— TION
WIEN ROUP

Multicores

Computer Systems

Johann Blieberger

Q Physical Cache Organization

9 Logical Cache Organization

© Shared Memory Multiprocessors

ATION

Physical Cache Organization

United Cache Organization

LI-I: direct mapped, 64KB each
L1-D: 2-way, 32KB each

L2 bank: 8-way, 0.5SMB each

1.3: 8-way 32MB
to other to other
fabric Fabric controller ™ fabric
controller controller

L3 tags & controller

Dual-core chip architecture similar to IBM Power4 (taken from Solohin, Fundamentals of
Parallel Multicore Architecture)

Details on how a crossbar is implemented follow later on.

Tiled Cache Organization

Tiled Muticore (with Ring)

]]

D] [mow] [Taw

‘iled Multicore (with 20 Mesh)

(=] {7} {7} {7]
X, ("} {7} (7]
(=} (=} {7} (=]
{7} (7]

Tiled multicore with a ring (top) and a 2D mesh (bottom) interconnection (taken from
Solohin, Fundamentals of Parallel Multicore Architecture)

R ... Router, L2 cache tiles provide view of one single L2 cache

Hybrid Cache Organization

Hybrid United/Distributed L2 Caches
Goealy

Core & L1 Core & L1 Core & L1 Core & L1

Core & L1 Core & L1 Core & L1

Core & L1 Core & L1 Core & L1 Core & L1

Distributed L2 Caches + United L3 Cache

(Core&Lt) (Core&Lt) (Core&L1) (Core &Ll)
L2 Cache L2 Cache L2 Cache see L2 Cache
I I 1 [

| L3 Cache |

Hybrid physical configuration of L2 caches (top) and distributed L2 caches backed up by a
united L3 cache (bottom) (taken from Solohin, Fundamentals of Parallel Multicore Architecture)

Logical Cache Organization

Logical Cache Organization

in traditional multiprocessor systems not feasible to implement a shared cache
organization since caches are located on different chips

Logical Cache Organization

in traditional multiprocessor systems not feasible to implement a shared cache
organization since caches are located on different chips

in multicore CPUs cache tiles are located on a single die; hence accesses to remote
caches perform quickly

Shared Memory Multiprocessors

Why shared memory multiprocessors?

Why shared memory multiprocessors?

multi-threaded programs written for a single processor system, will work automatically
on a shared memory multiprocessor

Problems

= cache coherence problem

. XVI{eIMATION .
SYSTEMS
_—-----. IGROUP 10

Problems

= cache coherence problem
= memory consistency problem

(TORC
ey mmm R - - - . . 10

Problems

= cache coherence problem
= memory consistency problem
= synchronization problem

(TORE
ey mmm R - - - . . 10

Cache Coherence Problem

A Bus-Based Multiprocessor System

@ @ © O

Cache Cache| Gache=| |SGache

| I I |

l Bus

Mem Controller (MC)

I
Main Memory

A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved?

Cache Coherence Problem

A Bus-Based Multiprocessor System

@ @ © O

Cache Cache| Gache=| |SGache

| I I |

l Bus

Mem Controller (MC)

I
Main Memory

A simple bus-based multiprocessor system with four cores (taken from Solohin,
Fundamentals of Parallel Multicore Architecture)

Can the abstraction of a single shared memory be automagically achieved? No

Example — Accumulate two values to a sum

sum = 0; a[0] =3; al1] =7

Thread 0 Thread 1

sum := sum + al0]; sum := sum + all];

/* after Thread 1 has finished */
1= sum;

Assumption: access to sum occurs one at a time.

Example — Accumulate two values to a sum

sum = 0; a[0] =3; al1] =7

Thread 0

Thread 1

sum := sum + al[0];

/* after Thread 1 has finished */
1= sum;

Assumption: access to sum occurs one at a time.

System without caches:

sum

Thread 0 reads sum from memory, adds 3, stores it back to memory.

sum + al1];

Example — Accumulate two values to a sum

sum = 0; a[0] =3; al1] =7

Thread 0 Thread 1

sum := sum + al0]; sum := sum + all];

/* after Thread 1 has finished */
1= sum;

Assumption: access to sum occurs one at a time.
System without caches:

Thread 0 reads sum from memory, adds 3, stores it back to memory.

Thread 1 reads sum from memory (=3), adds 7, stores 10 back to memory.

Example — Accumulate two values to a sum

sum = 0; a[0] =3; a[1] =7

Thread 0 Thread 1

sum := sum + al[0]; sum := sum + a[1];

/* after Thread 1 has finished */
1= sum;

System with write back caches:

Action Thread 0’s Cache Thread 1's Cache Memory
Initially — — sum = 0
Thread 0 reads sum sum = 0 — sum = 0
Thread 0 adds 3 to sum sum = 3, Dirty — sum = 0
Thread 1 reads sum sum = 3, Dirty sum = 0 sum = 0
Thread 1 adds 7 to sum sum = 3, Dirty sum = 7, Dirty sum = 0

Thread 0 reads sum sum = 3, Dirty sum = 7, Dirty sum = Q

Example — Accumulate two values to a sum

sum = 0; a[0] = 3; al1] =7

Thread 0 Thread 1

sum := sum + al[0]; sum := sum + a[1];

/* after Thread 1 has finished */
:= sum;

System with write through caches:

Does it resolve the problem?

Example — Accumulate two values to a sum

sum = 0; a[0] = 3; al1] =7

Thread 0 Thread 1

sum := sum + al[0]; sum := sum + a[1];

/* after Thread 1 has finished */
:= sum;

System with write through caches:

Does it resolve the problem?
No.

Give it a try!

Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

Conclusion

write policy of caches dictates how a change of a value in a cached copy should be
propagated to the outer level (e.g. main memory),

but does not dictate how a change in a cached copy should be propagated to other
copies in peer caches.

— Cache Coherence Problem

Cache Coherence Problem

P1 P2 P3 P4 P1 P2 P3
xis 0
wr(x=1)
wr(x=1) \
time \ "
v xis 1 X is 2 xis 0 X is 1

lllustrating the need for transaction serialization between writes (a) and between a write
and a read (b)

Cache Coherence Protocol

Cache Coherence Protocol has to solve Cache Coherence Problem

Cache Coherence Protocol must ensure write propagation and transaction serialization

Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor

Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor
advantageous when a write to a cache block tends to be followed by reads by other
processors

Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor

advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit

Cache Coherence Protocol

write update: directly updating all cached values upon a write by a processor
advantageous when a write to a cache block tends to be followed by reads by other
processors

write invalidate: invalidating all other cached values via dirty bit

advantageous when a write to a cache block tends to be followed by subsequent writes
to the same block;

invalidation occurs only once and subsequent writes do not generate any more traffic

Cache Coherence Protocol

requests are broadcast to all caches = broadcast/snoopy protocols

Cache Coherence Protocol

requests are broadcast to all caches = broadcast/snoopy protocols
requests sent only to select caches

Cache Coherence Protocol

requests are broadcast to all caches = broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
— directory protocols

Cache Coherence Protocol

requests are broadcast to all caches = broadcast/snoopy protocols

requests sent only to select caches
require directory to keep track of which caches should be involved
— directory protocols

For more details on how to implement cache coherence protocols see:
Yan Solohin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, Boca
Raton, FL, 2016, ISBN: 978-0-367-57528-1

Memory Consistency Problem

Example: Producer — Consumer

T (D, F,X) = T
(0,0,0)

d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T, may find F equal to 1 before 77 has set D to 42.

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T, may find F equal to 1 before 77 has set D to 42.
T> may assign 0 to X

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T, may find F equal to 1 before 77 has set D to 42.
T> may assign 0 to X

—> Memory Consistency Problem

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T, may find F equal to 1 before 77 has set D to 42.
T> may assign 0 to X

—> Memory Consistency Problem

example shows problem without caching

Memory Consistency Problem

Example: Producer — Consumer

T1 (D, F,X)= 7>
(0,0,0)
d: D := 42; if: if F=0 then goto if;
f: F :=1; x: X := D;

Out-of-order execution: compiler or CPU may reorder statements d and f because there
is no data dependency between them

Thus T, may find F equal to 1 before 77 has set D to 42.
T> may assign 0 to X

—> Memory Consistency Problem

example shows problem without caching

problem may become worse if caches are involved

Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section

implementation via Lock and Unlock operations

Synchronization Problem

want to ensure that only one of several threads enters a so-called critical section
implementation via Lock and Unlock operations

if second thread tries to lock, the thread is blocked until the first thread unlocks

Synchronization Problem

Counter, initialized to 1

Decrease counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, enqueue thread in a waiting queue
& stop execution.

Increase counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, release 1st thread from waiting queue
& start execution.

Synchronization Problem

Counter, initialized to 1

Decrease counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, enqueue thread in a waiting queue
& stop execution.

Increase counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, release 1st thread from waiting queue
& start execution.

Race condition!

Synchronization Problem

Counter, initialized to 1

Decrease counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, enqueue thread in a waiting queue
& stop execution.

Increase counter by 1.

If counter > 0, thread may continue execution.

If counter < 0, release 1st thread from waiting queue
& start execution.

Race condition!
Everything that is blue must be executed atomically.
Cf. e.g. lecture on the topic of “Operating Systems”

Synchronization Problem

= Atomicity via HW instructions.

(TORE

Synchronization Problem

Atomicity via HW instructions.

E.g.: Read-Modify-Write operations.

Synchronization Problem

Atomicity via HW instructions.
E.g.: Read-Modify-Write operations.

Different instructions for different processors.

	Physical Cache Organization
	Logical Cache Organization
	Shared Memory Multiprocessors

