
Block B1: Processor, RISC-V ISA and Compiler Basics

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Agenda

• Qick Recap: Processor Basics

• RISC-V Instruction Set Architecture

• Writing RISC-V Assembly Code

• Compiler Flow

• Compiler Frontend

• Intermediate Representation (IR)

• Example LLVM IR

V1.0 ACA 2

V1.0 ACA 3

B1-1 Recap - Processor Basics

Processor: Instruction Interface

• A program consists of a list of instructions

• Typical an instruction is a 16/32/64 bit digital value

• The instruction is a single command the processor should execute, e.g., add two values (more on this
later)

• The program counter (PC) points to the current position in the program, which is executed on the
processor.

• PC is an address (16/32/64 bit digital value) where to load instructions from

Instructions

Processor
Program counter (PC)instr1 in machine code

instr2 in machine code

Program

instr3 in machine code

instr4 in machine code

instr5 in machine code

…
V1.0 ACA 4

Processor: Data Interface

• Some instructions can read or write from the data interface

• Load instruction:

• Puts an address (16/32/64 bit digital value) on the address bus

• Receives a read value (16/32/64 bit digital value)on the Rdata bus

• Store instruction
• Puts an address (16/32/64 bit digital value) on the address bus

• Puts a write value (16/32/64 bit digital value)on the Wdata bus

Instructions

Processor
Program counter (PC)

Data Address (Daddr)

Read data (Rdata)

Write data (Wdata)

V1.0 ACA 5

Instruction Memory

• Address is supplied (e.g. program counter PC)

• Returns the value stored at the input address mem[PC]

pc

Instruction
Memory

addr data

0x00

0x04

IMEM[pc] := instr in machine code

0x1500B8D3

0x1500A4D3

31 0 Instruction
Memory

V1.0 ACA 6

0x1500A4D30x04

Data Memory

Daddr 0xA00

0xA04

data word 1

data word 2

31

• Write access

• Address is supplied

• Returns the value stored at the input address mem[Daddr]

• Read access
• Address is supplied
• Returns the value stored at the input address mem[Daddr]

Data
Memory

0

V1.0 ACA 7

0xA00
data word 1

DMEM[Daddr]

Data

Memory
Daddr

addr
data_o

0xA00

0xA04

data word 1

data word 3

31

data_in

Data
Memory

0

0xA04

data word 3

ctrl_in

Data

Memory

addr
data_o

data_in

ctrl_in ctrl_o

ctrl_o

R

W

Register File Memory

• Processors save some values not in memory but in a bank of registers inside the processor

• The instructions needs to read usually more than one value from this bank and write usually one value

• The address is usually very small (4-5 bit) so the register file stores typically 16 or 32 values

• The register file is therefore usually realized with a special small SRAM, from which you can read two
values and write one value

• We give two read register addresses rs1 and rs2 and the memory returns to read values regs[rs1]
and regs[rs2]

• We give one write register address rd and the memory stores the write value regs[rD]=value

Register

File
AR1

AR2

AW

DW

DR1

DR2

regs[rs1]rs1

rs2 regs[rs2]

rd

Value

V1.0 ACA 8

Register File is Inside Processor

Data Memory Interface

Processor Logic

V1.0 ACA 9

Register

File
AR1

AR2

AW

DW

DR1

DR2

rs1 rs2 rd Value reg_rs2reg_rs1
Data

Memory

addr
data_o

data_in

ctrl_in ctrl_o

DAddr

Wdata

Crtl

Rdata

Instruction
Memory

addr data

PC

Instr

Processor

Instruction Memory Interface

V1.0 ACA 10

B1-2 RISC-V Instruction Set Architecture

What is an Instruction Set Architecture (ISA)?

• The ISA describes:
• the processor state organization (registers)

• what instructions a processor executes.

• How the instructions are encoded in machine code.

• How the assembly of the instructions look likes.

• Some more processor behavior (exceptions, …)

• A cross-compiler can generate the assembly code for a certain processor using the ISA
(ISA is the interface between compiler and hardware)

• Instructions are the „words“ of the processor and the ISA is its „vocabulary“

V1.0 ACA 11

Processor Terminology

• Instruction set architecture (ISA): Set of instructions that can be executed by the processor

• Microarchitecture: A processor model that describes the structure of the processor with the target ISA,
e.g. nr. of pipeline stages

• Implementation: The processor implemented on a chip, e.g. in 90nm technology

V1.0 ACA 12

Why RISC-V?

• Many embedded processors use the ARM ISA.

• ARM is an IP vendor and does not sell chips.

• Semiconductor companies such as NXP, TI, Qualcomm, Infineon buy ARM processor
IPs and integrate them into their Micro-Controllers or System-on-chip (SoCs).

• RISC-V is an open ISA, which can be easily
used in academia

• Invented by UC Berkeley.

• RISC-V is a very hot topic in industry and
more and more RISC-V SoCs are becoming available.

V1.0 ACA 13

Assembly Instruction Built-up (1)

• Example instruction: ADD x1,x2,x3
• ADD: Addition
• x1: Destination register
• x2,x3: Operand Registers
• Behavior: Regs[x1] ← Regs[x2] + Regs[x3]

• We need to define:
• The processor has a state Regs consisting of registers
• Each register has an ID, e.g., here x1,x2,x3
• Regs[ID] references the value stored in register ID
• The assembly format of the ADD instruction, e.g., the first register ID is the destination, the

second and third ID are the operands

V1.0 ACA 14

Assembly Instruction Built-up (2)

• The state Regs consisting of registers (register file memory) is usually kept in an SRAM

• The Register-Register Instructions work on the register file memory inside the processor

• Example Addition: ADD x1,x2,x3

• Behavior: Regs[x1] ← Regs[x2] + Regs[x3]

regs[x2]x2

x3 regs[x3]

x1

value=regs[x2]+regs[x3] regs[x1]=value

V1.0 ACA 15

Register

File
AR1

AR2

AW

DW

DR1

DR2

Registers of RISC-V

• RISC-V has 32 registers

• Each register can have
different width, we look at
RV32 with 32-bit width

• Each register has two IDs (x0-
x31) and an ABI name that
indicates its role

Register ABI Name Description Saver

x0 Zero Hard-wired zero -

x1 ra Return address Caller

x2 sp Stack pointer Callee

x3 gp Global pointer -

x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller

x8 s0,fp Saved
register/frame
pointer

Callee

x9 s1 Saved Register Callee

x10-11 a0-1 Function
arguments

Caller

x12-17 a2-7 Function
arguments

Caller

x18-27 s2-11 Saved registers Callee

x28-31 t3-6 Temporaries Caller

V1.0 ACA 16

Application Binary Interface (ABI)

• Specifies rules for register usage in passing arguments and results for function
calls
• Callee-saved registers: If function foo1 (caller) calls foo2 (callee), then foo2 is not allowed

to modify this value (it needs to save it and restore it before returning to foo1

• Caller-saved registers: If function foo1 (caller) calls foo2 (callee), then foo1 needs to save
this register before calling foo2 if it wants to keep the value in it because foo1 is allowed to
modify it

• Assigns aliases for registers x0-x31 (see table previous slide)

V1.0 ACA 17

RISC-V Instruction Types

• Four types of instructions with different encoding in machine code

V1.0 ACA 18

RISC-V Instructions

• The RISC-V ISA is structured into several instructions groups
• We look at RV32IM

• 32-bit Integer Instruction RV32I
• Integer Register-Register Instructions (R-type)

• Runs an arithmetic or logical operation on registers

• Both operands are values in registers

• Integer Register-Intermediate Instructions (I-type)
• Second operand is a immediate (constant) value

• Immediate is encoded in the machine code

• Control Transfer Instructions

• Unconditional jumps

• Conditional Branches

• Load Store Instructions

• Move data between memory and registers

• Load-store Architecture: Operations on registers only

• 32-bit Integer Multiplication RV32M
• Integer Multiplication Instructions

• Integer Division Instructions

V1.0 ACA 19

Integer Register-Register Instructions 1

• Instruction: Instr xd,xm,xn

• Instr: Assembly instruction name

• xd: Destination register

• xm,xn: Operand Registers

• Behavior: Regs[xd] ← Regs[xm] OP Regs[xn]

• Addition: ADD a1,a2,a3
• Behavior: Regs[a1] ← Regs[a2] + Regs[a3]

• Subtraction: SUB a1,a2,a3
• Behavior: Regs[a1] ← Regs[a2] - Regs[a3]

• Signed compare: SLT a1,a2,a3
• Behavior: if (Regs[a2] < Regs[a3]) Regs[a1] ← 1 else Regs[a1] ← 0

• Unsigned compare: SLTU a1,a2,a3
• Behavior: if (Regs[a2] < Regs[a3]) Regs[a1] ← 1 else Regs[a1] ← 0

V1.0 ACA 20

Integer Register-Register Instructions 2

• Logical AND: AND a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] & Regs[a3]

• Logical OR: OR a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] | Regs[a3]

• Logical XOR: XOR a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] ^ Regs[a3]

• Shift Left Logical: SLL a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] << Regs[a3] (we shift 0s in from the right)

• Shift Right Logical: SRL a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] >> Regs[a3] (we shift 0s in from the left)

• Shift Right Arithmetic: SRA a1,a2,a3

• Behavior: Regs[a1] ← Regs[a2] >> Regs[a3] (if MSB is 1, we shift 1s in from the left, else 0s)

V1.0 ACA 21

Integer Register-Immediate Instructions

• Format:

• Addition with immediate (constant value): Example: ADDI a1,a2,3
• Behavior: Regs[a1] ← Regs[a2] + 3

• Further instructions as before but with immediate: SLTI, SLTIU, SLLI, SRLI, SRAI

• There is no SUBI: Use addition with negative immediate: ADDI a1,a2,-3

• No operation: NOP
• Behavior: Does nothing

• Move: Example: MV a1,a2
• Behavior: Regs[a1] ← Regs[a2]

• Is a so-called pseudo instruction: The processor translates it to ADDI a1,a2,0

V1.0 ACA 22

Program Counter and Instruction Memory

• The control transfer instructions change the program counter (pc)

• The pc tells from which address the next instruction should be fetched

• In RV32, each instruction is 32 bit or 4 byte

• The address is in bytes, so to jump from the one instruction to the next,
the pc has to increment by 4.

• MEM[pc] is the instruction in the instruction memory stored at the address pc

• When there are Control Transfer Instructions, the PC is modified such that it jumps to another location different
from the next instruction (PC+4) to implement

• if, else, switch blocks
• loops
• function calls
• function returns

V1.0 ACA 23

pc

Instruction
Memory

addr data

0x00

0x04
IMEM[pc] := instr in machine code

Instr 1

Instr 2

31 0 Instruction
Memory

Control Transfer Instructions - Jumps

• Unconditional Jump (PC relative): J imm // pseudo instr. for J x0,imm
• Behavior: pc ← pc + (imm<<1)
• Example: J 8 has behavior: pc ← pc + (8<<1) = pc + 16
• But we usually do not put the offset, but a symbol, e.g., start of loop that we want to jump to, e.g.,

pc = loop_start by writing J loop_start

• Unconditional Jump and Link (PC relative): Example: JAL rd,imm
• Behavior: pc ← pc + (imm<<1), Regs[rd] ← pc + 4
• Example: JAL ra,8

• Behavior: pc ← pc + (8<<1) = pc + 16
 Regs[ra] ← pc + 4

• Here, we want to jump to a function. In order to be able to return, we save the next
instruction address (pc+4) in the return address (ra) register regs[ra] = regs[x1]

• So again here we do not put the offset but the symbol of the function: JAL foo1

• Unconditional Jump Register (Register with offset): Example: JALR rd,rs1,imm
• Behavior: pc ← Regs[rs1]+imm & ~1, Regs[rd] ← pc+4
• This is usually used for function return. The return addressed is saved in register ra.
• Example: A pseudo-instruction is RET // pseudo instr. for JR x0,ra,0

Behavior: pc ← Regs[ra], x0 stay always 0

V1.0 ACA 24

Control Transfer Instructions - Branches

• Conditional branch equal zero: BEQ a1,a2, loop_start

• Behavior: if (regs[a1] == regs[a2]) pc = loop_start else nothing

• Further branch instructions

• not equal: BNE a1,a2, loop_start

• Lesser than: BLT a1,a2, loop_start

• Unsigned lesser than: BLTU a1,a2, loop_start

• Greater or equal than: BGE a1,a2, loop_start

• Unsigned greater of equal than: BGEU a1,a2, loop_start

V1.0 ACA 25

Data Memory

• Load and store instructions access the data memory (data, stack or heap)

• MEM[Daddr] is the value in the data memory stored at the address addr

• The load instruction fetches a value on data memory

• The store instructions saves a value in data memory

V1.0 ACA 26

Daddr

addr
data word 1

DMEM[Daddr]

Data

Memory

addr
data_o

data_in

ctrl_in ctrl_oR

Daddr

addr

data word 1

DMEM[Daddr]

Data

Memory

addr
data_o

data_in

ctrl_in ctrl_oW

Load and Store Instructions

• Load word: LW a1,80(a2)

• Behavior: Regs[a1] ← MEM[80 + Regs[a2]]

• We set (a2)to indicate that the value in a2 is used as an
address, 80 is the offset

• Loads a word (4 byte)

• Store word: SW a1,80(a2)

• Behavior: MEM[80 + Regs[a2]] ← Regs[a1]

• We set (a2)to indicate that the value in a2 is used as an
address, 80 is the offset

• Stores a word (4 byte)

• Other instructions used to store half words (2 byte) or bytes

V1.0 ACA 27

Daddr

80 + regs[a2]
MEM[80 +
Regs[a2]]

DMEM[Daddr]

Data

Memory

addr
data_o

data_in

ctrl_in ctrl_oR

Integer Multiplication Instructions

• Signed-signed Multiplication
• Multiplying two 32bit values can result in a value of up to 64bit

• MUL rdl,rs1,rs2

• Behavior: regs[rdl] ← regs[rs1]*regs[rs2] // only the lower 32bit

• MULH rdh,rs1,rs2

• Behavior: regs[rdl] ← regs[rs1]*regs[rs2] // only the higher 32bit

• Example:
• MUL a3,a1,a2

 MULH a4,a1,a2

• Behavior: [regs[a4] regs[a3]] = regs[ra1]*regs[a2] // full 64 bit

• Unsigned-unsigned multiplication MULU, MULHU

• Unsigned-signed multiplication MULSU, MULHSU

V1.0 ACA 28

Integer Division Instructions

• Signed-signed Division
• DIV rdl,rs1,rs2

• Behavior: regs[rdl] ← regs[rs1] / regs[rs2]

• REM rdh,rs1,rs2

• Behavior: regs[rdl] ← regs[rs1] modulo regs[rs2] // remainder

• Example: DIV a3,a1,a2
Behavior: regs[a3] = regs[ra1] / regs[a2]

• Unsigned-unsigned division DIVU, REMU

• Unsigned-signed division DIVSU, REMSU

V1.0 ACA 29

V1.0 ACA 30

B1-3

Writing a function in assembly

• Start with a symbol with the function name foo1:

• The first function parameter is in a0, second in a1, …

• The return value should be in a0 before returning

• For returning use the RET instruction

• Guideline: Use tx registers for temporary local variables

V1.0 ACA 31

Writing a small assembly function 1

• Example C-Code 1 • RISC-V Code

• According to ABI a is given to the function in register a0

• The function should also return a in register a0

abs_value:

 BGE a0,zero,abs_value_return //if a>=0

 SUB a0,zero,a0 // a=0-a

abs_value_return:

 RET // JR x0,ra,0

function
return

V1.0 ACA 32

Writing a small assembly function 2

• Example C-Code 2
RISC-V Code

// a: a0, b: a1, t: t0
gcd:

 BEQZ a0, gcd_done // while(a!=0)

 BLT a0, a1, gcd_else // a < b -> else

 SUB a0, a0, a1 // a = a-b

 J gcd // while loop

gcd_else:

 MV t0, a0 // t = a

 MV a0, a1 // a = b

 MV a1, t0 // b = t

 J gcd // while loop

gcd_done: // now a1 contains the gcd

 MV a0, a1 // move to a0 for returning

 RET // return (jr ra)

V1.0 ACA 33

Writing a small assembly function 3

• Example C-Code 3
RISC-V Code

// base address of a: a0,

// base address of b: a1,

// base address of c: a2,

// i: t0, constant 4: t3

vec_add:

 LI t0,0 // i=0

 LI t3,4 // t3=4

vec_add_for:

 LW t1,0(a0) // t1 = a[i]

 LW t2,0(a1) // t2 = b[i]

 ADD t1,t1,t2 // t1 = a[i] + b[i]

 SW t1,0(a2) // c[i] = t1

 ADDI a0,a0,4 //next element is base address + 4

 ADDI a1,a1,4 //next element is base address + 4

 ADDI a2,a2,4 //next element is base address + 4

 ADDI t0,t0,1 // i++

 BLTU t0,t3,vec_add_for // for (i < 4)

 RET // void return

V1.0 ACA 34

Visual Studio Code

• RISC-V Simulator

Extensions -> Venus RISC-V Simulator

V1.0 ACA 35

V1.0 ACA 36

B1-4 Compiler Flow

37

Compilation C-code:
val1=val1+4;

Assembly-code:
ADDI x10,x10,4

Machine code:
0x00450513

Compiler Frontend and Backend

Program (C, C++)

Frontend (Lexical, Syntax, Semantical Analyzer)

Abstract Syntax Tree (AST)

Lowering

Intermediate Representation (IR) Code

Backend (Code Generation)

Assembler Code

So
ft

w
ar

e
 c

o
m

p
ila

ti
o

n

Optimization

V1.0 ACA 39

B1-5 Compiler Frontend

Lexical Analysis (Scanning)

• Reads stream of characters

• Groups characters in meaningful sequences (lexemes)

• Outputs token stream and symbol table

y1 = y+u*dx;

<id,1> <=> <id,2> <+> <id,3> <*> <id,4> <;>

Symbol table

1 y1

2 y

3 u

4 dx

Lexical Analysis

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

Syntax Analysis (Parsing)

• Reads token stream

• Outputs syntax tree (parse tree) that depicts syntactical
structure of token stream

<id,1> <=> <id,2> <+> <id,3> <*> <id,4> <;>

Syntax Analysis

<=>

<id,1> <+>

<*><id,2>

<id,3> <id,4>

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

Abstract Syntax Tree (AST)

Semantical Analysis

• Reads abstract syntax tree

• Checks against semantics of programming language

• Inserts type casts.

• Outputs semantical correct syntax tree.

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

V1.0 ACA 43

B1-6 Intermediate Representation (IR)

Three address code (1/4)

• Address: Reference to
• variable name,

• constant,

• Compiler-generated temporary variable name.

• Maximal 3 addresses per operation.

• At most one operator at right side of operation.

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

Three address code (2/4)

• Assignment:

• Copy:

• Unconditional jump:

• Conditional branch:

• Label:

x := y op z with op  {+,-,*,\,^,&,…}

x := op y with op  {-,!,…}

x := y

goto Bx Bx: label

if x relop y goto Bx

with relop  {=,<=,>=,<,>,!=,..}

Bx: statement

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

Three address code (3/4)

• Procedure call:

• Return parameter

• Indexed copy instruction:

• Pointer assignment:

param p1

param p2

…

y := call proc,n with n: Number of
parameters

x := y[i]

x[i]:= y

x := &y //Get address of y and store it in x

x := *y //Get value stored in address y and store it in x

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

return y

Three address code (4/4)

• Example: Three address code for DE-Solver

• Compiler generated temporary variables: t1 – t7

C-Code section

repeat {

 x1 = x+dx;

 u1 = u–3*x*u*dx–3*y*dx;

 y1 = y+u*dx;

 x=x1;u=u1;y=y1;

} until (x1 < a);

Three address code

B1: x1 := x+dx;

 t1 := y*dx;

 t2 := 3*t1;

 t3 := u*dx;

 t4 := x*t3;

 t5 := 3*t4;

 t6 := u-t5;

 u1 := t6-t2;

 t7 := u*dx;

 y1 := y+t7;

 x:=x1;

 u:=u1;

 y:=y1;

 if x1 >= a goto B1;

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

Static Single Assignment Form (SSA)

• All assignments are to variables with distinct names

• The  PHI-operator chooses the assigned value for recombination of two
values of one variable:

Three address code:
p := a+b

q := p-c

p := q*d

SSA:
p$1 := a+b

q := p$1-c

p$2 := q*d

SSA:
 if (a>b) goto B1

 p$1 := a-b

 goto B2

B1: p$2 := a+b

B2: p$3:=(p$1,p$2)

Lecture Slides – HLS © 2024 D. Mueller-Gritschneder

V1.0 ACA 49

B1-7 Example LLVM IR

LLVM - IR

• LLVM
• Compiler framework

• CLANG is the C/C++ frontend

• LLVM has Backends for many targets (x86, ARM, RISC-V, …)

• Under active development: Currently LLVM 18

• LLVM IR
• Intermediate representation

• Static Single Assignment Form (SSA)

• Evolves with LLVM versions, but usually minor changes

V1.0 ACA 50

LLVM - IR - Syntax

V1.0 ACA 51

%6 = load i32, i32* %3, align 4

%8 = mul nsw i32 %6, %7

store i32 %8, i32* %5, align 4

ID Internal data type signed integer with 32 bit

Internal operators: load, mul, store, ret

No signed wrap -> no overflow expected

• IDs are marked with %

• Has many buildin internal operators:
• Arithmetic: add, mul
• Memory: load and store
• Stack allocation: alloca
• Also for Vectors

• Attributes: Refine the behavior and define what the
optimizer is allowed.
• align 4: Address should be aligned to a 4-byte boundary
• nsw: (No Signed Wrap).

• If the mul overflows this would lead to so-called
undefined behavior (UB) in C

• nsw means that no overflow for mul is expected such
that the compiler can optimize the code as if an overflow
cannot happen.

LLVM – IR – Example with no Optimization

V1.0 ACA 52

; ModuleID = 'test.c'
source_filename = "test.c"
(…)

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1) #0 {

%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%6 = load i32, i32* %3, align 4
%7 = load i32, i32* %4, align 4
%8 = mul nsw i32 %6, %7
store i32 %8, i32* %5, align 4
%9 = load i32, i32* %5, align 4
ret i32 %9

}
(…)

int test1(int a, int b)

{

 int c = a*b;

 return c;

}

Compiler
Frontend and
Lowering

➢ clang -S -emit-llvm test.c

-o test_noopt.ll --target=riscv32

File test.c File test_noopt.ll:

LLVM – IR – Example with no Optimization

V1.0 ACA 53

; ModuleID = 'test.c'
source_filename = "test.c"
(…)

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1) #0 {

%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%6 = load i32, i32* %3, align 4
%7 = load i32, i32* %4, align 4
%8 = mul nsw i32 %6, %7
store i32 %8, i32* %5, align 4
%9 = load i32, i32* %5, align 4
ret i32 %9

}
(…)

We have used no compiler optimization.

In this case, the compiler makes all
operations explicit and does not optimize
the code in any way (such as for reuse of
registers).

All function parameters and return values
are copied to and from the stack once. This
is useful for running the program with a
debugger as all data is available in memory.

Stack frame allocation, deallocation
automatically at return

Load function
parameters from stack

Store function
parameters to stack

Store return value to stack

Load return value from stack

LLVM – IR – Example with no Optimization

V1.0 ACA 54

RISC-V
Compiler
Backend

.text

.attribute 4, 16

.attribute 5, "rv32i2p0_m2p0_a2p0_c2p0"

.file "test.c"

.globl test1

.p2align 1

.type test1,@function
test1:

addi sp, sp, -32
sw ra, 28(sp)
sw s0, 24(sp)
addi s0, sp, 32
sw a0, -12(s0)
sw a1, -16(s0)
lw a0, -12(s0)
lw a1, -16(s0)
mul a0, a0, a1
sw a0, -20(s0)
lw a0, -20(s0)
lw ra, 28(sp)
lw s0, 24(sp)
addi sp, sp, 32
ret

.Lfunc_end0:
.size test1, .Lfunc_end0-test1

(…)

> clang test.c -S -o test_noopt.S --target=riscv32

Test_noopt.S
(…)

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @test1(i32 noundef %0, i32
noundef %1) #0 {

%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%6 = load i32, i32* %3, align 4
%7 = load i32, i32* %4, align 4
%8 = mul nsw i32 %6, %7
store i32 %8, i32* %5, align 4
%9 = load i32, i32* %5, align 4
ret i32 %9

}
(…)

LLVM – IR – Example with Optimization

V1.0 ACA 55

; ModuleID = 'test.c'
source_filename = "test.c"
(…)

; Function Attrs: mustprogress nofree norecurse nosync nounwind
readnone uwtable willreturn
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1)
local_unnamed_addr #0 {

%3 = mul nsw i32 %1, %0
ret i32 %3

}
(…)

int test1(int a, int b)

{

 int c = a*b;

 return c;

}

Compiler
Frontend and
Lowering

> clang -S -emit-llvm test.c

-o test_opt.ll -O2 --target=riscv32

File test.c File test_opt.ll

LLVM – IR – Example with Optimization

V1.0 ACA 56

; ModuleID = 'test.c'
source_filename = "test.c"
(…)

; Function Attrs: mustprogress nofree norecurse nosync
nounwind readnone uwtable willreturn
define dso_local i32 @test1(i32 noundef %0, i32
noundef %1) local_unnamed_addr #0 {

%3 = mul nsw i32 %1, %0
ret i32 %3

}
(…)

RISC-V
Compiler
Backend

.text
 .attribute 4, 16
 .attribute 5, "rv32i2p0_m2p0_a2p0_c2p0"
 .file "test.c"
 .globl test1
 .p2align 1
 .type test1,@function
test1:
 mul a0, a1, a0
 ret
.Lfunc_end0:
 .size test1, .Lfunc_end0-test1

 (…)> clang test.c -S -o test_opt2.S -O3

--target=riscv32

test_opt2.Stest.c

LLVM – IR – Example with Optimization

V1.0 ACA 57

; ModuleID = 'test.c'
source_filename = "test.c"
(…)

; Function Attrs: mustprogress nofree norecurse nosync nounwind
readnone uwtable willreturn
define dso_local i32 @test1(i32 noundef %0, i32 noundef %1)
local_unnamed_addr #0 {

%3 = mul nsw i32 %1, %0
ret i32 %3

}
(…)

RISC-V
Compiler
Backend +
Assembler

00000000 <test1>:
0: 33 85 a5 02 mul a0, a1, a0
4: 82 80 ret

>clang -c test_opt.ll --target=riscv32 -o test_opt.o

>llvm-objdump -d test_opt.o > test_opt.asm

Binary Object Code

test_opt.asm

Dissassember

Test_opt.o

Summary

• Quick Recap: Processor Basics

• RISC-V Instruction Set Architecture

• Writing RISC-V Assembly Code

• Compiler Flow

• Compiler Frontend

• Intermediate Representation (IR)

• Example LLVM IR

V1.0 ACA 58

Outlook

• How does the assembly code look like?

• How does assembly code look like for the RISC-V processor?

• How do we compile from C to Assembly Code.

V1.0 ACA 59

	Folie 1
	Folie 2: Agenda
	Folie 3
	Folie 4: Processor: Instruction Interface
	Folie 5: Processor: Data Interface
	Folie 6: Instruction Memory
	Folie 7: Data Memory
	Folie 8: Register File Memory
	Folie 9: Register File is Inside Processor
	Folie 10
	Folie 11: What is an Instruction Set Architecture (ISA)?
	Folie 12: Processor Terminology
	Folie 13: Why RISC-V?
	Folie 14: Assembly Instruction Built-up (1)
	Folie 15: Assembly Instruction Built-up (2)
	Folie 16: Registers of RISC-V
	Folie 17: Application Binary Interface (ABI)
	Folie 18: RISC-V Instruction Types
	Folie 19: RISC-V Instructions
	Folie 20: Integer Register-Register Instructions 1
	Folie 21: Integer Register-Register Instructions 2
	Folie 22: Integer Register-Immediate Instructions
	Folie 23: Program Counter and Instruction Memory
	Folie 24: Control Transfer Instructions - Jumps
	Folie 25: Control Transfer Instructions - Branches
	Folie 26: Data Memory
	Folie 27: Load and Store Instructions
	Folie 28: Integer Multiplication Instructions
	Folie 29: Integer Division Instructions
	Folie 30
	Folie 31: Writing a function in assembly
	Folie 32: Writing a small assembly function 1
	Folie 33: Writing a small assembly function 2
	Folie 34: Writing a small assembly function 3
	Folie 35: Visual Studio Code
	Folie 36
	Folie 37
	Folie 38: Compiler Frontend and Backend
	Folie 39
	Folie 40: Lexical Analysis (Scanning)
	Folie 41: Syntax Analysis (Parsing)
	Folie 42: Semantical Analysis
	Folie 43
	Folie 44: Three address code (1/4)
	Folie 45: Three address code (2/4)
	Folie 46: Three address code (3/4)
	Folie 47: Three address code (4/4)
	Folie 48: Static Single Assignment Form (SSA)
	Folie 49
	Folie 50: LLVM - IR
	Folie 51: LLVM - IR - Syntax
	Folie 52: LLVM – IR – Example with no Optimization
	Folie 53: LLVM – IR – Example with no Optimization
	Folie 54: LLVM – IR – Example with no Optimization
	Folie 55: LLVM – IR – Example with Optimization
	Folie 56: LLVM – IR – Example with Optimization
	Folie 57: LLVM – IR – Example with Optimization
	Folie 58: Summary
	Folie 59: Outlook

