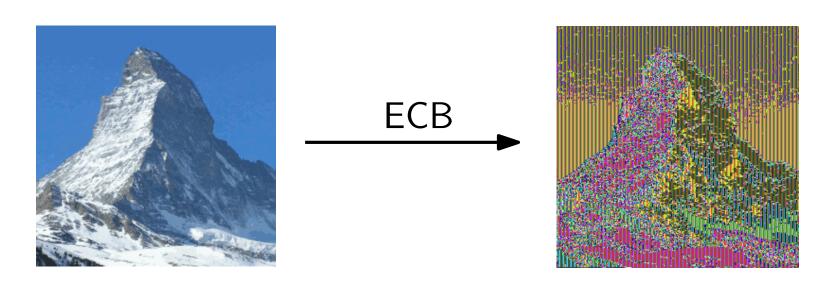


ECB mode

Secure? deterministic \Rightarrow not CPA-secure! EAV-secure?

Problem: if $m_i = m_j$, then $c_i = c_j$

⇒ patterns appear in the ciphertext



→ Not even secure in presence of EAVesdropper

Do not use!

(define 2n-bit challenge messages:

$$m_0 := 0 \dots 00 \dots 0,$$

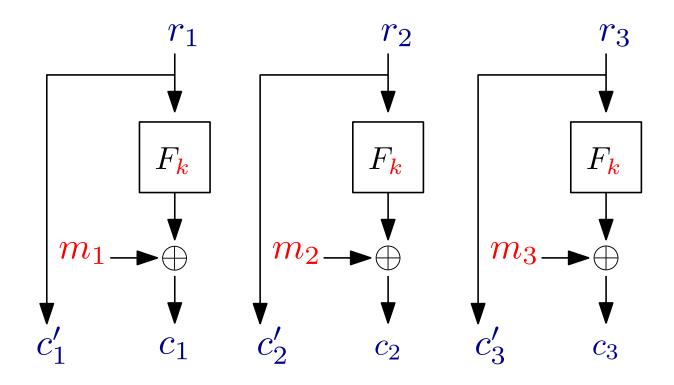
$$m_1 := 0 \dots 01 \dots 1$$

CPA-secure encryption

• efficient?

Ciphertext expansion:

$$|c| = 2 \cdot |m|$$
 (not optimal)



CPA-secure encryption

efficient

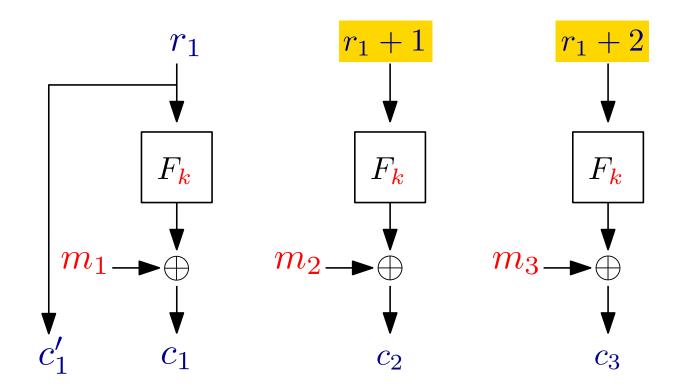
Ciphertext expansion:

$$|c|=2\cdot |at|$$

(not optimal)

$$|c| = |m| + n$$

(optimal!)



CTR mode

CTR (counter)

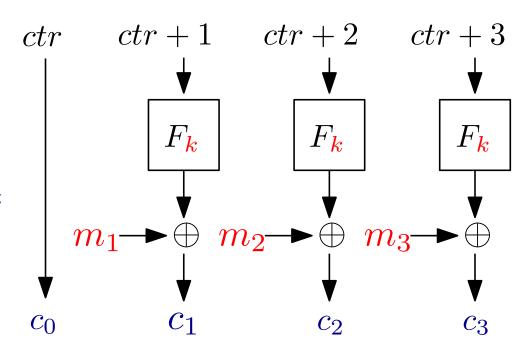
ullet Can be viewed as **stream cipher** o disk encryption, etc.

$\mathsf{Enc}_k(m_1,\ldots,m_t)$:

- sample $ctr \leftarrow \{0,1\}^n$
- For $i = 1 \dots t$: $c_i := F_{\mathbf{k}}(ctr + i) \oplus \mathbf{m_i}$
- Return $c_0 := ctr, c_1, \dots, c_t$

$$\mathsf{Dec}_{\pmb{k}}(c_0,c_1,\ldots,c_t)$$
:

- For $i=1\ldots t$: $m_i:=F_k(c_0+i)\oplus c_i$
- Return m_1, \ldots, m_t



F need not be invertible! (PR**F** suffices)

CTR mode

CTR (counter)

• Can be viewed as **stream cipher**

⇒ block size big enough

- replace by random fct.
- Pr[ctr-collisions] negl.

$\mathsf{Enc}_{k}(m_1,\ldots,m_t)$:

- sample $ctr \leftarrow \{0,1\}^n$
- For $i = 1 \dots t$: $c_i := F_{\mathbf{k}}(ctr + i) \oplus m_i$
- Return $c_0 := ctr, c_1, \dots, c_t$

 \Rightarrow bad

Theorem 3.33.

If F is pseudorandom then CTR mode is CPA-secure

 ctr_2^{\prime}

 ctr'_1

 ctr'_3

 $\{0,1\}^n$

CBC mode

CBC (Cipher Block Chaining)

 $\operatorname{Enc}_{\boldsymbol{k}}(\boldsymbol{m_1},\ldots,\boldsymbol{m_t})$: for $m_i\in\{0,1\}^n$

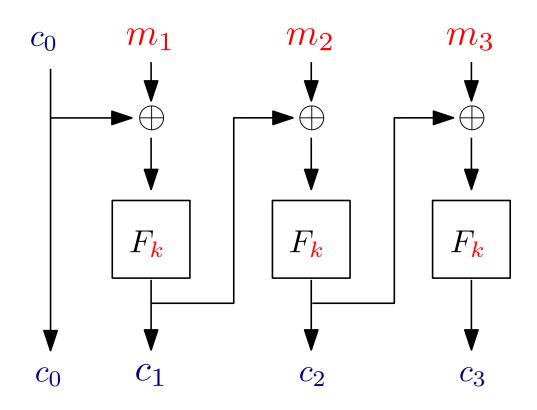
- sample $c_0 \leftarrow \{0,1\}^n$ (a.k.a. "initialization vector" (IV))
- For $i = 1 \dots t$:

$$c_i := F_{\mathbf{k}}(\mathbf{m_i} \oplus c_{i-1})$$

• Return c_0, c_1, \ldots, c_t

 $\mathsf{Dec}_{\pmb{k}}(c_0,c_1,\ldots,c_t)$:

- For $i=1\ldots t$: $m_i:=F_k^{-1}(c_i)\oplus c_{i-1}$
- Return m_1, \ldots, m_t



CBC mode

CBC (Cipher Block Chaining)

 $\mathsf{Enc}_{\pmb{k}}(\pmb{m}_1,\ldots,\pmb{m}_t)$:

for
$$m_i \in \{0, 1\}^n$$

- sample $c_0 \leftarrow \{0,1\}^n$ (a.k.a. "initialization vector" (IV))
- For $i = 1 \dots t$:

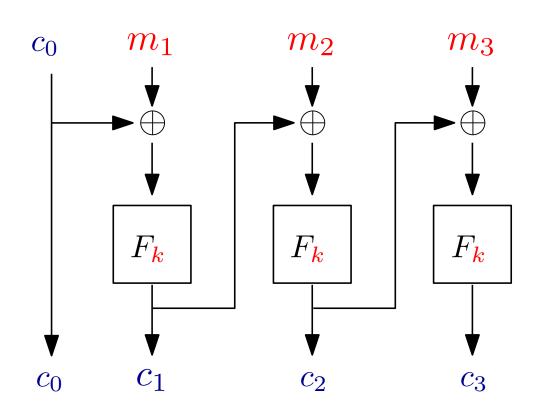
$$c_i := F_{\mathbf{k}}(\mathbf{m_i} \oplus c_{i-1})$$

• Return c_0, c_1, \ldots, c_t

Ciphertext expansion: one block

If F is a pseudorandom permutation then CBC mode is CPA-secure (Thm. 3.32)

CBC is used in SSL/TLS 14 - 2



Chosen-ciphertext attacks

§5.1

Recall...

Kerckhoffs' Principle: The adversary knows the scheme

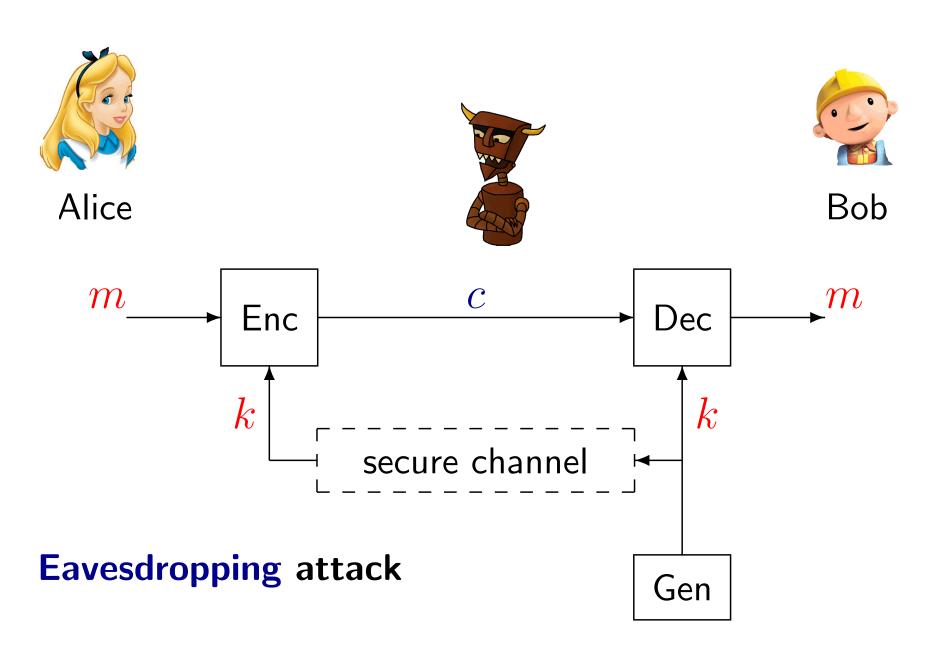
Auguste Kerckhoffs: La cryptographie militaire (1883)

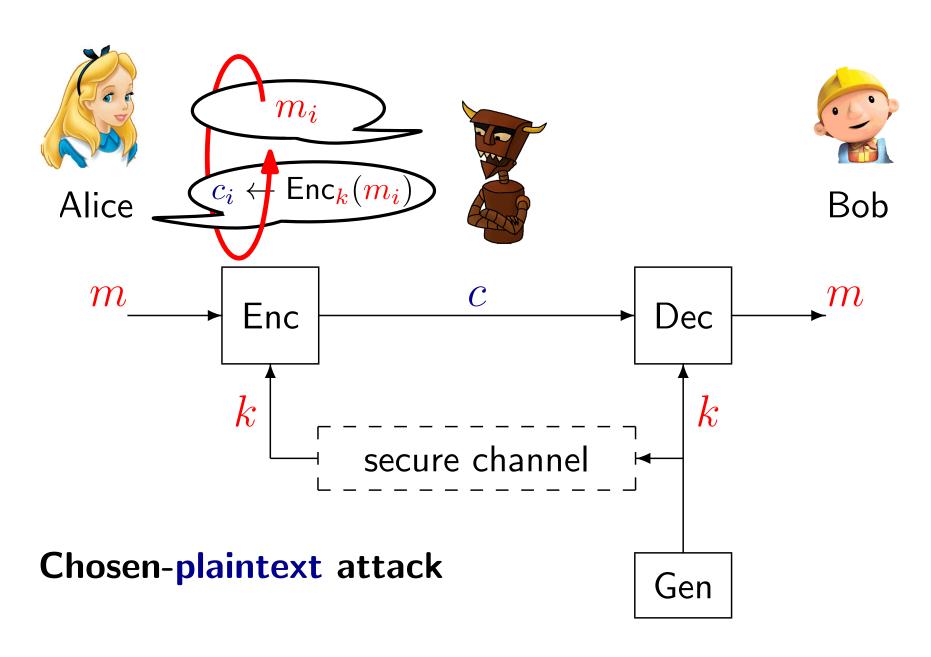
Adversary's goals:

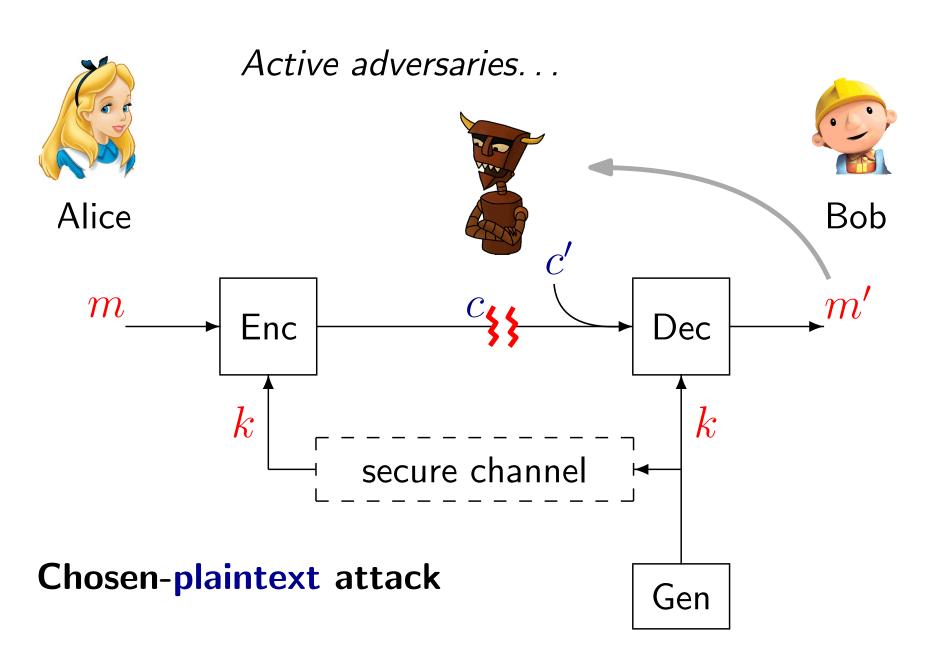
- Find the key?
- Recover the plaintext
- Guess a single letter of the plaintext
- Obtain any information about the plaintext
- Adversary's power:

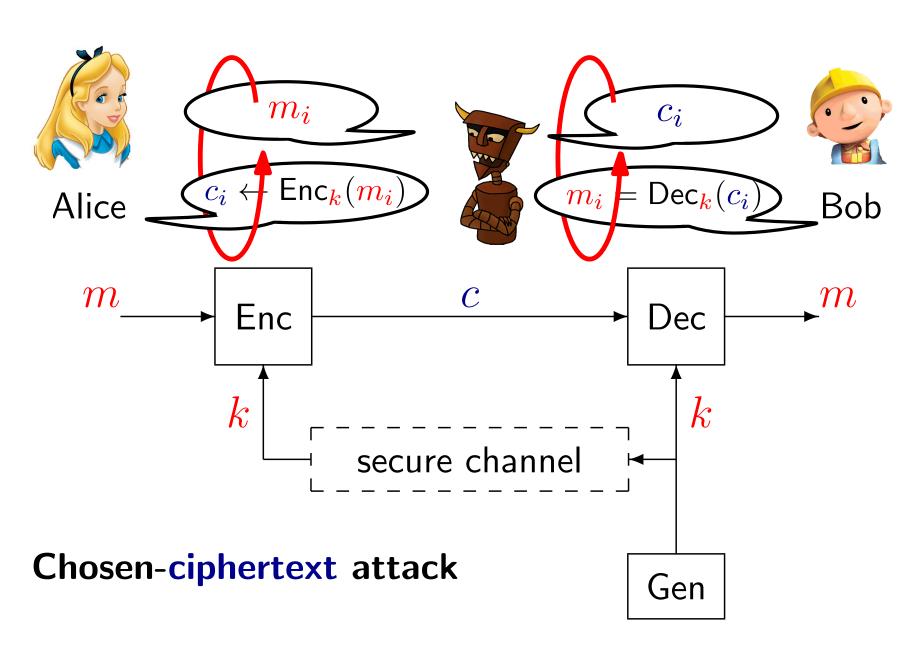
- Sees ciphertexts (one/many)
- Has seen plaintext/ciphertext pairs

Has chosen the plaintexts ...and can ask for decryption

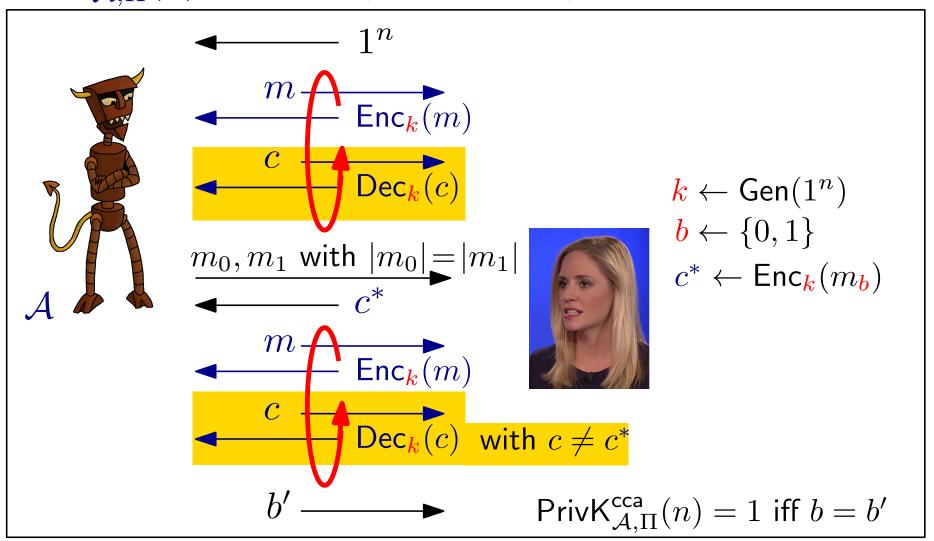








 $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n)$ for $\Pi = (\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$



Definition 5.1. Π *is* **secure against chosen-ciphertext attacks** *if for every* p.p.t. \mathcal{A} *there exists negligible* $\varepsilon(\cdot)$: $\Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \varepsilon(n)$ 18

CCA-security of studied schemes

Consider first CPA-scheme:

$$\mathsf{Enc}_{\pmb{k}}(\pmb{m}) := (r, F_{\pmb{k}}(r) \oplus \pmb{m})$$
 for $r \leftarrow \{0, 1\}^n$

Attack:

- Given challenge $(r, s := F_k(r) \oplus m_b)$
- For any $\Delta \in \{0,1\}^n, \Delta \neq 0^n$: query $\mathrm{Dec}_k \big((r,s \oplus \Delta) \big)$

$$= \underbrace{F_k(r) \oplus (s \oplus \Delta)}_{=m}$$

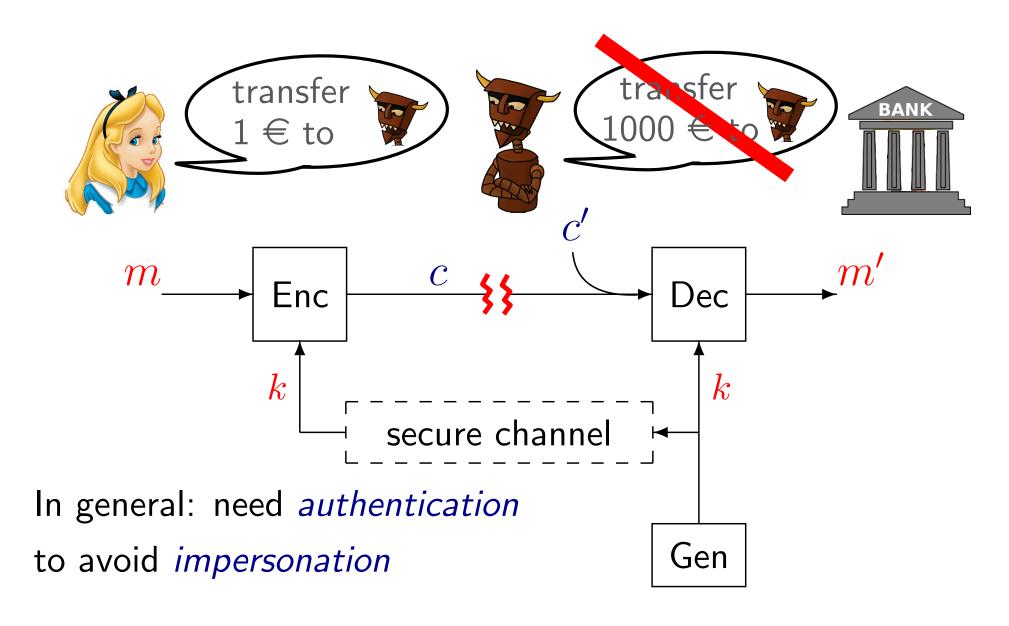
- ullet Learn $m_b\oplus \Delta$, and thus b
- \Rightarrow CCA-secure scheme must not be *malleable* ("c cannot be changed into a c' of *related* message")

- Too paranoid?
- No! "Padding-oracle attack" (book, §5.1.1) against SSL ("PKCS7 padding" in CBC mode)

Attacker only needs to learn if decryption succeeded!

 None of the schemes so far are CCA-secure (CBC, CTR, etc. are all malleable)

Malleability

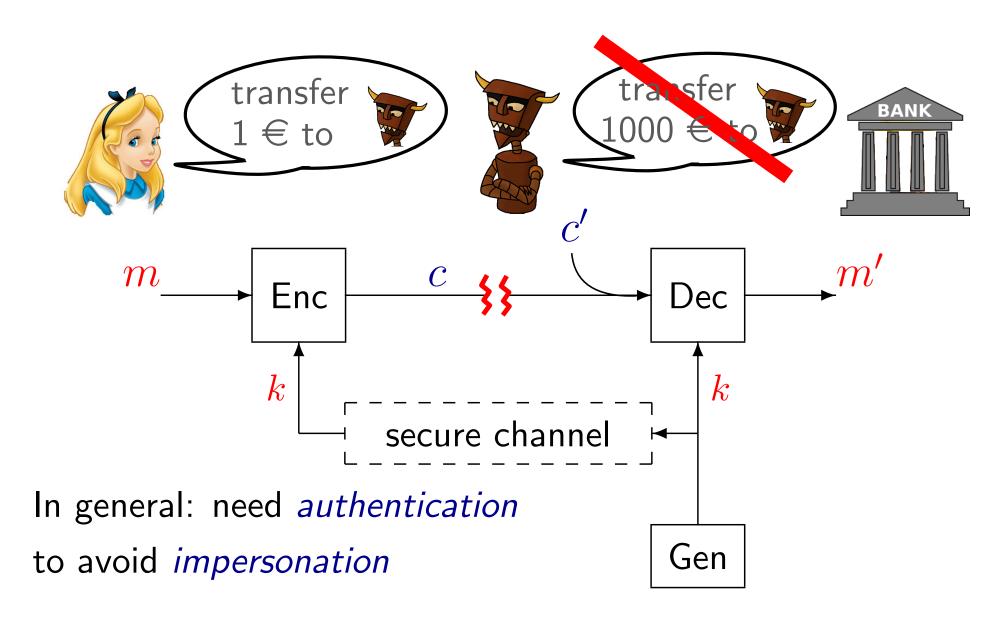


Introduction to Cryptography

(Lecture 8: authentication, AE)

Elena Andreeva

Malleability



Secrecy vs. authenticity

General goal: Enable secure communication

So far: only concerned about **secrecy** of messages (eavesdropping-, CPA-, CCA-security)

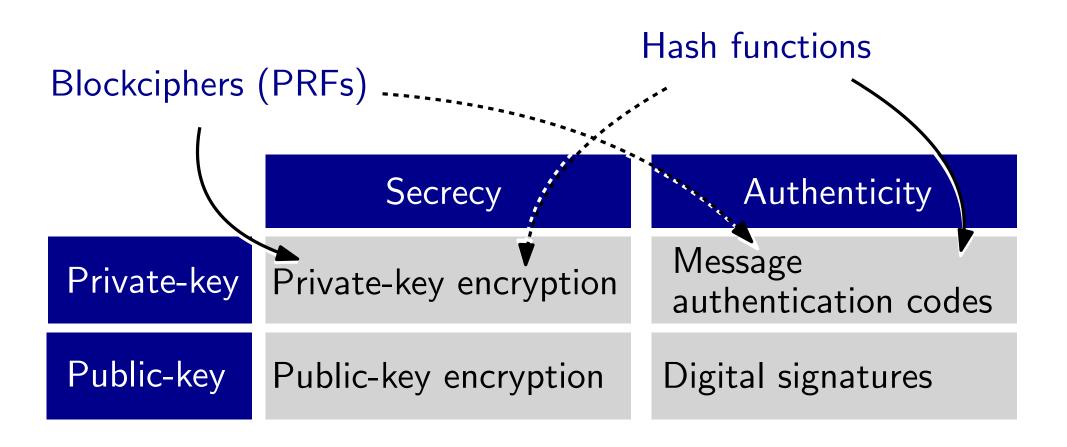
Not enough: need to ensure that messages were

- sent by claimed sender (authenticity)
- not modified in transit (integrity)

Secrecy & authenticity are different goals!

message-authentication codes

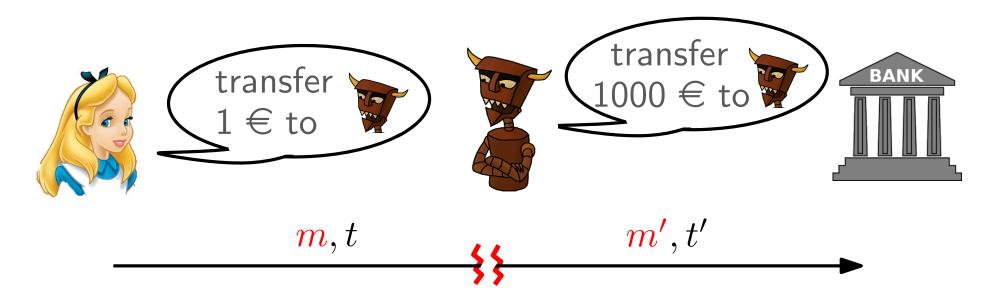
Topics



m, t

$$t = \mathsf{Mac}_{\pmb{k}}(\pmb{m})$$

$$Vrfy_k(m,t) = 1$$



$$t = \mathsf{Mac}_{\pmb{k}}(\pmb{m})$$

$$Vrfy_k(m',t') = 0$$

A message authentication code (MAC) is defined by the following p.p.t. algorithms:

 $k \leftarrow \mathsf{Gen}(1^n)$: given security parameter, return key k (with $|k| \ge n$)

 $t \leftarrow \mathsf{Mac}_k(m)$: given k and message $m \in \{0,1\}^*$, return tag t

 $b := \mathsf{Vrfy}_k(m,t)$: return b = 1 (valid) or b = 0 (invalid)

Correctness: For all n, all $k \leftarrow \mathrm{Gen}(1^n)$, all $m \in \{0,1\}^*$: $\mathrm{Vrfy}_k(m,\mathrm{Mac}_k(m)) = 1$

Canonical verification: if Mac is deterministic, can define:

$$Vrfy_k(m,t) = 1 \Leftrightarrow Mac_k(m) = t$$

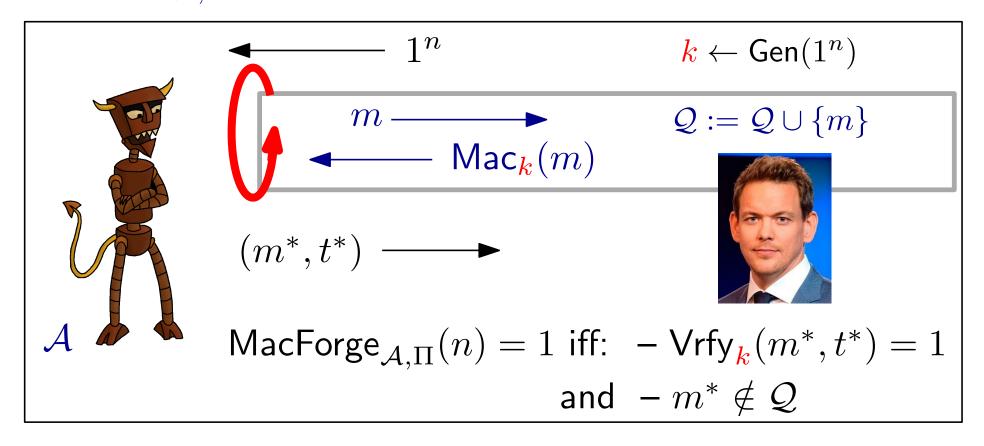
Security of MACs

Standard security definition:

- Threat model: (adaptive) chosen-message attack
 - Adversary can obtain tags on messages
- Security goal: existential unforgeability
 - Adversary cannot forge a tag on any other message
- ullet Paranoid? Is forgery on meaningless m bad?
- We don't know how MACs will be used
 - ⇒ strongest possible definition (cf. CCA-security)

Security of MACs

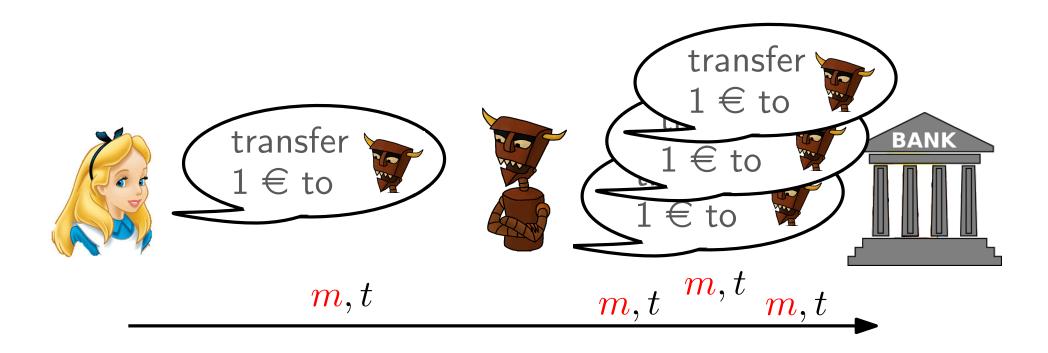
 $\mathsf{MacForge}_{\mathcal{A},\Pi}(n) \quad \mathsf{for} \ \Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$



Definition 4.2. Π is **secure*** if for every p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$: $\Pr[\mathsf{MacForge}_{\mathcal{A},\Pi}(n)=1] \leq \varepsilon(n)$

^{*}existentially unforgeable under adaptive chosen-message attacks

Replay attacks



$$t = \mathsf{Mac}_{\pmb{k}}(\pmb{m})$$

Cannot be prevented by (stateless) MAC

 \Rightarrow higher-level measures (time stamps, ...)

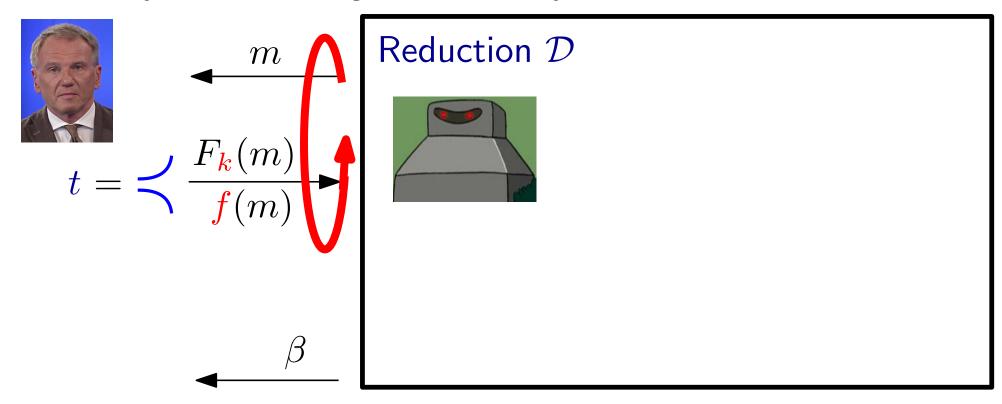
- Consider message space $\mathcal{M} = \{0,1\}^n$
- Goal: (deterministic) function $Mac_k(\cdot)$, so that
 - given evaluations for m_1, m_2, \ldots
 - it is hard to predict value $Mac_k(m^*)$ for any new m^*
- Idea: Use a pseudorandom function!

Construction 4.5. Let F be a PRF. Define MAC Π :

```
Gen(1<sup>n</sup>): choose k \leftarrow \{0,1\}^n
Mac<sub>k</sub>(m): return F_k(m) for m \in \{0,1\}^n
Vrfy<sub>k</sub>(m,t): return 1 iff F_k(m) = t
```

Theorem 4.6. Π is a secure MAC

Proof: By reduction against security of PRF F

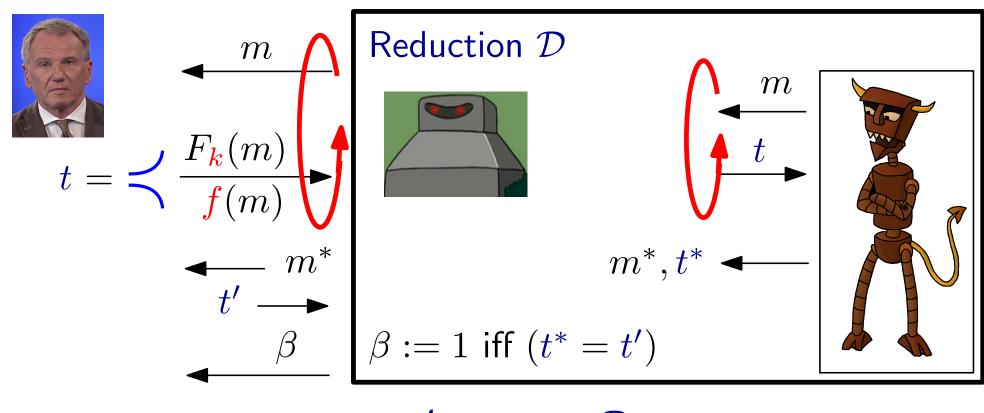


F PRF \Longrightarrow For any p.p.t. \mathcal{D} there exists negl. $\varepsilon(\cdot)$ s.t.

$$\left| \Pr_{\mathbf{k} \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_{\mathbf{k}}(\cdot)} = 1 \right] - \Pr_{\mathbf{f} \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \right] \right| \le \varepsilon(n)$$

Theorem 4.6. Π is a secure MAC

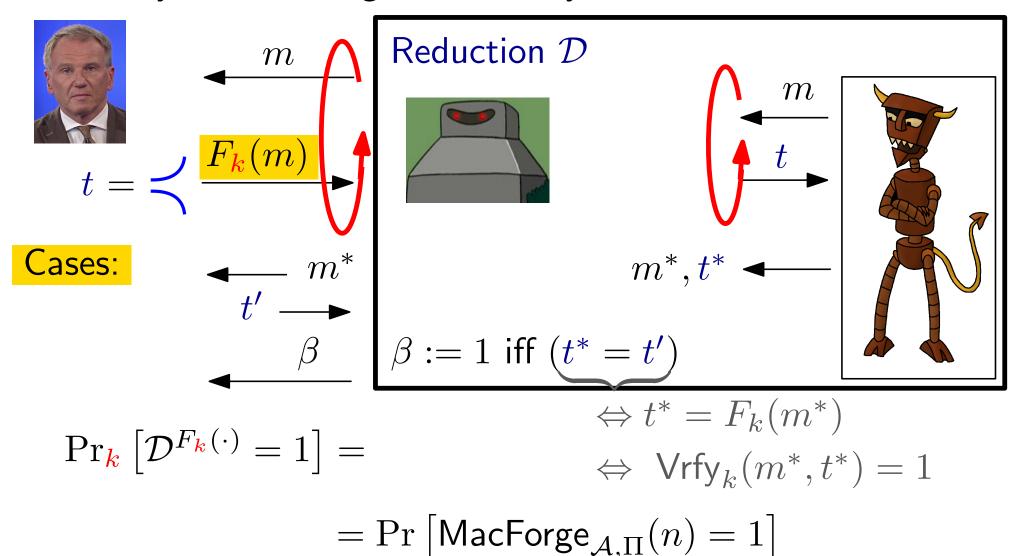
Proof: By reduction against security of PRF F



 \mathcal{A} p.p.t. $\Rightarrow \mathcal{D}$ p.p.t.

Theorem 4.6. Π is a secure MAC

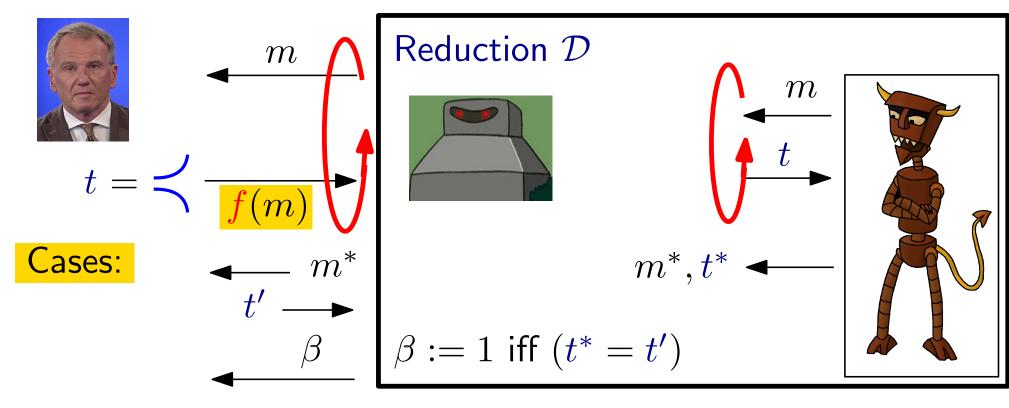
Proof: By reduction against security of PRF F



12 - 3

Theorem 4.6. Π is a secure MAC

Proof: By reduction against security of PRF F

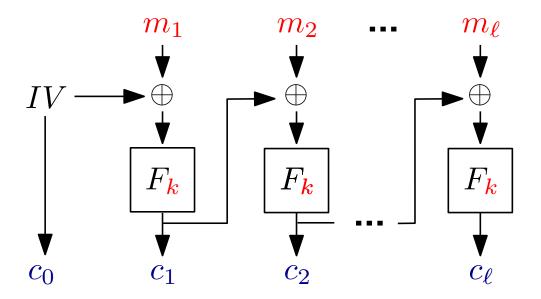


$$\Pr_{\mathbf{f}} \left[\mathcal{D}^{\mathbf{f}(\cdot)} = 1 \right] = 2^{-n} \quad (\mathbf{f}(m^*) \text{ uniform and indep. of } t's)$$

$$\Rightarrow \Pr\left[\mathsf{MacForge}_{\mathcal{A},\Pi}(n) = 1\right] \leq 2^{-n} + \varepsilon(n)$$

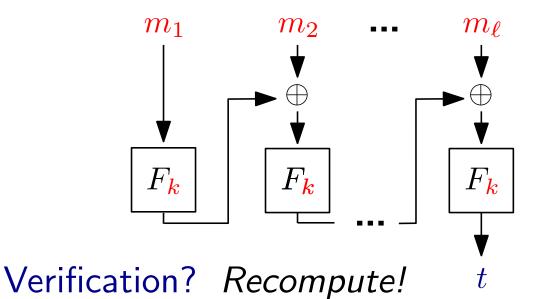
- Until now: $\mathcal{M} = \{0,1\}^n$; e.g. AES: n = 128
- Goal: $\mathcal{M} = \{0,1\}^*$ Idea: use chaining

Recall CBC-mode encryption:



- Until now: $\mathcal{M} = \{0,1\}^n$; e.g. AES: n = 128
- Goal: $\mathcal{M} = \{0, 1\}^*$

Basic CBC-MAC:



Differences to CBC-mode:

- no initialization vector (IV)
- only final value is output

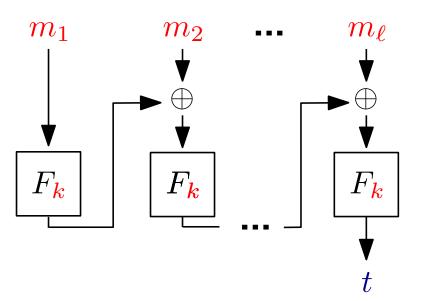
Both changes crucial for security!

Theorem 4.10. Let ℓ be a polynomial. If F is a PRF, then the above is a secure MAC for $\mathcal{M} = \{0,1\}^{\ell(n) \cdot n}$

- Until now: $\mathcal{M} = \{0,1\}^n$; e.g. AES: n = 128
- Goal: $\mathcal{M} = \{0, 1\}^*$

Basic CBC-MAC:

Not secure if we allowed variable length!

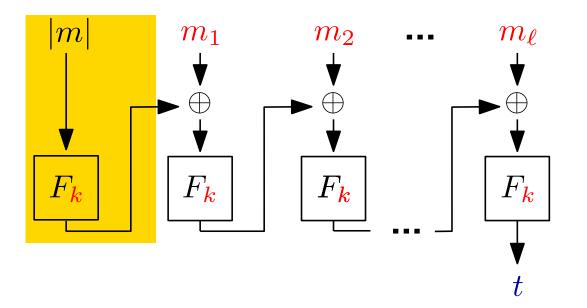


$$\operatorname{Mac}_k(m) = t$$
 $\operatorname{Mac}_k(m \parallel m \oplus t) = ?$

Prepending message length makes it secure!

- Until now: $\mathcal{M} = \{0,1\}^n$; e.g. AES: n = 128
- Goal: $\mathcal{M} = \{0, 1\}^*$

CBC-MAC:



§5.2

Goal: secure communication: secrecy and integrity

ullet Alice and Bob share two (independent) keys k_E and k_M

$$c \leftarrow \mathsf{Enc}_{k_E}(m)$$

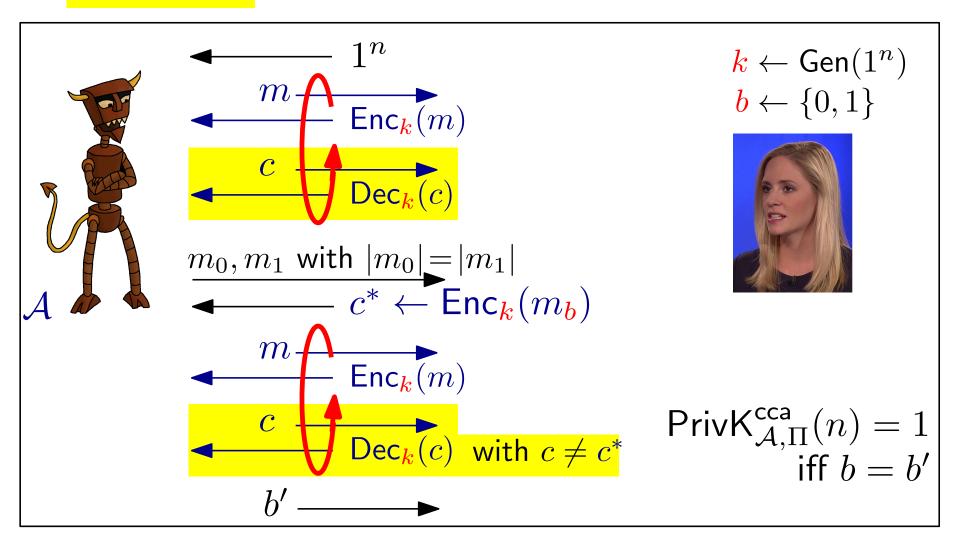
 $t \leftarrow \mathsf{Mac}_{k_M}(m)$

"Encrypt and authenticate"

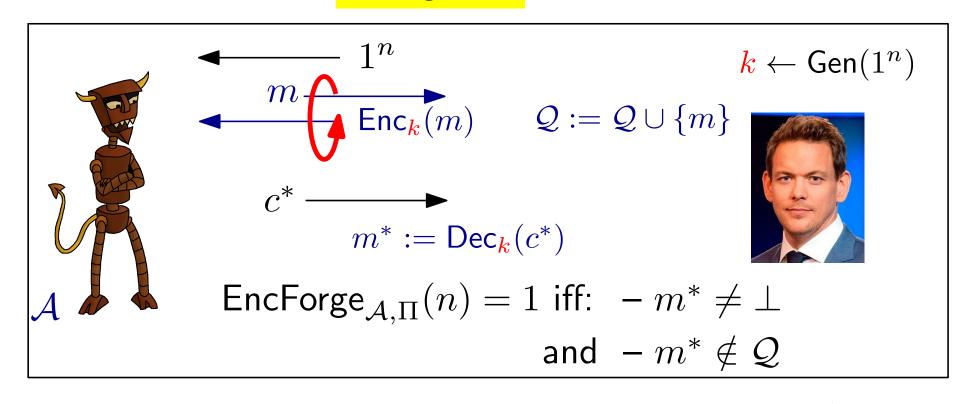
$$egin{aligned} oldsymbol{m} &= \mathsf{Dec}_{oldsymbol{k_E}}(c) \ \mathsf{Vrfy}_{oldsymbol{k_M}}(oldsymbol{m},t) \stackrel{?}{=} 1 \end{aligned}$$

- t might reveal information about m!
- CBC-MAC ⇒ not even CPA-secure!

Definition 5.3. A private-key encryption scheme $\Pi = (\text{Gen, Enc, Dec})$ is an **authenticated encryption scheme** if it is **CCA-secure** and unforgeable



Definition 5.3. A private-key encryption scheme $\Pi = (\text{Gen, Enc, Dec})$ is an **authenticated encryption scheme** if it is CCA-secure and unforgeable



Definition 5.2. Π is unforgeable if for every p.p.t. \mathcal{A} there exists negligible $\varepsilon(\cdot)$: $\Pr\big[\mathsf{EncForge}_{\mathcal{A},\Pi}(n)=1\big] \leq \varepsilon(n)$

Goal: secure communication: secrecy and integrity

ullet Alice and Bob share two (independent) keys k_E and k_M

$$\overline{\mathsf{Enc}}_{(k_E,k_M)}(m) \colon \ c \leftarrow \mathsf{Enc}_{k_E}(m) \\ t \leftarrow \mathsf{Mac}_{k_M}(c) \\ \mathsf{return} \ (c,t)$$

"Encrypt then authenticate"

```
\overline{\mathsf{Dec}}_{(m{k}_E,m{k}_M)}(c,t): If \mathsf{Vrfy}_{m{k}_M}(c,t) = 0 return \bot else m := \mathsf{Dec}_{m{k}_E}(c) return m
```

Security: If encryption scheme Π_E is CPA-secure and MAC Π_M is (deterministic and canonical and) secure,

then encrypt-then-authenticate is: • CPA-secure

- unforgeable

MAC security \Rightarrow adversary cannot create valid ciphertexts! \Rightarrow decryption oracle useless for A!

→ We can even prove CCA-security!

Theorem 5.7'. If Π_E is CPA-secure and Π_M is (deterministic and canonical and) secure, then encrypt-then-authenticate is an authenticated encryption scheme

Advanced AE:

- AE with nonce
- Single-key AE
- Lightweight AE
- Stronger security notions
 - E.g. Unverified-plaintext release

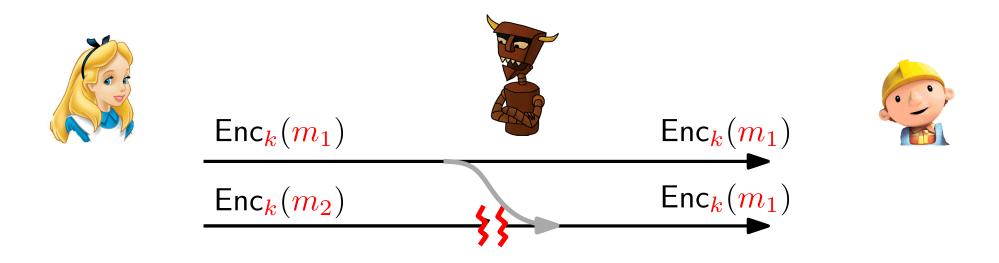
Will be covered in the Symmetric Cryptography course (192.124/2025S)

Secure communication sessions

§5.4

Two parties want to communicate *securely* (secrecy and integrity) over a period of time in which they maintain *state*.

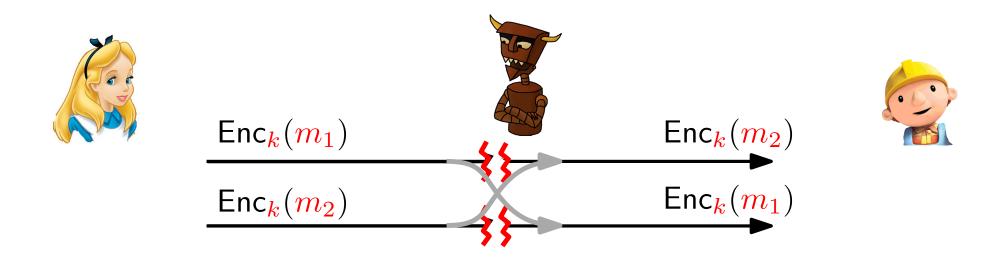
⇒ use authenticated encryption enough?



Replay attack

Two parties want to communicate *securely* (secrecy and integrity) over a period of time in which they maintain *state*.

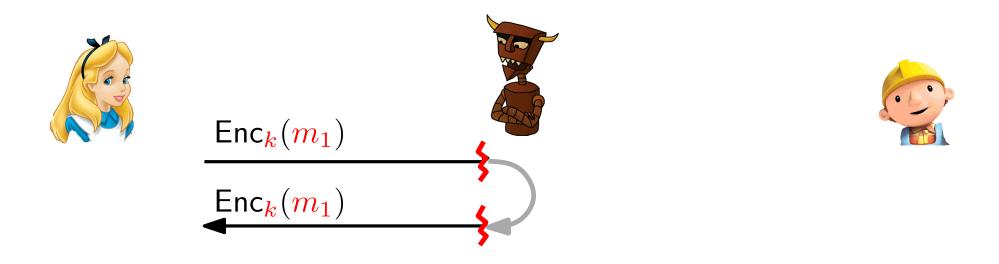
⇒ use authenticated encryption enough?



Re-ordering attack

Two parties want to communicate *securely* (secrecy and integrity) over a period of time in which they maintain *state*.

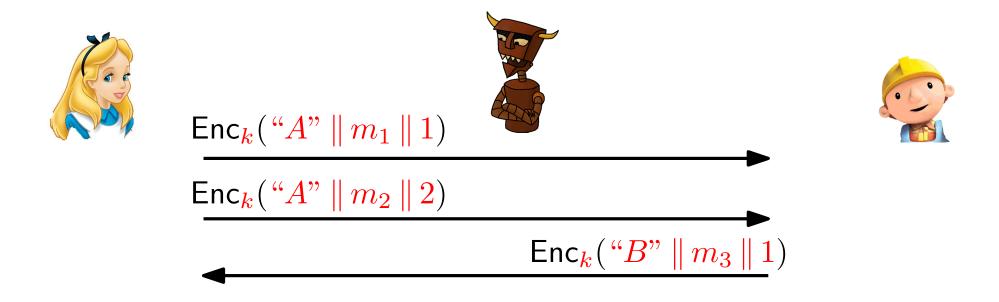
⇒ use authenticated encryption enough?



Reflection attack

Two parties want to communicate *securely* (secrecy and integrity) over a period of time in which they maintain *state*.

⇒ use authenticated encryption enough?



⇒ use counters and identities