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B1-1 Recap - Processor Basics
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Processor: Instruction Interface

A program consists of a list of instructions
* Typical aninstruction is a 16/32/64 bit digital value

. il'he i)nstruction is a single command the processor should execute, e.g., add two values (more on this
ater

 The program counter (PC) points to the current position in the program, which is executed on the
processor.

 PCisan address (16/32/64 bit digital value) where to load instructions from

Program

instrl in machine code Program counter (PC)
instr2 in machine code < Processor

instr3 in machine code

instr4 in machine code

instr5 in machine code Instructions

\ 4
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Processor: Data Interface

e Some instructions can read or write from the data interface

* Load instruction:

 Putsan address (16/32/64 bit digital value) on the address bus

* Receives a read value (16/32/64 bit digital value)on the Rdata bus
e Store instruction

* Putsan address (16/32/64 bit digital value) on the address bus

*  Puts a write value (16/32/64 bit digital value)on the Wdata bus

Program counter (PC) Read data (Rdata)
< Processor >

Write data (Wdata)

<

v

Instructions >
Data Address (Daddr)
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Instruction Memory

* Address is supplied (e.g. program counter PC)

* Returns the value stored at the input address mem|[PC]

Instruction
Memory ) ) )
pC IMEM[pc] := instr in machine code
—_— —| addr data —
31 0 Instruction
Memory

0x00 | 0x1500B8D3
0x04 | Ox1500A4D3
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Data Memory

 Read access
e Address is supplied
* Returns the value stored at the input address mem|[Daddr]

Data 31 0 Data
Memory Memory
Daddr DMEM[Daddr] OxA0O0 |dataword 1
— —p] addr 0xA04 |data word 2
data_o b= —>
—»|data_in
—_ »|ctrl_in ctrl_o >

- Write access
- Address is supplied
- Returns the value stored at the input address mem[Daddr]

Data 31 0 Data
Daddr Memory OxAO0 |dataword 1 Memory
— ——]addr OxAO4 |data word 3
data_o —
. —]data_in

v

V1 — —_— | ctrl_in ctrl_o A 5




Register File Memory

* Processors save some values not in memory but in a bank of registers inside the processor
* Theinstructions needs to read usually more than one value from this bank and write usually one value
 The address is usually very small (4-5 bit) so the register file stores typically 16 or 32 values

* The register file is therefore usually realized with a special small SRAM, from which you can read two
values and write one value

« We give two read register addresses rs1 and rs2 and the memory returns to read values regs[rs1]
and regs[rs2]

 We give one write register address rd and the memory stores the write value regs[rD]=value

rs1 — AR1T  Register oo L | reoqirst)
File
rs2 —| AR2 DR2 > regs[rs2]
rd = AW
Value » DW
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Register File is Inside Processor

Processor
»| AR1  Register DR1
- File
" AR DR2
" AW
DW
Instruction Memory Interface v v Data Memory Interface
rs1 rs2 rd Value reg rsl reg_rs2
Data
PC Memory
. DAddr » addr
Instruction data_o
Memory Processor Logic Wdata »|data_in
» Inst »| ctrl_in ctrl_o
addr data nstr crii [ _
Rdata |e

V1.0 ACA 9



V1.0

B1-2 RISC-V Instruction Set Architecture
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What is an Instruction Set Architecture (ISA)?

 The ISA describes:
* the processor state organization (registers)
 what instructions a processor executes.
 How the instructions are encoded in machine code.
* How the assembly of the instructions look likes.
« Some more processor behavior (exceptions, ...)

* A cross-compiler can generate the assembly code for a certain processor using the ISA
(ISA is the interface between compiler and hardware)

* |nstructions are the ,,words“ of the processor and the ISA is its ,,vocabulary“
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Processor Terminology

e Instruction set architecture (ISA): Set of instructions that can be executed by the processor

* Microarchitecture: A processor model that describes the structure of the processor with the target ISA,
e.g. nr. of pipeline stages

 Implementation: The processor implemented on a chip, e.g. in 90nm technology
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Why RISC-V?

* Many embedded processors use the ARM ISA.
e ARMis an IP vendor and does not sell chips.

* Semiconductor companies such as NXP, TI, Qualcomm, Infineon buy ARM processor
IPs and integrate them into their Micro-Controllers or System-on-chip (SoCs).

 RISC-Vis an open ISA, which can be easily

used in academia :
* Invented by UC Berkeley. ‘
: L RISC-V*
e RISC-V is a very hot topic in industry and

more and more RISC-V SoCs are becoming available.
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Assembly Instruction Built-up (1)

 Example instruction: ADD x1,x2,x3
 ADD: Addition
* x1: Destination register
* x2,x3: Operand Registers
 Behavior: Regs[x1] < Regs[x2] + Regs[x3]

 We need to define:
 The processor has a state Regs consisting of registers
 Each register has an ID, e.g., here x1,x2,x3
 Regs[ID] references the value stored in register ID

 The assembly format of the ADD instruction, e.g., the first register ID is the destination, the
second and third ID are the operands
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Assembly Instruction Built-up (2)

* The state Regs consisting of registers (register file memory) is usually kept in an SRAM
 The Register-Register Instructions work on the register file memory inside the processor

* Example Addition: ADD x1,x2,x3
 Behavior: Regs[x1] < Regs[x2] + Regs[x3]

x2 =——p AR1 Register DR1

regs[x2
File — ressha]

x3 = AR2 DR2 b—> regs[x3]
x] =— AW

value=regs[x2]+regs[x3] = DW regs[xl]=value
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Registers of RISC-V

V1.0

RISC-V has 32 registers

Each register can have
different width, we look at
RV32 with 32-bit width

Each register has two IDs (xO-
x31) and an ABI name that
indicates its role

Register

ABI Name

Description

x0 Zero Hard-wired zero

x1 ra Return address Caller

X2 sp Stack pointer Callee

x3 gp Global pointer

x4 tp Thread pointer

x5-7 t0-2 Temporaries Caller

x8 sO,fp Saved Callee
register/frame
pointer

X9 sl Saved Register Callee

x10-11 a0-1 Function Caller
arguments

x12-17 a2-7 Function Caller
arguments

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

ACA
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Application Binary Interface (ABI)

» Specifies rules for register usage in passing arguments and results for function
calls

* Callee-saved registers: If function foo1l (caller) calls foo2 (callee), then foo2 is not allowed
to modify this value (it needs to save it and restore it before returning to fool

* Caller-saved registers: If function foo1l (caller) calls foo2 (callee), then fool needs to save
this register before calling foo2 if it wants to keep the value in it because fool is allowed to
modify it

* Assigns aliases for registers x0-x31 (see table previous slide)
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RISC-V Instruction Types

* Four types of instructions with different encoding in machine code

31 25 24 20 19 15 14 12 11 76 0
funct7 rs2 rs1 funct3 rd opcode R-type
imm([11:0] rsi funct3 rd opcode I-type
imm([11:5] rs2 rs1 funct3 | imm[4:0] opcode S-type
imm[31:12] rd opcode U-type
Instruction
format Primary use rd rs1 rs2 Immediate
R-type Register-register Destination First source Second source
ALU instructions
l-type ALLN immediates  Destination First source base Walue
Load register displacement
S-tvpe Store Base register birst Drata source to Displacement
Compare and source store second olfset
branch source
U-type Jump and link Register Target address for Target address
Jump and link destination for jump and link for jump and link
register return PC register
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RISC-V Instructions

 The RISC-V ISA is structured into several instructions groups
* We look at RV32IM

e 32-bit Integer Instruction RV32|

* Integer Register-Register Instructions (R-type)
. Runs an arithmetic or logical operation on registers
. Both operands are values in registers
* Integer Register-Intermediate Instructions (I-type)
*  Second operand is a immediate (constant) value
. Immediate is encoded in the machine code
*  Control Transfer Instructions
. Unconditional jumps
. Conditional Branches
. Load Store Instructions
. Move data between memory and registers
. Load-store Architecture: Operations on registers only

e 32-bit Integer Multiplication RV32M

* Integer Multiplication Instructions
* Integer Division Instructions
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Integer Register-Register Instructions 1

V1.0

Instruction: Instr xd, xm, xn

Instr: Assembly instruction name

xd: Destination register

xm,xn: Operand Registers

Behavior: Regs[xd] €< Regs[xm] OP Regs[xn]

Addition: ADD al,a2,a3
 Behavior: Regs[al] < Regs[a2] + Regs[a3]

Subtraction: SUB al, a2, a3
 Behavior: Regs[al] € Regs[a2] - Regs[a3]

Signed compare: SLT al, a2, a3
* Behavior: if (Regs[a2] < Regs[a3]) Regs[al] & 1 else Regs[al] ¢ 0

Unsigned compare: SLTU al,aZ2, a3
* Behavior: if (Regs[a2] < Regs[a3]) Regs[al] < 1 else Regs[al] < O

ACA
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Integer Register-Register Instructions 2

* Logical AND: AND al, a2, a3

 Behavior: Regs[al] ¢ Regs[a2] & Regs[a3]
e Logical OR: OR al,a2,a3

* Behavior: Regs[al] €& Regs[a2] | Regs[a3]

 Logical XOR: XOR al, a2, a3
* Behavior: Regs[al] ¢ Regs[a2] * Regs[a3]

e Shift Left Logical: SLL al, a2, a3
 Behavior: Regs[al] €& Regs[a2] << Regs[a3] (we shift Os in from the right)

e Shift Right Logical: SRL al,aZ2,a3
* Behavior: Regs[al] & Regs[a2] >> Regs[a3] (we shift Os in from the left)

e Shift Right Arithmetic: SRA al, a2, a3
* Behavior: Regs[al] €& Regs[a2] >> Regs[a3] (if MSB is 1, we shift 1s in from the left, else 0s)
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Integer Register-Immediate Instructions

* Format:

e Addition with immediate (constant value): Example: ADDI al,a2,3
 Behavior: Regs[al] < Regs[a2] + 3

* Further instructions as before but with immediate: SLTI, SLTIU, SLLI, SRLI, SRAI
* There is no SUBI: Use addition with negative immediate: ADDI al,a2,-3

* No operation: NOP
 Behavior: Does nothing

* Move: Example: MV al,a2
* Behavior: Regs[al] < Regs[a2]
* |s aso-called pseudo instruction: The processor translates it to ADDI al,a2,0
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Program Counter and Instruction Memory

*  The control transfer instructions change the program counter (pc)
* The pc tells from which address the next instruction should be fetched
* InRV32, each instruction is 32 bit or 4 byte

 The address is in bytes, so to jump from the one instruction to the next,
the pc has to increment by 4.

*  MEM[pc] is the instruction in the instruction memory stored at the address pc

Instruction 31 0 Inl\jltruction
Memor emory
pc Y IMEM[pc] := instr in machine code 0x00 | Instr1
»| addr data — 0x04 | Instr 2

*  When there are Control Transfer Instructions, the PC is modified such that it jumps to another location different
from the next instruction (PC+4) to implement

 if else, switch blocks
* loops

*  function calls

*  function returns

V1.0 ACA 23



Control Transfer Instructions - Jumps

*  Unconditional Jump (PCrelative): J imm // pseudo instr. for J x0,imm
Behavior: pc ¢ pc + (imm<<1)
e Example: J 8 has behavior: pc ¢ pc +(8<<1)=pc+ 16

*  But we usually do not put the offset, but a symbol, e.g., start of loop that we want to jump to, e.g.,
pc = loop_start by writing J loop start

* Unconditional Jump and Link (PC relative): Example: JAL rd, imm
*  Behavior: pc & pc + (imm<<1), Regs[rd] ¢ pc + 4
e Example: JAL ra, 8

. Behavior: pc ¢ pc +(8<<1)=pc+ 16
Regs[ra] &< pc+4

*  Here, we want to jump to a function. In order to be able to return, we save the next
instruction address (pc+4) in the return address (ra) register regs[ra] = regs[x1]

 So again here we do not put the offset but the symbol of the function: JAL fool

 Unconditional Jump Register (Register with offset): Example: JALR rd, rsl, imm
 Behavior: pc ¢ Regs[rsl]+imm & ~1, Regs[rd] ¢ pc+4
 Thisis usually used for function return. The return addressed is saved in register ra.
Example: A pseudo-instructionis RET // pseudo instr. for JR x0,ra,0
Behavior: pc <& Regs[ra], x0 stay always O
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Control Transfer Instructions - Branches

* Conditional branch equal zero: BEQ al, a2, loop start
 Behavior: if (regs[al] ==regs[a2]) pc = loop_start else nothing

e Further branch instructions
* notequal: BNE al,a2, loop start
* Lesserthan:BLT al,a2, loop start
* Unsigned lesser than: BLTU al, a2, loop start
* Greaterorequalthan: BGE al, a2, loop start
* Unsigned greater of equal than: BGEU al, a2, loop start
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Data Memory

* Load and store instructions access the data memory (data, stack or heap)
e MEM[Daddr] is the value in the data memory stored at the address addr
 The load instruction fetches a value on data memory

Data
Memory
Daddr DMEM[Daddr]
— —| addr
data_o |- —>

data_in

\ 4

v

_— »|ctrl_in ctrl_o

* The store instructions saves a value in data memory

Data
Memory

Daddr

DMEM[Daddr]
N —] addr

__

data_o >
- —p|data_in

_— »|ctrl_in ctrl_o
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Load and Store Instructions

e Loadword: LW al, 80 (a2) Data
* Behavior: Regs[al] &< MEMI[80 + Regs[a2]] Daddr Memory
* Weset (a2)toindicate that the value in a2 is used as an —| addr
address, 80 is the offset _data_o
»|data_in
 Loads a word (4 byte) Aot in ctrl o

DMEM[Daddr]

- —

v

* Storeword: SW al, 80 (a2)
 Behavior: MEM[80 + Regs[a2]] ¢ Regs[al]

* Weset (a2)toindicate that the value in a2 is used as an
address, 80 is the offset

e Stores a word (4 byte)

* Other instructions used to store half words (2 byte) or bytes

V1.0 ACA
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Integer Multiplication Instructions

* Signed-signed Multiplication
* Multiplying two 32bit values can result in a value of up to 64bit
* MUL rdl,rsl,rs?
* Behavior: regs[rdl] & regs[rs1]*regs[rs2] // only the lower 32bit
* MULH rdh,rsl,rs?
* Behavior: regs[rdl] & regs[rs1]*regs[rs2] // only the higher 32bit
e Example:

. MUL a3,al,a?
MULH a4,al,a?

* Behavior: [regs[a4d] regs[a3]] = regs[ral]*regs[a2] // full 64 bit

* Unsigned-unsigned multiplication MULU, MULHU
* Unsigned-signed multiplication MULSU, MULHSU
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Integer Division Instructions

* Signed-signed Division
e DIV rdl,rsl,rs?
e Behavior: regs[rdl] & regs[rs1] / regs[rs2]
* REM rdh,rsl,rs?
* Behavior: regs[rdl] ¢ regs[rs1] modulo regs[rs2] // remainder

e Example: DIV a3,al,a?
Behavior: regs[a3] = regs[ral] / regs[a2]

* Unsigned-unsigned division DIVU, REMU
* Unsigned-signed division DIVSU, REMSU

V1.0 ACA 29



V1.0

B1-3
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Writing a function in assembly

e Start with a symbol with the function name fool:
* The first function parameter is in a0, second in al, ...
 The return value should be in a0 before returning

* For returning use the RET instruction

* Guideline: Use tx registers for temporary local variables
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Writing a small assembly function 1

* Example C-Code 1 + RISC-V COd? o . .
According to ABI a is given to the function in register a0
S R - The function should also return a in register a0
int abs_wvalue(int a) {
(a<B)
a=0-a; abs value:
BGE a0, zero,abs value return //if a>=0
SUB a0, zero, a0 /[l a=0-a
abs value return:
RET // JR x0,ra,0
function

return
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Writing a small assembly function 2

e Example C-Code 2

int gcd(int a, int b) {
int t;
(a 1=0) {
(a >=b) {
a=a - b;

V1.0

RISC-V Code

//a: a0, b: al, t: tO
gcd:
BEQZ a0, gcd done
BLT a0, al, gcd else
SUB a0, a0, al
J gcd
gcd else:
MV t0, a0
MV a0, al
MV al, tO
J gcd
gcd done:
MV a0, al
RET

ACA

//
//
//
//

//
//
//
//
//
//
//

while (a!=0)
a < b —> else

a = a-b
while loop
t = a

a =>
b=+t
while loop

now al contains the gcd
move to a0 for returning
return (Jjr ra)
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Writing a small assembly function 3

RISC-V Code
* Example C-Code 3 // base address of a: a0,
// base address of b: al,
void vec_add(int[4] a, int[4] b, int[4] ¢) { // base address of c: a2,
wﬁi%f?iiiiiﬂ r // i: t0, constant 4: t3
c[i] = a[i] + b[il; vec_add:
LI t0,0 // 1=0
LI t3,4 // t3=4
vec add for:
LW t1,0(a0) // tl = ali]
LW t2,0(al) // t2 = b[i]
ADD tl1,tl,t2 // tl = a[i] + b[i]
SW tl1,0(a2) // c[i] = tl

ADDI a0,a0,4 //next element is base address + 4
ADDI al,al,4 //next element 1s base address + 4
ADDI a2,a2,4 //next element 1s base address + 4
ADDI t0,tO0,1 // 1++

BLTU t0,t3,vec_add for // for (i < 4)

RET // vold return
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Visual Studio Code

e RISC-V Simulator

RISC-V Venus Simulator embedded ...

hm {‘3}

ﬂ RISC-V Venus Simulator
RIS -

Extensions -> Venus RISC-V Simulator

V1.0 ACA 35



V1.0

B1-4 Compiler Flow
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Compilation

C-code:

vall=vall+4;

7 -

C/C++ Source
Makefile and Headers
(*.c, *.cpp, *.h)

Assembly Source
Files (*.asm,*.s)

Linker Command
File (*.Ink)

I

| Make Utility \

4 ) J

‘ Preprocessor |
\ v\

\A' I Compiler

|Archlve Utility }4

B
3

'

Object Files (*.0)

!

=

Library Files (*.a, |
*lib)

Linker and Locator

.

N

+

Shared Object
File (*.so, *.dll)

Executable File
(*.elf, *.hex,
etc.)

L &

J

Link Map File
(*.map)

Assembly-code:
ADDI x10,x10,4

Machine code:
0x00450513
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Compiler Frontend and Backend

Program (C, C++)

@

[ Frontend (Lexical, Syntax, Semantical Analyzer) J

@

Abstract Syntax Tree (AST)

@

[ Lowering

@

Intermediate Representation (IR) Code

Software compilation

@

{ Backend (Code Generation)

|
: Optimization |
|

g

Assembler Code
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B1-5 Compiler Frontend

ACA
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Lexical Analysis (Scanning)

e Reads stream of characters
e Groups characters in meaningful sequences (lexemes)

* Outputs token stream and symbol table

vl = ytu*rdx;

<

Lexical Analysis

<

<id, 1> <=> <id, 2> <+> <id, 3> <*> <id, 4> <;>

Symbol table
1 vl
2

3

4 dx
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Syntax Analysis (Parsing)

e Reads token stream

* Outputs syntax tree (parse tree) that depicts syntactical
structure of token stream

<id, 1> <=> <id, 2> <+> <id, 3> <*> <id, 4> <;>

<

Syntax Analysis

T

<=>

/ N Abstract Syntax Tree (AST)
<id, 1> <+>
/ N

: L*x>
<id, 2> / N

<id, 3> <id, 4>
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Semantical Analysis

Reads abstract syntax tree

Checks against semantics of programming language

Inserts type casts.

Outputs semantical correct syntax tree.
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B1-6 Intermediate Representation (IR)
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Three address code (1/4)

* Address: Reference to
e variable name,
e constant,
 Compiler-generated temporary variable name.

 Maximal 3 addresses per operation.

* At most one operator at right side of operation.
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Three address code (2/4)

* Assighment:

X =y op z with op € {+,-,*,\,",&,..}
X 1= 0p VY with op € {-,!,..}

* Copy:

* Unconditional jump: * Y

goto Bx Bx: label

Conditional branch:

1f x relop y goto Bx
with relop € {=,<=,>=,<,>,!=,..}

Label:

Bx: statement
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Three address code (3/4)

Procedure call:

param pl
param p2
s = 11 , with n: Number of
e Return parameter Y T cans Proc.d "
parameters
* Indexed copy instruction: return y
x = y[1]
X[1i]l:= vy
* Pointer assignment:
X 1= &y //Get address of y and store it in x
X 1= *y //Get value stored in address y and store it in x
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Three address code (4/4)

 Example: Three address code for DE-Solver

 Compiler generated temporary variables: t1 - t7

Three address code

C-Code section

Bl:
repeat { tl := y*dx;
t2 = 3*tl;
ul = u-3*x*u*dx-3*y*dx; t3 = u*dx;
yl = y+u*dx; td := x*t3;
x=x1;u=ul;y=vyl; th = 3*t4;
} until ( ), t6 := u-t5;
ul := to-t2;
t7 = u*dx;
vyl = y+t7/;
xX:=x1;
u:=ul;
yvi=yl;
if goto Bl;
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Static Single Assignment Form (SSA)

e All assignments are to variables with distinct names

Three address code: SSA:

p := atb pSl := atb
g := p-cC q := psl-c
p := g*d pS2 := g*d

* The @ PHI-operator chooses the assigned value for recombination of two
values of one variable:

SSA:
if (a>b) goto Bl
pSl := a-b
goto B2

Bl: p$2 := a+tb

B2: pS$S3:=0 (pSl,ps$2)

Lecture Slides — HLS © 2024 D. Mueller-Gritschneder
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B1-7 Example LLVM IR
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LLVM - IR

* LLVM

* Compiler framework
* CLANG is the C/C++ frontend

* LLVM has Backends for many targets (x86, ARM, RISC-V, ...)
e Under active development: Currently LLVM 18

* LLVM IR

* Intermediate representation
 Static Single Assignment Form (SSA)
e Evolves with LLVM versions, but usually minor changes
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LLVM - IR - Syntax

e IDs are marked with % Internal operators: load, mul, store, ret

g ID Internal data type signed integer with 32 bit
* Has many buildin internal operators:

* Arithmetic: add, mul
* Memory: load and store

e Stack allocation: alloca \ \
* Also for Vectors \' . \ .
%6 =load i32, i32* %3, align 4

* Attributes: Refine the behavior and define what the %8 = mul nsw i32 %6, %7
optimizer is allowed. t
* align 4: Address should be aligned to a 4-byte boundary store i32 %8, i32* %5, align 4

* nsw: (No Signed Wrap).

* If the mul overflows this would lead to so-called
undefined behavior (UB) in C

* nsw means that no overflow for mul is expected such

that the compiler can optimize the code as if an overflow .
cannot happen. No signed wrap -> no overflow expected
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LLVM — IR — Example with no Optimization

File test.c

a*b; ]
Compiler
return c;
Frontend and
Lowering

» clang -S -emit-llvm test.c
-0 test noopt.ll --target=riscv32

V1.0

File test_noopt.ll:

; ModulelD = 'test.c'
source_filename = "test.c"

(...

; Function Attrs: noinline nounwind optnone uwtable

define dso_local i32 @test1(i32 noundef %0, i32 noundef %1) #0 {

%3 = alloca i32, align 4

%4 = alloca i32, align 4

%5 = alloca i32, align 4

store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%6 = load i32, i32* %3, align 4
%7 =load i32, i32* %4, align 4
%8 = mul nsw i32 %6, %7
store i32 %8, i32* %5, align 4
%9 = load i32, i32* %5, align 4
reti32 %9

}
(...)

ACA
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LLVM — IR — Example with no Optimization

; ModulelD = 'test.c'
source filename = "test.c" We have used no compiler optimization.

(..

In this case, the compiler makes all

; Function Attrs: noinline nounwind optnone uwtable operation.s explicit and does not optimize
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1) #0 { the'code in any way (such as for reuse of
%3 = alloca i32, align 4 registers).

Stack frame allocation, deallocation

%4 = alloca i32, align 4 _
° 8 automatically at return

%5 = alloca i32, align 4

store i32 %0, i32* %3, align 4 Store function All function parameters and return values
store i32 %1, i32* %4, align 4 } parameters to stack are copied to and from the stack once. This
%6 = load i32, i32* %3, align 4 Load function is useful for running the program with a

%7 = load i32, i32* %4, align 4} parameters from stack debugger as all data is available in memory.

%8 = mul nsw i32 %6, %7
store i32 %8, i32* %5, align 4 _— Store return value to stack

%9 =load i32,i32* %5, align 4 | — Load return value from stack
ret i32 %9

}
(...)
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LLVM — IR — Example with no Optimization

(...

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @test1(i32 noundef %0, i32
noundef %1) #0 {

%3 = alloca i32, align 4

%4 = alloca i32, align 4

%5 = alloca i32, align 4

store i32 %0, i32* %3, align 4

store i32 %1, i32* %4, align 4

%6 =load i32,i32* %3, align 4

%7 =load i32, i32* %4, align 4

%8 = mul nsw i32 %6, %7

store i32 %8, i32* %5, align 4

%9 = load i32, i32* %5, align 4

ret i32 %9
}
(...)

m—)

RISC-V
Compiler
Backend

> clang test.c -S -o test noopt.S --target=riscv32

V1.0

ACA

Test_noopt.S

testl:

(...)

text
.attribute
.attribute
file
.globl
.p2align
type

addi
SW
SW
addi
SW
SW
lw
lw
mul
SW
lw
lw
lw
addi
ret

.Lfunc_end0:

.Size

4,16

5, "rv32i2p0_m2p0_a2p0_c2p0"
"test.c"

testl

1

testl, @function

sp, sp, -32
ra, 28(sp)
sO, 24(sp)
sO, sp, 32
a0, -12(s0)
al, -16(s0)
a0, -12(s0)
al, -16(s0)
a0, a0, a1
a0, -20(s0)
a0, -20(s0)
ra, 28(sp)
sO, 24(sp)
sp, sp, 32

testl, .Lfunc_endO-testl
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LLVM — IR — Example with Optimization

File test.c File test_opt.ll

; ModulelD = 'test.c'
source_filename = "test.c"

(...

c = a*b; ]
Compiler
return c; . .
’ Frontend and ; Function Attrs: mustprogress nofree norecurse nosync nounwind
Lowering readnone uwtable willreturn

define dso_local i32 @test1(i32 noundef %0, i32 noundef %1)
local_unnamed_addr #0 {
> clang -S -emit-1lvm test.c %3 = mul nsw i32 %1, %0

-0 test opt.ll -02 --target=riscv32 reti32 %3

}
(..
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LLVM — IR — Example with Optimization

test.c

; ModulelD = 'test.c'
source_filename = "test.c"

(-..)

; Function Attrs: mustprogress nofree norecurse nosync
nounwind readnone uwtable willreturn
define dso_local i32 @test1(i32 noundef %0, i32
noundef %1) local_unnamed_addr #0 {

%3 = mul nswi32 %1, %0

reti32 %3

}
(...)

> clang test.c -S -o test opt2.S5 -03
-—-target=riscv32

V1.0

=)

RISC-V
Compiler
Backend

ACA

test_opt2.S

text
.attribute 4, 16
.attribute 5, "rv32i2p0_m2p0_a2p0 _c2p0"

file "test.c"
.globl testl
.p2align 1
type testl, @function
testl:
mul a0, al, a0
ret
.Lfunc_endO:
.Size testl, .Lfunc_endO-testl

(...)
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LLVM — IR — Example with Optimization

; ModulelD = 'test.c'
source_filename = "test.c" Test_opt.o
(+) ‘ Binary Object Code
; Function Attrs: mustprogress nofree norecurse nosync nounwind RISC-V
readnone uwtable willreturn Compiler Dissassember
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1) Backend +
local_unnamed_addr #0 { Assembler test_opt.asm
%3 = mul nswi32 %1, %0
reti32 %3 00000000 <test1>:
0:3385a502 mul a0, al, a0
(...) 4:82 80 ret

>clang -c test opt.ll --target=riscv32 -o test opt.o

>1llvm-objdump -d test opt.o > test opt.asm
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* Quick Recap: Processor Basics

* RISC-V Instruction Set Architecture
* Writing RISC-V Assembly Code

e Compiler Flow

 Compiler Frontend

* |ntermediate Representation (IR)

* Example LLVM IR
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* How does the assembly code look like?

* How does assembly code look like for the RISC-V processor?

e How do we compile from C to Assembly Code.
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