
Multicores
Computer Systems

Johann Blieberger



1 Physical Cache Organization

2 Logical Cache Organization

3 Shared Memory Multiprocessors

2



Physical Cache Organization

2



United Cache Organization

Abbildung: Dual-core chip architecture similar to IBM Power4 (taken from Solohin, Fundamentals of
Parallel Multicore Architecture)

Details on how a crossbar is implemented follow later on.

3



Tiled Cache Organization

Abbildung: Tiled multicore with a ring (top) and a 2D mesh (bottom) interconnection (taken from
Solohin, Fundamentals of Parallel Multicore Architecture)

R . . . Router, L2 cache tiles provide view of one single L2 cache

4



Hybrid Cache Organization

Abbildung: Hybrid physical configuration of L2 caches (top) and distributed L2 caches backed up by a
united L3 cache (bottom) (taken from Solohin, Fundamentals of Parallel Multicore Architecture)

5



Logical Cache Organization

6



Logical Cache Organization

in traditional multiprocessor systems not feasible to implement a shared cache
organization since caches are located on different chips

in multicore CPUs cache tiles are located on a single die; hence accesses to remote
caches perform quickly

7



Logical Cache Organization

in traditional multiprocessor systems not feasible to implement a shared cache
organization since caches are located on different chips

in multicore CPUs cache tiles are located on a single die; hence accesses to remote
caches perform quickly

7



Shared Memory Multiprocessors

8



Why shared memory multiprocessors?

multi-threaded programs written for a single processor system, will work automatically
on a shared memory multiprocessor

9



Why shared memory multiprocessors?

multi-threaded programs written for a single processor system, will work automatically
on a shared memory multiprocessor

9



Problems

cache coherence problem

memory consistency problem

synchronization problem

10



Problems

cache coherence problem

memory consistency problem

synchronization problem

10



Problems

cache coherence problem

memory consistency problem

synchronization problem

10



Cache Coherence Problem

Abbildung: A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved?

No

11



Cache Coherence Problem

Abbildung: A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved? No

11



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

Assumption: access to sum occurs one at a time.

System without caches:
Thread 0 reads sum from memory, adds 3, stores it back to memory.

Thread 1 reads sum from memory (=3), adds 7, stores 10 back to memory.

12



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

Assumption: access to sum occurs one at a time.

System without caches:
Thread 0 reads sum from memory, adds 3, stores it back to memory.

Thread 1 reads sum from memory (=3), adds 7, stores 10 back to memory.

12



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

Assumption: access to sum occurs one at a time.

System without caches:
Thread 0 reads sum from memory, adds 3, stores it back to memory.

Thread 1 reads sum from memory (=3), adds 7, stores 10 back to memory.

12



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write back caches:

Action Thread 0’s Cache Thread 1’s Cache Memory
Initially — — sum = 0
Thread 0 reads sum sum = 0 — sum = 0
Thread 0 adds 3 to sum sum = 3, Dirty — sum = 0
Thread 1 reads sum sum = 3, Dirty sum = 0 sum = 0
Thread 1 adds 7 to sum sum = 3, Dirty sum = 7, Dirty sum = 0
Thread 0 reads sum sum = 3, Dirty sum = 7, Dirty sum = 0

13



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write through caches:

Does it resolve the problem?

No.

Give it a try!

14



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write through caches:

Does it resolve the problem?
No.

Give it a try!

14



Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

=⇒ Cache Coherence Problem

15



Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

=⇒ Cache Coherence Problem

15



Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

=⇒ Cache Coherence Problem

15



Cache Coherence Problem

Abbildung: Illustrating the need for transaction serialization between writes (a) and between a write
and a read (b)

16



Cache Coherence Protocol

Cache Coherence Protocol has to solve Cache Coherence Problem

Cache Coherence Protocol must ensure write propagation and transaction serialization

17



Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor

advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit
advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;
invalidation occurs only once and subsequent writes do not generate any more traffic

18



Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor
advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit
advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;
invalidation occurs only once and subsequent writes do not generate any more traffic

18



Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor
advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit

advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;
invalidation occurs only once and subsequent writes do not generate any more traffic

18



Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor
advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit
advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;
invalidation occurs only once and subsequent writes do not generate any more traffic

18



Cache Coherence Protocol

requests are broadcast to all caches =⇒ broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
=⇒ directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1

19



Cache Coherence Protocol

requests are broadcast to all caches =⇒ broadcast/snoopy protocols

requests sent only to select caches

require directory to keep track of which caches should be involved
=⇒ directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1

19



Cache Coherence Protocol

requests are broadcast to all caches =⇒ broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
=⇒ directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1

19



Cache Coherence Protocol

requests are broadcast to all caches =⇒ broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
=⇒ directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1

19



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

20



Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

implementation via Lock and Unlock operations

if second thread tries to lock, the thread is blocked until the first thread unlocks

21



Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

implementation via Lock and Unlock operations

if second thread tries to lock, the thread is blocked until the first thread unlocks

21



Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

implementation via Lock and Unlock operations

if second thread tries to lock, the thread is blocked until the first thread unlocks

21



Synchronization Problem

Counter, initialized to 1

Lock: Decrease counter by 1.
If counter ≥ 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue
& stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter ≤ 0, release 1st thread from waiting queue
& start execution.

Race condition!
Everything that is blue must be executed atomically.
Cf. e.g. lecture on the topic of “Operating Systems”

22



Synchronization Problem

Counter, initialized to 1

Lock: Decrease counter by 1.
If counter ≥ 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue
& stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter ≤ 0, release 1st thread from waiting queue
& start execution.

Race condition!

Everything that is blue must be executed atomically.
Cf. e.g. lecture on the topic of “Operating Systems”

22



Synchronization Problem

Counter, initialized to 1

Lock: Decrease counter by 1.
If counter ≥ 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue
& stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter ≤ 0, release 1st thread from waiting queue
& start execution.

Race condition!
Everything that is blue must be executed atomically.
Cf. e.g. lecture on the topic of “Operating Systems”

22



Synchronization Problem

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Different instructions for different processors.

23



Synchronization Problem

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Different instructions for different processors.

23



Synchronization Problem

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Different instructions for different processors.

23


	Physical Cache Organization
	Logical Cache Organization
	Shared Memory Multiprocessors

