

Question 1:

$$\text{prefix}_k^0[\psi] \vee \bigvee_{\ell=0}^k \lambda_\ell \wedge \text{lasso}_{(k,\ell)}^0[\psi]$$

Provide a propositional encoding of (k,l) loops for solving the existential model checking problem formulas **EGFp**. To this end, define $\text{prefix}_k^0[\psi]$ and $\text{lasso}_{(k,l)}^0[\psi]$ for $\psi \equiv \text{GFp}$

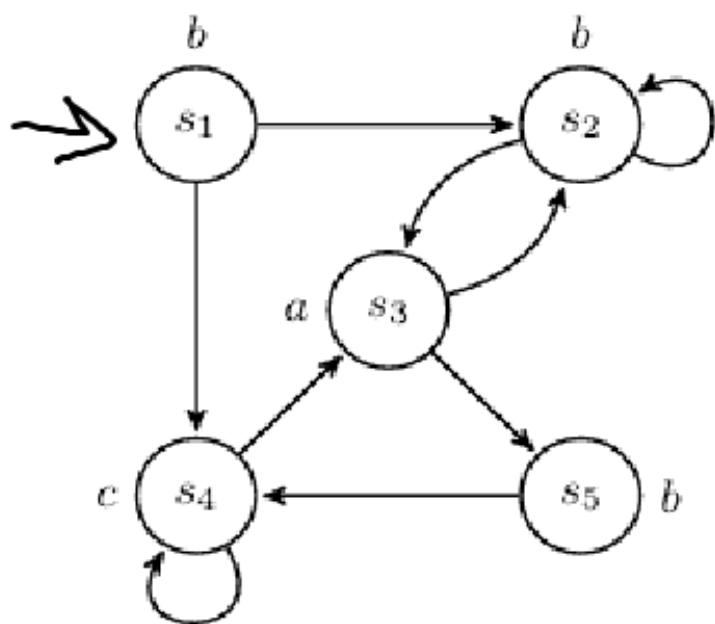
Note: Define the encoding of **GFp** as a self-contained formula. That is, your encoding should not contain atoms of the form prefix or lasso for any ψ (in particular not for $G \phi$ or $F \phi$)

Question 2:

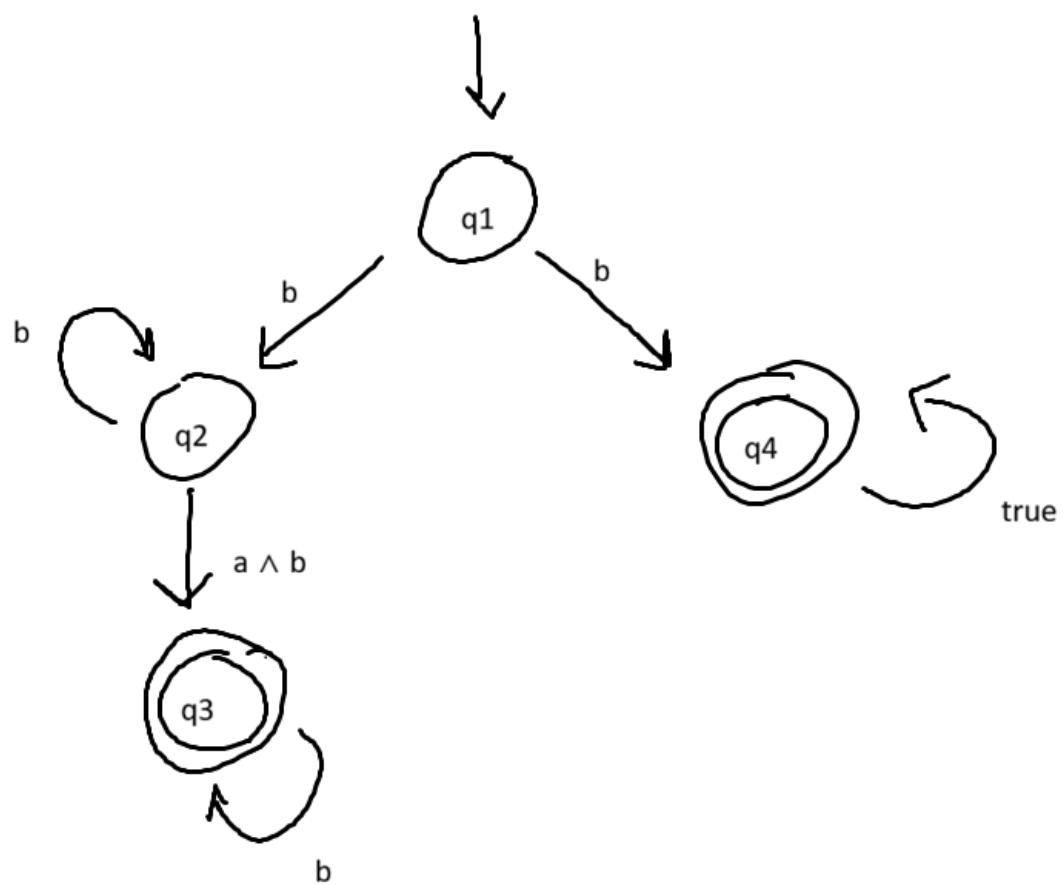
Perform automata based LTL model checking on the Kripke structure and Büchi automaton for ϕ

Is there an execution violating $\neg\phi$? If yes provide the counterexample.

Kripke structure:



Büchi automaton:



Question 3:

Let $K = (S, s_0, R, AP, L)$ be a finite Kripke structure with $AP = \{\text{clk, init, reset}\}$, and let s_0 be the only state labeled with “init”. Express the following specifications about K in terms of CTL^* . Where possible, provide an LTL or CTL formula.

- a) clk is always immediately followed by $\neg\text{clk}$ and vice versa
- b) For every execution, every positive edge of clk (ie transition from $\neg\text{clk}$ to clk) is eventually followed by a negative edge of clk (ie transitions from clk to $\neg\text{clk}$)
- c) From every state in K , it is possible to return to the initial state (which is labeled init) via a state labeled reset .
- d) All paths starting at the initial state lead to a cycle that does not contain a state labeled init , unless the cycle includes a state labeled reset .
- e) Whenever a state labeled with reset is reached, the initial state labeled with init will be reached at a strictly later point.

Question 4:

Are the following statements true/false? Mark the corresponding column in the table below.

- (a) Fairness conditions cannot be directly expressed in CTL*.
- (b) Every CTL formula has an equivalent CTL formula containing only AF, AX, and EU.
- (c) For the boolean formula $(x_1 \oplus y_1) \vee \dots \vee (x_n \oplus y_n)$, with \oplus being xor, one can find an order on the variables $x_1, \dots, x_n, y_1, \dots, y_n$, so that the ROBDD that encodes the formula is linear in the size of n .
- (d) Let $A \wedge B$ be unsatisfiable, and let I_1 and I_2 be interpolants for A and B . Then $I_1 \vee I_2$ is also an interpolant for A and B .
- (e) Every trace that is a counterexample to a LTL property is lasso-shaped (i.e., has the form $s_0, \dots, s_{\ell-1}, (s_\ell, \dots, s_k) \omega$).
- (f) A Kripke structure M with n states has a reachability diameter of at most n .
- (g) There is a non-empty Kripke structure M that satisfies $(\mathbf{AGFp}) \wedge (\mathbf{AGFp})$.
- (h) for any propositional logic formulas ϕ there exists an equisatisfiable formula ψ in conjunctive normal form (CNF) in which each clause has at most 3 literals.
- (i) If a given transition system is safe (i.e., property P holds), then the IC3 model checking algorithm always computes the logically strongest inductive invariant that proves that P holds.
- (j) Given n Büchi automata B_1, \dots, B_n , the number of states of the asynchronous product $B_1 \parallel \dots \parallel B_n$ is polynomial in n .

Question	True	False
(a)		
(b)		
(c)		
(d)		
(e)		
(f)		
(g)		
(h)		
(i)		
(j)		