L1 M1 - INTRODUCTION

Model:
a simplified or partial representation of reality, defined in order to accomplish a task or to reach
an agreement

System

Mapping Feature
A model is based on an original (=system)

Reduction Feature
A model only reflects a (relevant) selection/parts of the original‘s properties

Pragmatic Feature
A model needs to be usable in place of an original with respect to some purpose

Purpose can be classified into ... prescriptive, descriptive,
(predictive)

Never mistake the model for the reality
Attention: abstraction, abbreviation, approximation,
visualization, ...

Application area of modeling in Software Engineering
Models as drafts
Communication of ideas and alternatives
Objective: modeling per se

Models as guidelines
Design decisions are documented
Objective: instructions for implementation

Models as programs
Applications are generated automatically
Objective: models are source code and vice versa

L1 M2 - MDSE PRINCIPLES

& Model-Driven Software Engineering (MDSE) considers models as first-class citizens in
software engineering

+ Improved portability of software to new/changing technologies - model once, build
everywhere
+ Interoperability between different technologies can be automated

Models + Transformations = Software

Model-driven Architecture (MDA) is the particular vision
of MDD proposed by the Object Management Group
(OMG)

Model-Driven Development (MDD) is a development
paradigm that uses models as the primary artifact of
the development process

Model-Driven Engineering (MDE) is a superset of MDD
because it goes beyond of the pure development for example deployment artifacts

Model-Based Engineering (or “model-based development”) (MBE) is a softer version of MDE,
where models do not “drive” the process

Modeling Languages:
1) Domain-Specific (Modeling) Languages (DS(M)Ls) are languages that are designed specifically

for a certain domain

& DSLs have already an extensive use in in computer science

& Examples: HTML, SQL (SQL works only in the domain of relational databases)

2) General Purpose (Modeling) Languages (GP(M)Ls) are languages that can be applied to any

domain for (software- related) modeling purposes —
o Examples: UML, Petri nets, logic N

winstanceOfs % tinstanceOf»

Metamiodel /

4 Metamodeling Layers | awiite || P |
M3 (Meta-Metamodel) istanceons testanceots
M2 (Metamodel) Model 7

M1 (Model) e

MO (Model instance) e

Real world ininstancecfn
objects

model mapping, model correspondences, or model weaving ?

+ transformations themselves can be produced automatically by higher-level mapping rules
between models

+ defining a mapping between
elements of a model to elements of Application Application domain Meta-Level
another one

()]
£ . Meta-
1 { Modeling =% modeling
S language
. S 14 language
Model Transformations g (sbsracion (ottom-up) t
. < H Y
Transformations themselves can be seen i i _
. & + Transformation | | Transformation
as models! - Leads to higher-order 5 definition T
transformations < =
Construction (top-down)
g o
§ Artifacts — Platform __: j::::: :jmg
Types of models & {e.g- code) e uees

Figure 1: Model (Driven) Engineering - the basic
architecture

Models can be classified based on different dimensions
Concrete syntax: textual, graphical, hybrid
Content: requirements, design, deployment
Purpose: predictive, prescriptive, descriptive

In MDSE, the following distinction is useful

Static models: Focus on the static aspects of the system in terms of managed data and of
structural shape and architecture of the system

Dynamic models: Emphasize the dynamic behavior of the system by showing the execution
possibilities

Model Driven Architecture - MDA
Interoperability through platform independent models (PIM)

Standardization initiative of the Object Management Group (OMG), based on OMG standards,
particularly UML, MOF

Counterpart to CORBA on the modeling level: interoperability between different platforms

Modifications to the basic architecture - Separation of the model level

Platform Independent Models (PIM): valid for a set of (similar) platforms

Platform Specific Models (PSM): special adjustments for one specific platform

Requires model-to-model transformation (PIM-PSM) and model-to-code transformation
(PSM-Code)

CIM, PIM, PSM ?

Computation Independent Models (CIM)
Describe requirements and needs at a very abstract level, without any reference to
implementation aspects (e.g., description of user requirements or business objectives)

Platform Independent Models (PIM)
Define the behavior of the systems in terms of stored data and performed algorithms,
without any technical or technological details

Platform-Specific Models (PSM)
Define all the technological aspects in detail

Advantages/Disadvantages of Model Driven Architecture (MDA) ?
Advantages

Standardization of the Meta-Level

Separation of PIM and PSM (reuse)

Disadvantages
No special support for the development of the execution platform and the modeling

language
Modeling language practically limited to UML with profiles
Therefore limited code generation (typically no method bodies, user interface)

Drawing vs. modeling
& Models are not “just” pictures! Drawing
& Drawing Tool can not tell you if the Model is valid Tools

Difference between Drawing Tool and UML Editor/Modeling Tool:
Drawing Tool does not know syntax or semantic and the rules behind, if a class is drawn
(rectangle with label)

L2 M1 - METAMODELING — METAMODELING INTRODUCTION

Semantic, Syntax ?

Formal languages

-]
H o
| Semantics | o Meaning of the
Language elements, i.e., language elements
grammar

o

(0]

o Abstract Syntax |

ersistency and
model exchange Notation of the
language elements

®)
I—C°Serialization Syntax ‘ | Concrete Syntax | © ©

o

Abstract syntax: Defines the language concepts and how these concepts can be combined (~
grammar)

However, it does not define the notation or meaning of the concepts
Concrete syntax: Notation to illustrate the language concepts intuitively (2 ways: textual or
graphical)
Semantics: Defines the meaning of the language concepts, how language concepts are
interpreted
Serialization syntax: For persistent storage and model exchange between tools (XML)

formal languages for the definition of languages - so-called meta-languages

in grammarware (i.e., the technical space where languages are defined in terms of grammars)
Examples for meta-languages: BNF, EBNF

EBNF in M3 (Meta-Metamodel Layer): Definition of EBNF in EBNF - reflexive

EBNF in M2 (Meta-Model Layer): Definition of Java in EBNF — grammar

The abstract and the concrete syntax are defined

L IK K JBR BRI 4

Metamodels define language concepts and their grammar for the specification of models
»meta« means »about« - hence a metamodel states something »about« other models

Generalization on a higher level of abstraction by means of the meta-metamodel
Language concepts for the definition of a metamodel
MOF (Meta Object Facility) is considered as a universally accepted meta-metamodel

4-layer Metamodeling Stack Examples

«eonformsTon | v " OF = Meta Object Racility
M3 | Meta-Metamodel Slinesly Meta- MOF, Ecore
Language
)

T
«conformsTo» | Entity Relationship

defi
M2 Metamodel Erne-1p: Language ‘ ‘ UML, ER, ...

T
«conformsTo» |

M1 System ‘ ‘ UniSystem, ... J

«conformsTo» |

Model represents p System A UniSystem
MO Instance Snapshot Snapshot

Language
Engineering

Domain
Engineering

Model/metamodel co-evolution problem
Metamodel is changed
Models already exist and may become invalid

Changes that may break conformance relationship
Deletion and renaming of metamodel elements

Conformance relationship covers different constraints
Example: The type of an object must exist in the metamodel, i.e., there has to be a class with
the same name as given as type name of an object.

¢ meta-metamodel or metamodel language - a metamodel is also a model

L3 M1 - OBJECT CONSTRAINT LANGUAGE (OCL) — OCL INTRODUCTION

Graphical modeling languages are often not able to describe all facets of a problem description
MOF, UML, ER

Formal specification languages
Mostly based on set theory or predicate logic
Requires good mathematical understanding
Mostly used in the academic area, but hardly used in the industry
Challenging to learn and to apply
Problems when used for large systems

Object Constraint Language (OCL):
Combination of modeling languages and formal specification languages
Not a programming language

OCL usage
1) Constraints in UML models

2) Constraints in metamodels
Invariants for metamodel classes
Derived attributes and references for metamodel classes
Definition of well-formedness rules attached to metamodels

3) Query language
similar to SQL for DBMS, XPath and XQuery for XML
Often used in transformation languages

OCL: fields of application
Invariants
Pre-/Postconditions
Query operations
Initial values
Attribute/operation definition
Side effects are not allowed in OCL! Only get methods are allowed, no set methods

Constraint language

r Language definition (metamodels) —
well-formedness rules

~ Invariants -

" Formal definition of softwaré%

systems (models) ‘ Query language
Invariants /

_ Pre-/Postconditions ' = Model transformations
= Code generation

Queries

Invariant ?

& OCL invariants are OCL expressions that return a Boolean value indicating whether a model
element fulfills the invariant

& Invariant means that this is always true, must be always true

¢ Invariant of TU Wien -> we are all humans, this is true for all in the TU

On which level is a OCL constraint defined and evaluated?
On model but also on meta model level
OCL is defined on the model level and evaluated/executed on the instance level

A context has to be assigned to each OCL- e — context Employee
Employee |- —
statement W inv: self.age> 18)
Starting address - for which model element is =
the OCL statement defined " [context Employee
Specifies which model elements can be reached 7 inv:age>18
using path expressions .

OCL can be shown in two different ways
As a comment
Separate document file

OCL is a typed language
Predefined types (Integer, Boolean, Set, Bag) and User-defined Types (Instances of Class in MOF)

OCL Expressions:
Each OCL expression has a typed return value
OCLConstraint is an OCLExpression with Boolean return value

Abstract syntax of OCL is described as a metamodel

OCL Standard Library — Types:

oclisTypeOfitype:OclType): Boolean

+ True, if type is the type of obj (true only if same direct type)
context Student

self.ocllsTypeOf(Person) : false

self.ocllsTypeOf(Student) : true

oclisKindOf(type:OclType): Boolean

o True, if type is a direct or indirect supertyp or the type of obj
context Student

self.oclisKindOf(Person) : true

self.oclisKkindOf(Student) : true

OCL is based on a three-valued (trivalent) logic
Expressions are mapped to the three values {true, false, undefined}

Undefined: Return value if an expression fails
1. Access on the first element of an empty set
2. Error during Type Casting

Collection is an abstract supertype for all set types
Caution: Operations with a return value of a set-valued type create a new collection (no side
effects)

Set - no duplicates
Bag - with duplicates

Model operations vs. OCL operations

Bottle

*
) {ordered} Container
isEmpty() : Boolean content

OCL-Constraint Semantik

First bottle in each container
instance has to be empty

context Container
inv: self.content -> first().isEmpty()

| S

inv: self.content -> isEmpty() not contain bottles

context Container J Container instances must

Iterator-based operations:

select(exp) : Collection - return subset of collection, iterate over complete collection and
collect elements

reject(exp) : Collection - return subset of collection, iterate over complete collection and
collect elements

collect(exp) : Collection - returns a new collection from an existing one. It collects the
Properties of the objects and not the objects itself. Result of collect always Bag<T>

iterate(...) - Iterate over all elements of a Collection (Generic operation)

L3_M2 - OBJECT CONSTRAINT LANGUAGE (OCL) — OCL TooLS EXAMPLES

L4 M1 - TEXTUAL MODELING LANGUAGES

+ One abstract syntax may have multiple concrete syntaxes (one to many relation)

Textual Languages:

+ Generic Syntax
Generic serialization of models
Advantage: Metamodel is sufficient, i.e., no concrete syntax definition is needed
Disadvantage: Syntax is generic and not domain-specific; no syntactic sugar
Example: XMI (OMG Standards)

+ Language-specific Syntax
Example framework: Xtext (Eclipse plug-in)
Metamodel First
(this is done in the lecture - assignments - first assignment metamodel was specified and now in
second assignment Step 2)
Step 1: Specify metamodel
Step 2: Specify textual syntax
Grammar First
Step 1: Syntax is specified by a grammar (concrete syntax & abstract syntax)
Step 2: Metamodel is derived from grammar

L4 M2 — TEXTUAL MODELING LANGUAGES - XTEXT
Scoping

IScope scope_[EClassName]q_LERe-Fer‘enceName](PﬂyType context, EReference ref)

T T T
Name of the class Name of the Parse context Targeted
defining the reference reference (Type of elementin reference
which the reference is
o be set)

Example:

public IScope scope_Entity_extends(Entity entity, EReference eReference)

& Scoping enables the definition of the references visibility in a Xtext grammer

L5 M1 - GRAPHICAL MODELING LANGUAGES - INTRODUCTION

public IScope scope_Transition_state(Transition transition, EReference eReference) {
// Self transitions are not allowed
if (eReference.equals(StatemachinesPackage.Literals.TRANSITION _STATE))
return Scopes.scopeFor(getAllowedStates(transition));
return IScope.NULLSCOPE;

}

L5 M2 - GRAPHICAL MODELING LANGUAGES - GRAPHICAL CONCRETE SYNTAX

3 Graphical Concrete Syntax Approaches
& Mapping-based Approach
& Annotation-based Approach
¢ APIl-based Approach

Mapping-based Approach

Explicit mapping model between abstract syntax Abstract Syntax Concrete Syntax
(i.e., the metamodel) and concrete syntax
Example: GMF (Graphical Model Framework from AS2CS

Eclipse), Sirius

Annotation-based Approach
The metamodel is annotated with concrete syntax
information
Ecore metamodels are annotated with Graphical
Concrete Syntax information

Example: Eugenia

Abstract Syntax Concrete Syntax

API-based Approach

Concrete syntax is described by a programming Abstract Syntax
language using a dedicated API for graphical
modeling editors &

Example: Graphiti Metamodel | | Concrete SyntaxJ
API ;J

	L1_M1 - Introduction
	L1_M2 - MDSE Principles
	L2_M1 – Metamodeling – Metamodeling Introduction
	L3_M1 - Object Constraint Language (OCL) – OCL Introduction
	L3_M2 - Object Constraint Language (OCL) – OCL Tools Examples
	L4_M1 – Textual Modeling Languages
	L4_M2 – Textual Modeling Languages - Xtext
	L5_M1 - Graphical Modeling Languages - Introduction
	L5_M2 - Graphical Modeling Languages - Graphical Concrete Syntax

