
Prüfung - VU Discrete Mathematics - WS 2018

NACHNAME:		Vorname:		Matr. Nr.:	
-----------	--	----------	--	------------	--

- 1. (a) State Euler's formula relating the number of vertices, edges and faces in a graph. For which graphs is it valid?
 - (b) Prove the formula by using induction on the number of faces. You may use the formula relating the number of edges and the number of vertices in a tree without proof.
 - (c) A connected simple planar graph without triangles has at least twice as many edges as faces. Deduce that $K_{3,3}$ is not planar.
 - (d) Draw an explicit embedding of K_4 in the torus and deduce the Euler characteristic of the torus.

6 Punkte (2+2+1+1)

- (a) What is a flow Φ on G?
- (b) What is an augmenting path for Φ ?
- (c) What is a cut of G, and what is its capacity?
- (d) Suppose that there is no augmenting path for Φ . Define a cut whose capacity equals the value of Φ .
- (e) Find an augmenting path for the given flow in the graph below. Then indicate a minimal cut of the graph.

- 3. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph such that for every subset $W \subseteq V_1$, the set of neighbours $\mathcal{N}(W)$ has cardinality at least |W|. Let H be the digraph obtained from G by adding a source s and a sink t, and directing all edges from V_1 to V_2 . Let the weight of an edge from V_1 to V_2 be ∞ , and the weight of all other edges be 1. Let S be a minimal cut and let $W = S \cap V_1$. Prove that
 - (a) $S \cap V_2 \supseteq \mathcal{N}(W)$.
 - (b) $c(S) = |V_1 \setminus W| + |S \cap V_2|$.
 - (c) $c(S) \geq |V_1|$.

4 Punkte (2+1+1)