
Programm- & Systemverifikation
Testing, Coverage & Invariants: Exercises

Georg Weissenbacher
184.741

Coverage

bool sorted (int a,

int b, int c)

{
int i = 0;

if (a < b)

i = i + 1;

if (b < c)

i = i + 1;

if (i == 2)

return true;

return false;

}

Inputs Output
a b c result
1 2 3 true
3 2 1 false

Coverage

bool sorted (int a,

int b, int c)

{
int i = 0;

if (a < b)

i = i + 1;

if (b < c)

i = i + 1;

return (i == 2);

}

Inputs Output
a b c result
1 2 3 true
3 2 1 false

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage
statement coverage
branch coverage
decision coverage
condition coverage

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs
all-c-uses
all-p-uses
all-c-uses/some-p-uses
all-p-uses/some-c-uses
all-uses
all-du-paths

Complete Coverage

▶ Augment the test-suite such to achieve full coverage
▶ If this is not possible, explain why

path-coverage

Inputs Output
a b c result

all-p-uses/some-c-uses

Inputs Output
a b c result

Modified Condition/Decision Coverage

Provide a test-suite that achieves full MC/DC coverage:

bool bar(int x, int y) {
return ((x = y) && (y > 5));

}

Input Output
x y result

More Coverage

Consider the following program:

bool subarr(int i, int j, int k)

int maxsum = i;

int lastsum = i;

if (lastsum < 0)

lastsum = j;

else

lastsum += j;

if (lastsum > maxsum)

maxsum = lastsum;

if (lastsum < 0)

lastsum = k;

else

lastsum += k;

if (lastsum > maxsum)

maxsum = lastsum;

return maxsum;

}

Inputs Output
i j k result
-3 -1 2 2
3 -1 2 4

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage

✓

statement coverage

✓

branch coverage

✓

decision coverage

✓

condition coverage

✓

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage ✓
statement coverage

✓

branch coverage

✓

decision coverage

✓

condition coverage

✓

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage ✓
statement coverage ✓
branch coverage

✓

decision coverage

✓

condition coverage

✓

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage ✓
statement coverage ✓
branch coverage ✓
decision coverage

✓

condition coverage

✓

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage ✓
statement coverage ✓
branch coverage ✓
decision coverage ✓
condition coverage

✓

Control-Flow Coverage

Which of the following coverage criteria are satisfied?
(assume that the term “decision” refers to all Boolean expressions in the program)

satisfied
Criterion yes no
path coverage ✓
statement coverage ✓
branch coverage ✓
decision coverage ✓
condition coverage ✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs

✓

all-c-uses

✓

all-p-uses

✓

all-c-uses/some-p-uses

✓

all-p-uses/some-c-uses

✓

all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses

✓

all-p-uses

✓

all-c-uses/some-p-uses

✓

all-p-uses/some-c-uses

✓

all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses

✓

all-c-uses/some-p-uses

✓

all-p-uses/some-c-uses

✓

all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses ✓
all-c-uses/some-p-uses

✓

all-p-uses/some-c-uses

✓

all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses ✓
all-c-uses/some-p-uses ✓
all-p-uses/some-c-uses

✓

all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses ✓
all-c-uses/some-p-uses ✓
all-p-uses/some-c-uses ✓
all-uses

✓

all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses ✓
all-c-uses/some-p-uses ✓
all-p-uses/some-c-uses ✓
all-uses ✓
all-du-paths

✓

Data-Flow Coverage

Which of the following coverage criteria are satisfied?
(the parameters of the function do not constitute definitions)

satisfied
Criterion yes no
all-defs ✓
all-c-uses ✓
all-p-uses ✓
all-c-uses/some-p-uses ✓
all-p-uses/some-c-uses ✓
all-uses ✓
all-du-paths ✓

Complete Coverage

▶ Augment the test-suite such to achieve full coverage
▶ If this is not possible, explain why

decision coverage

Inputs Output
a b c result
0 0 0 0

all-p-uses/some-c-uses

Inputs Output
a b c result

all-p-uses/some-c-uses already satisfied!
Decision coverage and MC/DC coincide for this example!

Testing

Let’s test a balanced tree:

/* recursive tree structure */

typedef struct _tree

{

struct _tree * left;

struct _tree * right;

int element;

int height;

} Tree;

▶ Test insert (int e, Tree *t)

▶ Conditions
▶ Balanced: |left height − right height| ≤ 1
▶ Elements in left sub-tree are smaller than elements in right

sub-tree

What do Trees Look Like?

Balanced Trees

m

A B

0

m

A n

B C

-1

0

m

n

A B

C

-1

0

What do Trees Look Like?

Unbalanced Trees

l

A n

m

C D

B

-2

1

0

l

n

m

C D

B

A

2

1

0

· · ·

Equivalence Partitioning

Derive valid and invalid equivalence classes for the function
insert. Assign a unique number/id to each equivalence class.

Condition Valid ID Invalid ID

Equivalence Partitioning

▶ Invalid denotes invalid inputs (apparently not obvious?)
▶ e.g., condition: “Tree is balanced”, invalid: not balanced

▶ One condition can result in multiple equivalence classes
▶ e.g., “Tree is balanced”
▶ valid: possible height differences: -1, 0, 1
▶ invalid: possible height differences: -2, 2

▶ Also consider output equivalence classes
▶ Especially for trees, there many (different balance!)

▶ Note: variable of type int in ANSI-C can’t be
▶ a set {1, 2}
▶ outside the range, e.g., 232 + 1

Equivalence Partitioning

Condition Valid ID Invalid ID

balanced

m

A B

0

insert e > m 1

l

A n

m

C D

B

-2

1

0

2

–”–

m

A n

B C

-1

0

e < m

3

l

n

m

C D

B

A

2

1

0

4
. . .

Equivalence Partitioning

Condition Valid ID Invalid ID

ordered

k

< k > k

0

e > k 5

k

> k < k

0

e > k 6

no duplicates

k

A B

0

k ̸∈ A ∪ B
e > k 7

k

A B

0

k ∈ A
e > k 8

–”–

k

A B

0

k ∈ B
e < k 9

. . .

Equivalence Partitioning

Numerous other cases you could consider:
▶ Try to trigger rotations

▶ e smaller than elements in left subtree A
▶ e larger than elements in right subtree A
▶ . . .

▶ Try to insert elements already contained
▶ e ∈ A, e ∈ B
▶ Warning! These insertions are not invalid!

▶ Could also consider null as separate equivalence class
▶ Warning! Insertion into empty tree not invalid!

▶ . . .

Boundary Value Testing

Use Boundary Value Testing to derive a test-suite for the method
insert. Indicate which equivalence classes each test-case covers
by referring to the numbers from before.

Input Output Classes Covered

Hint: in exam no points for redundant and non-boundary test cases

Boundary Value Testing

▶ “Boundaries” a bit unclear here, requires creativity
▶ empty tree (null), tree with one element
▶ “full” tree (all leaves filled)
▶ two elements, leaning left/right
▶ . . .

Boundary Value Testing

Input Output Classes Covered

2

1 3

0

e = 4

2

1 3

4

-1

1,5,7

2

1 3

4

-1

e = 5

3

2

1

4

5

0

. . .

Boundary Value Testing

Cover invalid classes individually!

Input Output Classes Covered

2

4

3

-2

e = 5

exception 2

Equivalence Testing/Boundary Testing

Important:
▶ Specify expected result for test cases
▶ Test cases need to specify concrete values, also for output
▶ Which equivalence classes are covered? (enumerate them!)

▶ Cover as many valid classes as possible with few test cases
▶ Cover each invalid class with a separate test case

▶ Also cover output equivalence classes
▶ Especially for trees, there many (different balance!)

Invariants

n = 0; y = x;

if (x % 2)

x = x + 1;

else

skip;

while (x > 42) {
x = x / 2;

n = n + 1; }

Are the following assertions loop invariants? If not, provide values
for x, y, n, x′, y′ and n′ as a counterexample.

1. n > 0

2. x % 2 == 0

3. x ̸= y

4. x = ⌊ y
2n ⌋

Hoare Logic

Use Hoare’s Calculus to prove the following Hoare Triple
(assume that x ∈ N0).

{true}

if ((x % 2) == 0)

x = x + 1;

else

skip;

while (x > 2)

x = x - 2;

{x = 1}

Hoare’s Axioms: Summary

{P[E/x]} x:=E {P}
{P} C1 {Q} , {Q} C2 {R}

{P} C1 ; C2 {R}

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
{P} if B then C1 else C2 {Q}

P ′ → P {P} C {Q} Q → Q′

{P ′} C {Q′}

{P ∧ B} C {P}
{P} while B do C {¬B ∧ P}

Exam: June 12

▶ Solutions for Assignment 3 will be on TUWEL
▶ Pose questions about content on exam now or in TUWEL

forum

