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Kronecker Product of Finite State Machines (FSMs)

Definition
Given an m-by-n matrix A and a p-by-q matrix B, their Kronecker product denoted by A® B
is a mp-by-nq block matrix defined by

21'18 C alv,,B
A® B = :
am’lB S am'nB
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Kronecker Product

Example

For example, if

a a
A— 1,1 a1.2
az1 ap2

and
bi1 bio bi3
B=|byi by bo3],
bz1 b3 b33
then

ap1bi1 aiibi2 ai1biz aipbin ar2biz aiobis
ap1bo1 ai1b2o ai1boz aipbai aizboz aiobos
A®B = a11b31 a@11bs2 a11b3z aiobz1 aiobso aiobss
az1b11 asibio axibiz az2bi1 axobio axobi
az1bo1 asibao axiboz azxabo1 anobao axobo
a2 1b31 ax1bzo azi1b3z axpobsi a2bsz axob33
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Kronecker Product

start — a start

Abbildung: FSMs A (left) and B (right)
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Kronecker Product

start —» a start e
D a
O, (o

Abbildung: FSMs A (left) and B (right)

Example
matrices
aa - ba
a b 0 a - ab - bb
a=(3 2)o=(0 ) aos=| ® - ®
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Kronecker Product

Initial and Final States

Let Sp and Sg be the initial state vectors of the operands, Fa and Fg their final state
vectors. Then the initial vector of the Kronecker product is given by Sy ® Sg and its final
vector is Fa ® Fg.

Example

(@)
()

SA = (1,0), SB = (1, 0), FA = (1), and FB = (1> Thus 5A®B = (1,0, 0,0) and

Fags =

— O O O

which simply state that the initial state of the Kronecker product FSM A® B is state 1 and
its final state is state 4. H
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Kronecker Product for FSMs

Abbildung: Graphical Representation of A® B




Kronecker Product for FSMs

Abbildung: Graphical Representation of A® B

matrix has size four
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Kronecker Product for FSMs

Abbildung: Graphical Representation of A® B

matrix has size four
only three states above
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Kronecker Product for FSMs

Abbildung: Graphical Representation of A® B

matrix has size four
only three states above
State 3 cannot be reached from the initial state 1!
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Kronecker Product for FSMs

start > 1 |_Da start > 1
b 2
2 2 Db

Both FSMs, A and B perform their state transitions in lockstep.

At the beginning, both FSMs are in their initial state. B has to proceed to state 2,
thereby generating output a. A has two possible successor states:

A stays in state 1, producing output a. This corresponds to state transition 1 — 2 in the
product FSM.

A proceeds to its state 2 (output: b). This corresponds to state transition 1 — 4 in the
product FSM.




Kronecker Product for FSMs

start = 1 [_>a start > 1

Both FSMs, A and B perform their state transitions in lockstep.

If the previous step was 1A, both FSMs can now produce together an arbitrary number
of ab-pairs. This corresponds to the transition 2 — 2 in the product FSM. When A
issues a b, B also has to produce a b. This corresponds to transition 2 — 4 in the
product FSM. Then both FSMs are in their final states. A cannot do a further state
transition and both FSMs and the product FSM terminate.




Kronecker Product for FSMs

start » a start »
b a
(2) G -

Both FSMs, A and B perform their state transitions in lockstep.

If the previous step was 1B, both FSMs are in their final states. Since A cannot
proceed, both FSMs and the product FSM terminate.




Kronecker Product for FSMs

Given two FSMs A and B, their Kronecker product FSM generates the same output than A
and B do when they execute in lockstep. []
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Kronecker Product for FSMs

start +
C
start @ @

Abbildung: FSMs C (left) and D (right)
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Kronecker Product for FSMs

start +
start t

Abbildung: FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions




Kronecker Product for FSMs

start ~ 1
¥C
start > 1 2
b{_Ja (C )d
2 3

FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions
D can terminate only after it has done an odd number of transitions
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2 3

FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions
D can terminate only after it has done an odd number of transitions
overall output of C ...(ab)*




Kronecker Product for FSMs

start ~ 1
¥C
start > 1 2
b{_Ja (C )d
2 3

FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions
D can terminate only after it has done an odd number of transitions
overall output of C ...(ab)*

overall output of D ... c(dc)*




Kronecker Product for FSMs

start ~ 1
¥C
start > 1 2
b{_Ja (C )d
2 3

FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions
D can terminate only after it has done an odd number of transitions

overall output of C ...(ab)*

overall output of D ... c(dc)*
the Kronecker product of C and D ...




Kronecker Product for FSMs

start ~ 1
¥C
start > 1 2
b{_Ja (C )d
2 3

FSMs C (left) and D (right)

C terminates only when it has done an even number of state transitions
D can terminate only after it has done an odd number of transitions

overall output of C ...(ab)*

overall output of D ... c(dc)*
the Kronecker product of C and D ...0.




Kronecker Product for FSMs

C®D=
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Kronecker Product for FSMs

start —~

ac

bd | ac

Abbildung: Graphical Representation of C ® D

the final state 2
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Kronecker Product for FSMs

start —~

ac

bd | ac

Abbildung: Graphical Representation of C ® D

the final state 2
cannot be reached from the initial state 1.
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Verifying Programs
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Verifying Programs

start @

c(lose) {_) o(pen)

U
ead)

r(

Abbildung: Graphical Representation of File Usage Scenario F
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Verifying Programs

start

Abbildung: Graphical Representation of File Usage System A
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Verifying Programs

00
oc or
ro
L. . . rc rr .
. . roo- . o o
A® F — . . . r . ® —
c R . . . . rc rr
. . . . C
co
cc cr
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Verifying Programs

Abbildung: Graphical Representation of A® F
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Verifying Programs

pairings rc, ro, ...do not make sense (lockstep!)
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Verifying Programs

pairings rc, ro, ...do not make sense (lockstep!)
we change the definition of the Kronecker product a little bit:
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Verifying Programs

pairings rc, ro, ...do not make sense (lockstep!)
we change the definition of the Kronecker product a little bit:
We assume that rc=ro=---=0
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Verifying Programs

pairings rc, ro, ...do not make sense (lockstep!)

we change the definition of the Kronecker product a little bit:
We assume that rc=ro=---=0

and for simplicity set oo = o, rr = r, and cc = c.




Verifying Programs

start

Abbildung: Graphical Representation of "new” A® F
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Verifying Programs

Figures are very similar
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Verifying Programs

Figures are very similar
In fact only the node IDs differ
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Verifying Programs

Figures are very similar
In fact only the node IDs differ

In graph theory, an isomorphism of graphs G and H is a bijection f between the node sets of
G and H such that any two nodes v and v of G are adjacent in G if and only if f(u) and
f(v) are adjacent in H. If an isomorphism exists between two graphs, then the graphs are
called isomorphic. We write G ~ H in such a case.




Verifying Programs

Figures are very similar
In fact only the node IDs differ

In graph theory, an isomorphism of graphs G and H is a bijection f between the node sets of
G and H such that any two nodes v and v of G are adjacent in G if and only if f(u) and
f(v) are adjacent in H. If an isomorphism exists between two graphs, then the graphs are
called isomorphic. We write G ~ H in such a case.

So, clearly the graphs of our example are isomorphic.




Verifying Programs

start

Abbildung: Graphical Representation of File Usage System B
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Verifying Programs

B: . . . ,B®F:
. . . r
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Verifying Programs

start —

Abbildung: Graphical Representation of B ® F
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Verifying Programs

Isomorphic?
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Verifying Programs

Isomorphic?

Definition

An isomorphism of two control flow graphs (CFGs) G and H is a bijection f between the
node sets of G and H such that any two nodes v and v of G are adjacent in G if and only if
f(u) and f(v) are adjacent in H. In addition, let r be the root node of G. Then f(r) has to
be the root node of H. For all final nodes s of G, f(s) have to be final nodes of H, and for
all final nodes t of H, f~1(t) have to be final nodes in G. If an isomorphism exists between
two CFGs, then the CFGs are called isomorphic which we denote by G ~ H.
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Verifying Programs

Isomorphic?

Definition

An isomorphism of two control flow graphs (CFGs) G and H is a bijection f between the
node sets of G and H such that any two nodes v and v of G are adjacent in G if and only if
f(u) and f(v) are adjacent in H. In addition, let r be the root node of G. Then f(r) has to
be the root node of H. For all final nodes s of G, f(s) have to be final nodes of H, and for
all final nodes t of H, f~1(t) have to be final nodes in G. If an isomorphism exists between
two CFGs, then the CFGs are called isomorphic which we denote by G ~ H.

With this definition we still have A® F ~ A but B® F % B because there is no final node in
this case.
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Verifying Programs

Abbildung: Graphical Representation of File Usage System C
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Verifying Programs

Abbildung: Graphical Representation of C ® F
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[somorphic?
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Verifying Programs

Isomorphic?

General Statement

Assume we pick a path on program P’s side, that complies to the usage scenario U.
Then a corresponding path will be present in P ® U.

Assume we pick a path on program P’s side, that does not comply completely to the
usage scenario U. Then a “corresponding” path in P ® U will end as soon as the path
does not comply to U. This will result in P 2 P® U.



Verifying Programs

[somorphic?

General Statement

Assume we pick a path on program P’s side, that complies to the usage scenario U.
Then a corresponding path will be present in P ® U.

Assume we pick a path on program P’s side, that does not comply completely to the
usage scenario U. Then a “corresponding” path in P ® U will end as soon as the path
does not comply to U. This will result in P 2 P® U.

Thus we can state:

Given P, a control flow graph (CFG) of a program, and a usage scenario U, program P
complies to U if and only if P~ P ® U.
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The Kronecker Sum
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The Kronecker Sum

= programs will use several objects (classes, modules, packages, ...) for implementing
their own task.
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The Kronecker Sum

programs will use several objects (classes, modules, packages, ...) for implementing
their own task.

checking against each of their usage scenarios could be done one after the other.




The Kronecker Sum

programs will use several objects (classes, modules, packages, ...) for implementing
their own task.

checking against each of their usage scenarios could be done one after the other.

here: check a program against two and more usage scenarios at the same time.




The Kronecker Sum

programs will use several objects (classes, modules, packages, ...) for implementing
their own task.

checking against each of their usage scenarios could be done one after the other.
here: check a program against two and more usage scenarios at the same time.

Kronecker sum.




The Kronecker Sum

Assume that U € M,(U) and W € M,(W) and that Y N W = ().
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The Kronecker Sum

Assume that U € M,(U) and W € My, (W) and that U N W = .
Introduce self loops on both sides.



The Kronecker Sum

Assume that U € M,(U) and W € M,(W) and that Y N W = ().
Introduce self loops on both sides.

UeW=U® <W+ <§{X> /m> + (U—i— (;vy) /n) W =
U W+U® <<§4x> /m> +UQW+ ((y;vy) /n) ® W

Note that U ® W = Z,.,,, because the edge labels of U and W are disjoint. Hence we get

Definition

UeW=UQIn+ 1, W.

MATION




The Kronecker Sum

With the definitions above, a program A can be checked against two usage scenarios U and
W by calculating

Ao(UaW)=Ao (U Inh+IHh W).
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The Kronecker Sum

We can even check a program against more than two usage scenarios at the same time.



The Kronecker Sum

We can even check a program against more than two usage scenarios at the same time.
In order to be able to write this in a concise way, we introduce

D~
xeX

similar to the sigma notation for standard sums.



The Kronecker Sum

We can even check a program against more than two usage scenarios at the same time.
In order to be able to write this in a concise way, we introduce

similar to the sigma notation for standard sums.

With the definitions above, a program A can be checked against usage scenarios U; where

i=1,...,k by calculating

AG (éU,)
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The Kronecker Sum

a E 01 = E 02
r r2

Abbildung: Graphical Representation of File Usage Scenarios U and W

LI [eMATION

SYSTEMS
__—-----.. GROUP




The Kronecker Sum

start

Abbildung: CFG of Program A
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The Kronecker Sum

and

<
I

2
I

1

(6)

01
n

02
r

01

02

r

n

1

(6]



The Kronecker Sum

UeW=URhb+hb W=

<;.1 ‘i;) () () ‘ (c;_ %)=

o1 - - 0o
01 & oo :
_|_ s
(& . n : - G n
O 01
& oo 01
a rn 02

cKT G n—+n



The Kronecker Sum

Abbildung: Graphical Representation of U & W
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Sum
Kronecker
The

AG (U W) =

o1

o1
o) .
rn .

rn

=1

1

=23

@




The Kronecker Sum

start

Abbildung: Graphical Representation of A® (U @ W)
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The Kronecker Sum

start —~ start
a
C

Abbildung: Our introductory example from a previous section
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Kronecker Sum

.a.
A=1- - cC

and
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Kronecker Sum

Kronecker Product 1

a

A®I3: ee e . . . c
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Kronecker Sum

Kronecker Product 2

b

h®B =

d
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Kronecker Sum

Kronecker Sum

ARhB+hL®B=1|- - - - - d - c
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The Kronecker Sum

Abbildung: Resulting Interleavings Graph
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The Kronecker Sum

For more on Kronecker Algebra and its many applications see
https://kronalg.blieberger.at.
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