Problem Set 3

Problem 3.1 Consider the pdf

$$f_{\mathsf{x}}(x) = a \left(3e^{-|x|} + 4\delta(x) + 2\delta(x-7) \right), \quad a > 0.$$

Here, $\delta(\cdot)$ denotes the Dirac impulse.

- a) Find the constant a.
- b) Calculate the probability $P\{0 < x \le 7\}$.
- c) Calculate the probability $P\{x = 0\}$.
- d) Find the variance σ_{x}^{2} .

Problem 3.2 Consider the joint pdf

$$f_{\mathsf{x},\mathsf{y}}(x,y) = \left\{ \begin{array}{ll} b \cdot e^{-(x+y)}, & 0 < x < a \quad \text{and} \quad 0 < y < \infty \\ 0, & \text{otherwise} \end{array} \right.$$

- a) Find b (in terms of a) such that $f_{\mathsf{x},\mathsf{y}}(x,y)$ is a valid joint pdf.
- b) Find an expression for the joint cdf $F_{x,y}(x,y)$.
- c) Find the marginal pdfs $f_{\mathsf{x}}(x), f_{\mathsf{y}}(y)$.

Problem 3.3 Let x and y be two random variables with $\mu_x = 2$, $\mu_y = -1$, $P_x = 5$, $C_{x,y} = 3$. Let z = ax + y.

- a) Find the correlation $R_{x,z}$.
- b) Find a such that $R_{x,z} = 0$.
- c) Find the covariance $C_{\mathsf{x},\mathsf{z}}$ for the value of a found in the previous subtask.

Problem 3.4 Consider two random variables x, y whose joint pdf $f_{x,y}(x, y)$ is depicted in the figure below.

- a) Provide a mathematical expression for $f_{\mathsf{x},\mathsf{y}}(x,y)$.
- b) Find the marginal pdfs $f_{\mathsf{x}}(x), f_{\mathsf{y}}(y)$ and sketch them.
- c) Calculate the probability P{(x \le 0) \cap (y \le 1)}.

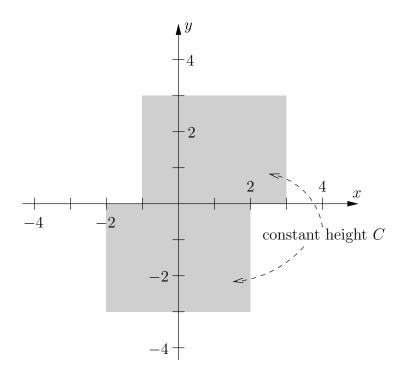


Figure 1: Sketch of the joint pdf $f_{\mathsf{x},\mathsf{y}}(x,y)$.