Programm- & Systemverifikation

Testing, Coverage & Invariants: Exercises

Georg Weissenbacher m
184.741

Coverage

bool sorted (int a,
int b, int c)

{
int i = 0;
if (a < b) Inputs Output
i=1i+1; a|b| c| result
if (b < ¢) 12| 3| true
i=1i+1; 3|12 1] false
if (4 == 2)

return true;
return false;

}

Coverage

bool sorted (int a,
int b, int c)

{
int i = 0; Inputs Output
if (a < b) a|b| c|| result
i=1+1; 112 | 3] true
if (b < ¢) 3|2|1] false
i=1i+1;
return (i == 2);

}

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage
statement coverage
branch coverage
decision coverage
condition coverage

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs
all-c-uses
all-p-uses

all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses

all-du-paths

Complete Coverage

» Augment the test-suite such to achieve full coverage
> [f this is not possible, explain why

path-coverage all-p-uses/some-c-uses

Inputs Output Inputs Output
a|b|c| result a|b| c| result

Modified Condition/Decision Coverage

Provide a test-suite that achieves full MC/DC coverage:

bool bar(int x, int y) {
return ((x = y) && (y > 5));

}

Input Output
X v result

More Coverage

Consider the following program:

bool subarr(int i, int j, int k)

int maxsum = i;

int lastsum = 1i;

if (lastsum < 0)
lastsum = j;

else

~ lastsum += j; Inputs Output

if (lastsum > maxsum) 1] k | result
maxsum = lastsum;

if (lastsum < 0)
lastsum = k;

else
lastsum += k;

if (lastsum > maxsum)
maxsum = lastsum;

return maxsum;

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage
statement coverage
branch coverage
decision coverage
condition coverage

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage v

statement coverage
branch coverage
decision coverage
condition coverage

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage v

statement coverage | v’
branch coverage

decision coverage
condition coverage

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage v
statement coverage | v’
branch coverage v
decision coverage
condition coverage

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage v
statement coverage | v’
branch coverage v
decision coverage v
condition coverage

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes | no
path coverage v

statement coverage | v’
branch coverage

decision coverage
condition coverage

NENEN

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs
all-c-uses
all-p-uses

all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses

all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses
all-p-uses

all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses

all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v

all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses

all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v
all-p-uses v

all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses

all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v
all-p-uses v
all-c-uses/some-p-uses v
all-p-uses/some-c-uses
all-uses
all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v
all-p-uses v
all-c-uses/some-p-uses v
all-p-uses/some-c-uses | v’
all-uses
all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v
all-p-uses v
all-c-uses/some-p-uses v
all-p-uses/some-c-uses | v’
all-uses v
all-du-paths

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes | no
all-defs v
all-c-uses v
all-p-uses v
all-c-uses/some-p-uses v
all-p-uses/some-c-uses | v’
all-uses v
all-du-paths v

Complete Coverage

> Augment the test-suite such to achieve full coverage
> [f this is not possible, explain why

decision coverage all-p-uses/some-c-uses
Inputs Output Inputs Output
a|b | c| resul a|b | c | result
0/0|0] O

all-p-uses/some-c-uses already satisfied!
Decision coverage and MC/DC coincide for this example!

Let’s test a balanced tree:

/* recursive tree structure */
typedef struct _tree
{

struct _tree x left;
struct _tree * right;
int element;
int height;

} Tree;

> Testinsert (int e, Tree *t)
» Conditions

> Balanced: |left height — right height| < 1
» Elements in left sub-tree are smaller than elements in right
sub-tree

What do Trees Look Like?

Balanced Trees
0

What do Trees Look Like?

Unbalanced Trees

Equivalence Partitioning

Derive valid and invalid equivalence classes for the function
insert. Assign a unique number/id to each equivalence class.

Condition Valid ID | Invalid ID

Equivalence Partitioning

» Invalid denotes invalid inputs (apparently not obvious?)
> e.g., condition: “Tree is balanced”, invalid: not balanced
» One condition can result in multiple equivalence classes
> e.g., “Tree is balanced”
> valid: possible height differences: -1, 0, 1
> invalid: possible height differences: -2, 2
» Also consider output equivalence classes
» Especially for trees, there many (different balance!)
> Note: variable of type int in ANSI-C can’t be
> aset{1,2}
> outside the range, e.g., 2% + 1

Equivalence Partitioning

Condition Valid ID | Invalid ID
-2
(1)
1
0 /N ()
(m) 0
AN (m) /o
balanced inserte > m 1 A A 2
2
e<m O
-1 1
2, o /A
/A B (m) /o\
s VAN FRVANANERY

Equivalence Partitioning

Condition Valid ID | Invalid ID
0 0
A '
ordered e>k 5 e>k 6
0 0
(%) (%)
k¢ AUB keA
no duplicates ek 7 e>k 8
0
(%)
keB
__ e<k 9

Equivalence Partitioning

Numerous other cases you could consider:

> Try to trigger rotations
» e smaller than elements in left subtree A
> e larger than elements in right subtree A
|

> Try to insert elements already contained
> ecAecB
» Warning! These insertions are not invalid!

» Could also consider null as separate equivalence class
» Warning! Insertion into empty tree not invalid!

> ...

Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method
insert. Indicate which equivalence classes each test-case covers
by referring to the numbers from before.

Input Output Classes Covered

Hint: in exam no points for redundant and non-boundary test cases

Boundary Value Testing

> “Boundaries” a bit unclear here, requires creativity
» empty tree (null), tree with one element
> “full” tree (all leaves filled)

» two elements, leaning left/right
> ...

Boundary Value Testing

Input Output Classes Covered
-1
(2)
OO,
® 15,7
0
(3)
(2 @

Boundary Value Testing

Cover invalid classes individually!

Input Output Classes Covered

® exception 2

Equivalence Testing/Boundary Testing

Important:
» Specify expected result for test cases

» Test cases need to specify concrete values, also for output
» Which equivalence classes are covered? (enumerate them!)

» Cover as many valid classes as possible with few test cases
» Cover each invalid class with a separate test case

> Also cover output equivalence classes
» Especially for trees, there many (different balance!)

Invariants

n=0;y=x;
if (x % 2)
x =x + 1;
else
skip;
while (x > 42) {
x=x/ 2;
n=n+1;}

Are the following assertions loop invariants? If not, provide values
for x, y, n, ¥/, y/ and n’ as a counterexample.

1.n >0
2. x h 2 ==

3. x#y
4. x = | 3]

Use Hoare’s Calculus to prove the following Hoare Triple
(assume that x € INp).

{true}

if ((x % 2) == 0)
x=x+1;

else
skip;

while (x > 2)
X =X - 2;

{x=1}

Hoare’s Axioms: Summary

{P} G {Q},{Q} C {R}
{P[E/x]} x:=E {P} {P} Cy; G2 {R}

{B/\ P} C1 {Q} {_'B/\ P} Cz {Q}
{P} if Bthen Cy else C, {Q}

P—-P {P}C{Q} Q—-Q
{P'} C{Q}

{PAB} C{P}
{P} while Bdo C {-B A P}

Exam: June 12

» Solutions for Assignment 3 will be on TUWEL

» Pose questions about content on exam now or in TUWEL
forum

