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United Cache Organization

Abbildung: Dual-core chip architecture similar to IBM Power4 (taken from Solohin, Fundamentals of
Parallel Multicore Architecture)

Details on how a crossbar is implemented follow later on.
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Tiled Cache Organization

Abbildung: Tiled multicore with a ring (top) and a 2D mesh (bottom) interconnection (taken from
Solohin, Fundamentals of Parallel Multicore Architecture)

R . . . Router, L2 cache tiles provide view of one single L2 cache
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Hybrid Cache Organization

Abbildung: Hybrid physical configuration of L2 caches (top) and distributed L2 caches backed up by a
united L3 cache (bottom) (taken from Solohin, Fundamentals of Parallel Multicore Architecture)
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Logical Cache Organization
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Logical Cache Organization

in traditional multiprocessor systems not feasible to implement a shared cache
organization since caches are located on different chips

in multicore CPUs cache tiles are located on a single die; hence accesses to remote
caches perform quickly
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Shared Memory Multiprocessors

8



Why shared memory multiprocessors?

multi-threaded programs written for a single processor system, will work automatically
on a shared memory multiprocessor
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Problems

cache coherence problem

memory consistency problem

synchronization problem
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Cache Coherence Problem

Abbildung: A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved?

No
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Abbildung: A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved? No
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Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

Assumption: access to sum occurs one at a time.

System without caches:
Thread 0 reads sum from memory, adds 3, stores it back to memory.

Thread 1 reads sum from memory (=3), adds 7, stores 10 back to memory.
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Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write back caches:

Action Thread 0’s Cache Thread 1’s Cache Memory
Initially — — sum = 0
Thread 0 reads sum sum = 0 — sum = 0
Thread 0 adds 3 to sum sum = 3, Dirty — sum = 0
Thread 1 reads sum sum = 3, Dirty sum = 0 sum = 0
Thread 1 adds 7 to sum sum = 3, Dirty sum = 7, Dirty sum = 0
Thread 0 reads sum sum = 3, Dirty sum = 7, Dirty sum = 0
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Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write through caches:

Does it resolve the problem?

No.

Give it a try!

14



Example – Accumulate two values to a sum

sum = 0; a[0] = 3; a[1] = 7

Thread 0 Thread 1
sum := sum + a[0]; sum := sum + a[1];

...
/* after Thread 1 has finished */

... := sum;

System with write through caches:

Does it resolve the problem?
No.

Give it a try!

14



Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

=⇒ Cache Coherence Problem
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Cache Coherence Problem

Abbildung: Illustrating the need for transaction serialization between writes (a) and between a write
and a read (b)
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Cache Coherence Protocol

Cache Coherence Protocol has to solve Cache Coherence Problem

Cache Coherence Protocol must ensure write propagation and transaction serialization
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Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor

advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit
advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;
invalidation occurs only once and subsequent writes do not generate any more traffic
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Cache Coherence Protocol

requests are broadcast to all caches =⇒ broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
=⇒ directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1
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Memory Consistency Problem

Example: Producer – Consumer

T1 (D,F ,X ) =
(0, 0, 0)

T2

d: D := 42; if: if F=0 then goto if;
f: F := 1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T2 may find F equal to 1 before T1 has set D to 42.

T2 may assign 0 to X

=⇒ Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved
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Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

implementation via Lock and Unlock operations

if second thread tries to lock, the thread is blocked until the first thread unlocks
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Synchronization Problem

Counter, initialized to 1

Lock: Decrease counter by 1.
If counter ≥ 0, thread may continue execution.
If counter < 0, enqueue thread in a waiting queue
& stop execution.

Unlock: Increase counter by 1.
If counter > 0, thread may continue execution.
If counter ≤ 0, release 1st thread from waiting queue
& start execution.

Race condition!
Everything that is blue must be executed atomically.
Cf. e.g. lecture on the topic of “Operating Systems”
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Synchronization Problem

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Different instructions for different processors.
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