
L1_M1 - INTRODUCTION
Model:
a simplified or partial representation of reality, defined in order to accomplish a task or to reach
an agreement

Mapping Feature
A model is based on an original (=system)

Reduction Feature
A model only reflects a (relevant) selection/parts of the original‘s properties

Pragmatic Feature
A model needs to be usable in place of an original with respect to some purpose

Purpose can be classified into … prescriptive, descriptive,
(predictive)

Never mistake the model for the reality
 Attention: abstraction, abbreviation, approximation,▪

visualization, …

Application area of modeling in Software Engineering
Models as drafts

 Communication of ideas and alternatives▪
 Objective: modeling per se▪

Models as guidelines
 Design decisions are documented▪
 Objective: instructions for implementation▪

Models as programs
 Applications are generated automatically▪
 Objective: models are source code and vice versa▪

L1_M2 - MDSE PRINCIPLES

 Model-Driven Software Engineering (MDSE) considers models as first-class citizens in
software engineering

 Improved portability of software to new/changing technologies – model once, build
everywhere

 Interoperability between different technologies can be automated

Models + Transformations = Software

Model-driven Architecture (MDA) is the particular vision
of MDD proposed by the Object Management Group
(OMG)

Model-Driven Development (MDD) is a development
paradigm that uses models as the primary artifact of
the development process

Model-Driven Engineering (MDE) is a superset of MDD
because it goes beyond of the pure development for example deployment artifacts

Model-Based Engineering (or “model-based development”) (MBE) is a softer version of MDE,
where models do not “drive” the process

Modeling Languages:
1) Domain-Specific (Modeling) Languages (DS(M)Ls) are languages that are designed specifically
for a certain domain
 DSLs have already an extensive use in in computer science
 Examples: HTML, SQL (SQL works only in the domain of relational databases)
2) General Purpose (Modeling) Languages (GP(M)Ls) are languages that can be applied to any
domain for (software- related) modeling purposes
 Examples: UML, Petri nets, logic

4 Metamodeling Layers
M3 (Meta-Metamodel)
M2 (Metamodel)
M1 (Model)
M0 (Model instance)

model mapping, model correspondences, or model weaving ?
 transformations themselves can be produced automatically by higher-level mapping rules

between models
 defining a mapping between

elements of a model to elements of
another one

Model Transformations
Transformations themselves can be seen
as models! → Leads to higher-order
transformations

Types of models
Figure 1: Model (Driven) Engineering - the basic
architecture

Models can be classified based on different dimensions
 ▪ Concrete syntax: textual, graphical, hybrid
 ▪ Content: requirements, design, deployment
 ▪ Purpose: predictive, prescriptive, descriptive
 …▪

In MDSE, the following distinction is useful
 ▪ Static models: Focus on the static aspects of the system in terms of managed data and of

structural shape and architecture of the system
 ▪ Dynamic models: Emphasize the dynamic behavior of the system by showing the execution

possibilities

Model Driven Architecture - MDA
Interoperability through platform independent models (PIM)

 Standardization initiative of the Object Management Group (OMG), based on OMG standards, ▪
particularly UML, MOF

 Counterpart to CORBA on the modeling level: interoperability between different platforms▪

Modifications to the basic architecture - Separation of the model level
 ▪ Platform Independent Models (PIM) : valid for a set of (similar) platforms
 ▪ Platform Specific Models (PSM) : special adjustments for one specific platform
 Requires model-to-model transformation (PIM-PSM) and model-to-code transformation ▪

(PSM-Code)

CIM, PIM, PSM ?

Computation Independent Models (CIM)
 Describe requirements and needs at a very abstract level, without any reference to ▪

implementation aspects (e.g., description of user requirements or business objectives)

Platform Independent Models (PIM)
 Define the behavior of the systems in terms of stored data and performed algorithms, ▪

without any technical or technological details

Platform-Specific Models (PSM)
 Define all the technological aspects in detail▪

Advantages/Disadvantages of Model Driven Architecture (MDA) ?
Advantages

 Standardization of the Meta-Level▪
 Separation of PIM and PSM (reuse)▪

Disadvantages
 No special support for the development of the execution platform and the modeling ▪

language
 Modeling language practically limited to UML with profiles▪
 Therefore limited code generation (typically no method bodies, user interface)▪

Drawing vs. modeling
 Models are not “just” pictures!
 Drawing Tool can not tell you if the Model is valid

Difference between Drawing Tool and UML Editor/Modeling Tool:
Drawing Tool does not know syntax or semantic and the rules behind, if a class is drawn
(rectangle with label)

L2_M1 – METAMODELING – METAMODELING INTRODUCTION

Semantic, Syntax ?

Abstract syntax: Defines the language concepts and how these concepts can be combined (~
grammar)

 However, it ▪ does not define the notation or meaning of the concepts
Concrete syntax: Notation to illustrate the language concepts intuitively (2 ways: textual or
graphical)
Semantics: Defines the meaning of the language concepts, how language concepts are
interpreted
Serialization syntax: For persistent storage and model exchange between tools (XML)

 formal languages for the definition of languages – so-called meta-languages
 in grammarware (i.e., the technical space where languages are defined in terms of grammars)
 Examples for meta-languages: BNF, EBNF
 EBNF in M3 (Meta-Metamodel Layer): Definition of EBNF in EBNF – reflexive
 EBNF in M2 (Meta-Model Layer): Definition of Java in EBNF – grammar
 The abstract and the concrete syntax are defined

Metamodels define language concepts and their grammar for the specification of models
»meta« means »about« - hence a metamodel states something »about« other models

Generalization on a higher level of abstraction by means of the meta-metamodel
 Language concepts for the definition of a metamodel▪
 ▪ MOF (Meta Object Facility) is considered as a universally accepted meta-metamodel

Model/metamodel co-evolution problem
 Metamodel is changed▪
 Models already exist and may become invalid▪

Changes that may break conformance relationship
 Deletion and renaming of metamodel elements▪

Conformance relationship covers different constraints
 Example: The type of an object must exist in the metamodel, i.e., there has to be a ▪ class with

the same name as given as type name of an object.

 meta-metamodel or metamodel language - a metamodel is also a model

L3_M1 - OBJECT CONSTRAINT LANGUAGE (OCL) – OCL INTRODUCTION

Graphical modeling languages are often not able to describe all facets of a problem description
 ▪ MOF, UML, ER

Formal specification languages
Mostly based on set theory or predicate logic▪
Requires good mathematical understanding▪
Mostly used in the academic area, but hardly used in the industry▪
Challenging to learn and to apply▪
Problems when used for large systems▪

Object Constraint Language (OCL):
Combination of modeling languages and formal specification languages

Not a programming language▪

OCL usage
1) Constraints in UML models
2) Constraints in metamodels

 ▪ Invariants for metamodel classes
 Derived attributes and references for metamodel classes▪
 Definition of well-formedness rules attached to metamodels▪

3) Query language
 similar to SQL for DBMS, XPath and XQuery for XML▪
 Often used in transformation languages▪

OCL: fields of application
Invariants▪
Pre-/Postconditions▪
Query operations▪
Initial values▪
Attribute/operation definition▪

Side effects are not allowed in OCL! Only get methods are allowed, no set methods

Invariant ?
 OCL invariants are OCL expressions that return a Boolean value indicating whether a model

element fulfills the invariant
 Invariant means that this is always true, must be always true
 Invariant of TU Wien -> we are all humans, this is true for all in the TU

On which level is a OCL constraint defined and evaluated?
On model but also on meta model level
OCL is defined on the model level and evaluated/executed on the instance level

A context has to be assigned to each OCL-
statement

 Starting address – for which model element is▪
the OCL statement defined

 Specifies which model elements can be reached▪
using path expressions

OCL can be shown in two different ways
 As a comment▪
 Separate document file▪

OCL is a typed language
Predefined types (Integer, Boolean, Set, Bag) and User-defined Types (Instances of Class in MOF)

OCL Expressions:
 Each OCL expression has a ▪ typed return value
 OCLConstraint is an OCLExpression with ▪ Boolean return value

Abstract syntax of OCL is described as a metamodel

OCL Standard Library – Types:

oclIsTypeOf (type:OclType): Boolean
 True, if type is the type of obj (true only if same direct type)
context Student
self.oclIsTypeOf(Person) : false
self.oclIsTypeOf(Student) : true

oclIsKindOf (type:OclType): Boolean
 True, if type is a direct or indirect supertyp or the type of obj
context Student
self.oclIsKindOf(Person) : true
self.oclIsKindOf(Student) : true

OCL is based on a three-valued (trivalent) logic
 Expressions are mapped to the three values ▪ {true, false, undefined}

Undefined: Return value if an expression fails
1. Access on the first element of an empty set
2. Error during Type Casting

 ▪ Collection is an abstract supertype for all set types
 ▪ Caution: Operations with a return value of a set-valued type create a new collection (no side

effects)

Set – no duplicates
Bag – with duplicates

Iterator-based operations:

▪select(exp) : Collection → return subset of collection, iterate over complete collection and
collect elements
▪reject(exp) : Collection → return subset of collection, iterate over complete collection and
collect elements
▪collect(exp) : Collection → returns a new collection from an existing one. It collects the
Properties of the objects and not the objects itself. Result of collect always Bag<T>

▪iterate(...) – Iterate over all elements of a Collection (Generic operation)

L3_M2 - OBJECT CONSTRAINT LANGUAGE (OCL) – OCL TOOLS EXAMPLES

L4_M1 – TEXTUAL MODELING LANGUAGES

 One abstract syntax may have multiple concrete syntaxes (one to many relation)

Textual Languages:

 Generic Syntax
 Generic serialization of models▪
 ▪ Advantage: Metamodel is sufficient, i.e., no concrete syntax definition is needed
 ▪ Disadvantage: Syntax is generic and not domain-specific; no syntactic sugar
 Example: XMI (OMG Standards)▪

 Language-specific Syntax
 Example framework: Xtext (Eclipse plug-in)▪

Metamodel First
(this is done in the lecture - assignments - first assignment metamodel was specified and now in
second assignment Step 2)
Step 1: Specify metamodel
Step 2: Specify textual syntax
Grammar First
Step 1: Syntax is specified by a grammar (concrete syntax & abstract syntax)
Step 2: Metamodel is derived from grammar

L4_M2 – TEXTUAL MODELING LANGUAGES - XTEXT
Scoping

 Scoping enables the definition of the references visibility in a Xtext grammer

L5_M1 - GRAPHICAL MODELING LANGUAGES - INTRODUCTION

L5_M2 - GRAPHICAL MODELING LANGUAGES - GRAPHICAL CONCRETE SYNTAX

3 Graphical Concrete Syntax Approaches
 Mapping-based Approach
 Annotation-based Approach
 API-based Approach

Mapping-based Approach
Explicit mapping model between abstract syntax
(i.e., the metamodel) and concrete syntax

 Example: GMF (Graphical Model Framework from▪
Eclipse), Sirius

Annotation-based Approach
The metamodel is annotated with concrete syntax
information
Ecore metamodels are annotated with Graphical
Concrete Syntax information

 Example: Eugenia▪

API-based Approach
Concrete syntax is described by a programming
language using a dedicated API for graphical
modeling editors

 Example: Graphiti▪

	L1_M1 - Introduction
	L1_M2 - MDSE Principles
	L2_M1 – Metamodeling – Metamodeling Introduction
	L3_M1 - Object Constraint Language (OCL) – OCL Introduction
	L3_M2 - Object Constraint Language (OCL) – OCL Tools Examples
	L4_M1 – Textual Modeling Languages
	L4_M2 – Textual Modeling Languages - Xtext
	L5_M1 - Graphical Modeling Languages - Introduction
	L5_M2 - Graphical Modeling Languages - Graphical Concrete Syntax

