
Computernumerik (Visual Computing) Test 1

22.November 2024

Time: 100 minutes

I tried to copy the exact test questions as good as possible. The given solu-
tions are just my personal solutions, so no guarantee they are 100% correct.

1.1

Given are the knots x0 = −1, x1 = 0, x2 = 1 and values f0 = 2, f1 = 0, f2 = 0

a) Calculate the Lagrange polynomials li and the resulting quadratic interpo-
lation polynomial p(x).

l0 = x−0
−1−0 · x−1

−1−1 = x2−x
2

l1 = x+1
0+1 · x−1

0−1 = x2−1
−1 = 1− x2

l2 = x+1
1+1 · x−0

1−0 = x2+x
2

p(x) =
∑n

i=0 f(xi)li(x) = 2(x
2−x
2 ) = x2 − x

b) Assume the form p(x) = α+βx+ γx2. Let vector x = (α, β, γ)T . Create a
system of linear equations in form of the matrix A and vector b, so that Ax = b.
You do not have to solve the system. Use xo, x1, x2 and f0, f1, f2 as stated in
the beginning.1 x0 x20
1 x1 x21
1 x2 x22

 α
β
γ

 =

α+ βx0 + γx2
0

α+ βx1 + γx2
1

α+ βx2 + γx2
2

 =

p(x0)
p(x1)
p(x2)

 =

f0
f1
f2



=⇒ A =

1 -1 1
1 0 0
1 1 1

 , b =

2
0
0



1



c) Explain why the Chebyshev knots are a good choice. What is the growth
of the Lebesgue constant in terms of n when using Chebyshev knots.

When sampling uniformly, the biggest errors occur near the interval borders. To
counter that, the Chebyshev knots have a higher sampling rate near the interval
borders.

ACheb
n ≤ 2

π ln(n+ 1) + 1 → it grows logarithmically

1.2

a) Estimate a bound for ||f − p||∞,[a,b] in terms of f (n+1).

script WS23/24, page 15

||f − p||∞,[a,b] ≤ ||ωn+1||∞,[a,b]
||f(n+1)||∞,[a,b]

(n+1)! ≤ (b− a)n+1 ||f(n+1)||∞,[a,b]

(n+1)!

b) Define the Lebesgue constant in terms of the knots x0, ...xn.

An = max
x∈[−1,1]

∑n
i=0 |li(x)|

where li is the Lagrange polynomial of xi

c) Bound the error ||f − Inf ||∞,[−1,1] in terms of the Lebesgue constant.

script WS23/24, page 23

||f − Inf ||∞,[−1,1] ≤ (1 +An)min
q∈Pn

||f − q||∞,[−1,1]

1.3

Given is the Quadrature formula Q(f) = 1
2f(

1
4 ) +

1
2f(

3
4 )

a) Is Q(f) exact for f(x) = x2 + 1 on the interval [0,2]?∫ 2

0
x2 + 1dx = 4

3 = 64
48

Q(f) = 1
2 · 17

16 + 1
2 · 25

16 = 21
16 = 63

48

−→ error= 1
48

b) What is the degree of exactness of Q(f)? Justify your answer.

We will check if Q(f) is exact for a basis of Pn on the interval [0,1].
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Po: f(x) = 1,
∫ 1

0
1dx = 1, Q(f) = 1 ✓

P1: f(x) = x,
∫ 1

0
xdx = 1

2 , Q(f) = 1
2 ✓

As seen in a), Q(f) ist not exact for all p ∈ P2. Thus, the degree of exactness is
1.

c) What is the degree of exactness for Gaussian quadrature when using 2
interpolation points? What is the general degree of exactness for Gaussian
quadrature using n+ 1 interpolation points?

n+ 1 points → degree 2n+ 1

2 points → degree 2(1) + 1 = 3

1.4

ϕ(x) =
√
2x+ 1− 1, x > 0

Estimate an upper bound on the relative condition number of ϕ(x). Would
you consider the problem well-conditioned? What issues could arise when x is
near 0? Give a stable implementation of ϕ(x).

ϕ′(x) = 2 · 1
2 (2x+ 1)−

1
2 = 1√

2x+1

κrel(x) =
|ϕ′(x)|
|ϕ(x)| |x| = | 1√

2x+1
| · 1

|
√
2x+1−1| · |x|

x>0
= 1√

2x+1
· 1√

2x+1−1
· x

= 1√
2x+1

· (
√
2x+1+1)

(
√
2x+1−1)(

√
2x+1+1)

· x

= 1√
2x+1

·
√
2x+1+1
2x · x =

√
2x+1+1

2
√
2x+1

= 1
2 · (

√
2x+1√
2x+1

+ 1√
2x+1

)

= 1
2 (1 +

1√
2x+ 1︸ ︷︷ ︸
≤1

) ≤ 1
2 (1 + 1) = 1

The problem is well-conditioned because κrel ≤ 1 for all x > 0.
Near 0 the problem arises, that we subtract 2 very similar numbers from each
other, which is ill-conditioned. A stable implementation would be:

ϕ(x) =
√
2x+ 1− 1 = (

√
2x+1−1)·(

√
2x+1+1)√

2x+1+1
= (

√
2x+1−1)·(

√
2x+1+1)√

2x+1+1
= 2x√

2x+1+1

Since
√
·, ·

· , ·,+ are all well-conditioned.
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1.5

Decide if True or False.

a)

1. For a function f and knots x0, ..., xn there exists a unique interpolation
polynomial p ∈ Pn that interpolates f in x0, ..., xn. True

2. More interpolation knots always mean a lower error. False

3. For Lagrange-interpolation with uniformly sampled knots, the Lebesgue
constant grows with O(log n). False (growth is exponential, see script
WS23/24, page 24)

b)

1. The cost for evaluating a polynomial p ∈ Pn with the Neville Scheme is
O(n2). True

2. Taking the square root of a positive number is well-conditioned. True

3. If a problem is well conditioned, then an algorithm that realizes it is always
stable. False

c)

1. Quadrate rules with
∑

ωi = 1 on the interval [0,1] are always correct for
constant functions. True

2. The compostite Simpson rule converges with order 3. False (Order 4,
script WS23/24, page 47)

3. The weights for Gaussian quadrature are always positive. True

d) Fill in the blanks:

1. The composite trapezoidal rule is of order (2) .

2. The simpson rule has a degree of exactness of (3) .

3. Subtraction of two similar number is (ill) conditioned.
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