
Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Introduction to Pintos

Benedikt Huber
Roland Kammerer

Institut für Technische Informatik
Technische Universität Wien

-
Programmieren von Betriebssystemen UE

13. März 2012

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Runs in rea l mode, which i s a 16−bi t segment .
. code16

Set up segment reg i s te rs .
sub %ax , %ax
mov %ax , %ds
mov %ax , %ss
mov $0xf000 , %esp

Configure s e r i a l port so we can report progress w/o connected VGA.
sub %dx , %dx # Se r i a l port 0.
mov $0xe3 , %al # 9600 bps , N−8−1.
int $0x14 # Destroys AX.
c a l l puts
. s t r ing " PiLo "

Read the par t i t ion table on each system hard disk
mov $0x80 , %dl # Hard disk 0.

read_mbr :
sub %ebx , %ebx # Sector 0.
mov $0x2000 , %ax # Use 0x20000 for buffer .
mov %ax , %es
c a l l read_sector
j c no_such_drive
Pr in t hd[a−z] .
c a l l puts
. s t r ing " hd"
mov %dl , %a l
add $ ’a ’ − 0x80 , %al
c a l l putc

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

What is PintOS?

I Previous slide shows a code snippet from the x86 boot
loader

I Fortunately, you do not need to write assembler code in
this course :)

I But you can read well-documented, existing assembler
code, if you like

I Most of Pintos is written in C, however

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

What is PintOS?

Pintos is an instructional operating system,

I running on x86,

I written in C, by Ben Pfaff,

I emphasizing concepts and preferring simple
implementations,

I encouraging test driven development,

I that you will improve during this course

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Outline

I Some Basics

I Threads and Scheduling

I Synchronization

I User Programs

I Memory Management

I Pintos Infrastrucure

I Assignments

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Pintos Structure

Boot Support

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI,

IDE

Basic Filesystem
Basic

Memory Manager

Threading
Basic Scheduling Support

P1: Priority Scheduler

P0: Alarm Clock

Process
Management

System Call
Layer

P2: Address Space Manager

P2: Memory-
Mapped

Files

P0: Process Arguments

Kernel Mode Tests

The Pintos Kernel

Adapted from http://www.pintos-os.org/wp-content/files/SIGCSE2009-Pintos.pdf

P0: Alarm Clock Tests

P1: Scheduling Tests

Figure: High-Level View on the Pintos Kernel

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Setup

I Set PATH environment variable to include
pintos-progos/utils

I The pintos command-line tool is used to start the
emulator with pintos

I Supports both bochs (recommended for project 1) and
qemu (recommended for project 2)

I Synopsis: pintos [OPTION...] --
[ARGUMENT...]

I Arguments before -- are passed to the pintos script

I Arguments after -- are passed to the pintos kernel

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Running a kernel test

I Kernel tests are linked into the kernel

I You need to pass --kernel-test to pintos to run a
kernel test

I Kernel tests may not access the file system

I They are used for the alarm clock assignment and project 1

cd pintos-progos/intro
make
pintos --bochs --kernel-test -- -q run alarm-single

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Running a user program

I User programs are loaded from the (virtual) disk and
executed by the main kernel thread

I You need to prepare the filesystem to run a user program

cd pintos-progos/intro
make
pintos --qemu --filesys-size=2 \

-p tests/intro/userprog-args/args-none \
-a args-none -- -q -f run args-none

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Paging
I PintOS uses paging facilities of x86
I Virtual memory is divided in pages, 4KByte each
I Virtual memory address: page number + page offset
I Processor translates virtual address to physical address,

consulting the page directory to find the right page table,
and the page table to find the physical address

Directory Table Page Offset

Linear Address
31 22 21 12 11 0

Adapted from Intel's IA-32 Architectures Software Developer's Manual

Page Directory

PDE
Page Table

PTE

4-KByte Page
Physical Addr.

CR3

Figure: Paging

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Threads
I Pintos is multi-threaded; exactly one thread is running at

each time (thread_current()).
I Each thread is represented by one kernel page
I Thread page includes stack and additional data at the

beginning of the page

<data> T1

MAGIC

<tid> T1

esp

<stack> T1

thread page T1

running
thread

<data> T2

MAGIC

<tid> T2

<stack> T2

thread page T2

saved sp

grows
downwards

4Kb

0 Kb

end of
struct thread

Figure: Threads

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Interrupts

I Interrupts notifies CPU of an event

I CPU saves context, then executes interrupt handler routine
I Either internal (caused by the CPU itself) or external

I Internal: “Belongs” to running thread, interrupts should be
enabled, nesting is possible. Examples: Page Fault, System
Call.

I External, such as Timer Interrupt: interrupts disabled, no
nesting

I Interrupt frames provide information on the CPU state
before the interrupt

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Lists
I Doubly linked lists are ubiquitous in Pintos (e.g.,

semaphore wait queue)
I List pointers need to be embedded in all structures which

are potential members of a list (sharing possible)
I No need for dynamic memory allocation for list operations

tid_t id;

struct list_element
wq_elem

prev

next

struct
list_element

thread_list_elem

prev

next

struct my_thread t

struct
 list_element

head

prev

next

struct
 list_element

tail

prev

next

struct list thread_list;

16
bytes

Figure: List Datastructure

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Lists

struct list_elem
{

struct list_elem *prev; /* Previous element. */
struct list_elem *next; /* Next list element. */

};
struct list

{
struct list_elem head; /* List head. */
struct list_elem tail; /* List tail. */

};

struct list all_threads;

struct thread
{

tid_t tid;
struct list_elem all_threads_elem;

};

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

List Operations (1)

I We need to use address arithmetic to obtain data of
stored elements

I The macro list_entry 1 calculates pointer to structure
embedding list pointers

for (e = l i s t_begin (& a l l _b locks) ; e != l i s t_end (& a l l _b locks) ;
e = l i s t _nex t (e))

{
struct block ∗block = l i s t _ e n t r y (e , struct block , l i s t_elem) ;
i f (! strcmp (name, block−>name))

return block ;
}

1cf. Linux, macro container_of

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

List Operations (2)

I Operations to initialize list, navigate, insert and delete
elements, splice and reverse list

I Use list as a priority queue: insert into ordered list, and
remove from front or back

I Be careful when removing elements!

for (e = list_begin (&list); e != list_end (&list);
e = list_remove (e))

{
/* WRONG */
free (list_entry (e, struct thread, elem));

}

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Threads

I System executes one kernel thread at the time
I Each thread is uniquely identified by

1. its identifier tid
2. the (virtual) address of its kernel page
3. its stack pointer (directly accessible in running thread)

I Some threads execute user processes

I Scheduling algorithm decides which thread to run

I Source: threads/thread.c

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Thread Page (1)

struct thread {
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (debugging). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element (all) */

/* Shared between thread.c (ready list) and
synch.c. (waiting queue) */

struct list_elem elem;
...
unsigned magic; /* Detects stack overflow */
/* Stack ends here */

};

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Thread Page (2)

struct thread {
tid_t tid; /* Thread identifier. */
...
/* Process Structure; NULL if no process started */
struct process* process;

/* User processes created by this thread */
struct list children;

/* Page directory for user processes */
uint32_t *pagedir;

unsigned magic; /* Detects stack overflow */
/* Stack ends here */

};

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Scheduling

I Threads status is one out of
I THREAD_RUNNING: the currently active thread
I THREAD_READY: ready to be scheduled (ready list)
I THREAD_BLOCKED: thread is waiting for an event
I THREAD_DYING: destroyed on next context switch

I Scheduling is triggered by either
I Timer interrupt (thread_tick())
I The running thread, for example, when thread is blocked,

its priority was changed, etc.

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Switching Threads

I Switching to another thread is accomplished by changing
the stack pointer in switch_threads

1. Scheduling algorithm selects the next thread to run
2. The running thread calls switch_threads
3. The necessary registers and the stack pointer of the

running thread are saved
4. The registers and the stack pointer of the next thread are

restored
5. The function returns, the next thread is now running

I This works because all threads which are not running have
been preempted in switch_threads

I New threads need to carefully setup stack frame to fake
this

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Synchronization

I Synchronization is really important
I Synchronization Mechanisms

I Disabling interrupts
I Semaphores
I Locks and condition variables

I Checklist
I Is data thread-local or shared?
I Which thread is responsible for allocating and destroying?
I Does owner of data change?
I Which pointers do potentially reference data?
I Which lock protects shared data?

I Source: threads/synch.c

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Disabling Interrupts

I Critical sections can be protected by disabling interrupts
(+spinlocks on multiprocessor)

I Avoid this form of synchronization (less responsive
scheduling)

I Necessary if blocking is impossible in the current context
(external interrupt handler)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Locks

I Clean abstraction to protect shared data structures

I At any time, at most one thread holds a lock

I Only the lock owner may release the lock

I When acquiring lock: if lock is held by another thread,
acquiring thread is blocked

I When releasing: oldest blocked thread is unblocked (FIFO)

struct lock list_lock;
lock_init(&list_lock);
...
lock_acquire(&list_lock);
modify_list(&the_list);
lock_release(&list_lock);

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Semaphores

I Shared integer variable

I sema_down: block until positive, then decrement

I sema_up: increment, potentially unblocking other
threads

I Semaphore usage example:
I Initialize semaphore to 0
I One thread waits (down on semaphore) until an action is

completed
I Another thread signals (up) the completion of the action

I Locks are restricted semaphores (initialized to 1), but
simpler to understand

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Monitors

I Another synchronization mechanism implemented in
Pintos

I Problem: Only want to acquire lock if some condition is
true (e.g., buffer not empty)

I Monitors allow to give up lock until signalled by another
thread

lock_acquire (&lock);
while (n == 0) /* empty buffer */
cond_wait (¬_empty, &lock);

n--;
cond_signal (¬_full, &lock); /* buf not full*/
lock_release (&lock);

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

User Programs

I Executed by a kernel thread by setting up the initial
environment (memory, stack pointer, etc.) and then
switching to user mode

I User programs access kernel functionality by means of
system calls (internal interrupts)

I User processes may create other processes, access the file
system, shutdown the computer,. . .

I . . . but never crash or corrupt the kernel

I Source: userprog/process.c

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Spawning new processes

I The parent process creates a new thread and passes it all
necessary information to load a program (thread start
argument)

I Next, the parent process waits for the loading process to
complete (sema_down)

I The new thread loads program segments (code, data) from
disk into memory

I The new thread sets up the stack

I The new threads signals the parent process that loading is
complete, and starts to execute the user program

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Destroying processes

I When a process terminates, it checks whether the parent
process is alive (race condition requires lock here)

I If the parent process is alive, the process signals
(sema_up) that it terminated

I Otherwise, it cleans up the resources it used itself

I Parent process cleans up terminated child processes

I Parent process may wait until a child process signals its
termination (sema_down)

I Be careful not to leak memory: Some thread/process
needs to be responsible for deallocating memory

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Protection from misbehaving user programs

I Memory Protection
I Paging is used to ensure only valid virtual memory

addresses are accessed
I An invalid access causes a page fault (internal interrupt)

I Accessing user-space memory in kernel mode
I You must not trust addresses from user space
I The current implementation uses the page fault handler

and specialized functions to access user memory

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

System Calls
I User programs communicate with the kernel by triggering

the syscall interrupt (0x30)
I The system call handler analyzes the stack, and carries out

the appropriate action
I One must not trust addresses and especially strings from

user space

#define syscall2(NUMBER, ARG0, ARG1)
({

int retval;
asm volatile

("pushl %[arg1]; pushl %[arg0]; "
"pushl %[number]; int $0x30; addl $12, %%esp"
: "=a" (retval)
: [number] "i" (NUMBER),
[arg0] "r" (ARG0),
[arg1] "r" (ARG1)

: "memory");
retval;

})

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Memory

I Pintos provides up to 64Mb of physical memory

I Memory is always accessed using virtual addresses

I Command line switch -m to select available memory

I Divided into kernel (above 3Gb) and user memory

I Pages are managed in kernel and user pool (palloc.c)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Memory Allocation

I In kernel mode: either page allocator or block allocator
I Page allocator palloc

I Allocates one or more consecutive pages
I Possible to allocate user space memory (PAL_USER)
I Internal and external fragmentation

I Block allocator malloc
I Memory efficient for blocks less than 4Kb
I External fragmentation for larger blocks

I Avoid memory leaks!

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Paging

I Most significant bits determine page associated with
memory address

I Functionality for paging is already available (see
threads/pte.h and userprog/pagetable.c)

I Each user process has it own page directory (pointing to
zero or more page tables)

I Page Flags
I Present: Whether page is present in physical memory;

access page faults if it is not
I Read/Write: Whether page is writable; access page faults

on write if it is read only
I User/Kernel: Whether page is accessible in user mode
I Accessed, Dirty: Useful to implement swapping and

memory mapped pages

I Page fault handler can setup missing pages (Project 2)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Simple File System

I Setup using the pintos command line utility

I Accessed when loading user programs, during system
calls, loading pages for memory mapped files,. . .

I In this course: only simple synchronization (global lock)

I For user programs, open files are identified by a file
descriptor

I In kernel space, handles of open files are of type struct
file*

I A file may be opened more than once; the internal data is
deleted when (1) the file is deleted and (2) no process has
a handle to that file

void process_lock_filesys (void);
void process_unlock_filesys (void);

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Filesystem Restrictions

The pintos filesystem is simple, and restricted:

I No internal synchronization (just global lock)

I File size is fixed at creation time

I Limited number of files

I No directories

I Data in a single file must occupy a contiguous range of
disk sectors

I No subdirectories

I File names are limited to 14 characters

I No filesystem repair tool ;)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

File System Tools

* Create a 2 MB hard disk for pintos
[src/userprog/build]
pintos-mkdisk filesys.dsk --filesys-size=2

* Format Disk
-f ... format virtual disk
pintos -f -q

* Copy file to filesystem
-p FILE ... file to put on virtual disk
-a FILE ... newname on virtual disk
pintos -p ../../examples/echo -a echo -- -q

* Execute echo, and get file ’echo’ from disk
pintos -g echo -- -q run ’echo x’

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Build System

I Modular build system using Makefiles
I Files of interest

I intro/Make.vars: defines the build and testing
process for project 0 (intro)

I Make.config: Configures the build tools
I Makefile.build: Includes the list of all files necessary

to build the kernel; you need to modify this file if you add
new files

I Makefile.kernel: Included by the Makefile in
subdirectories

I Makefile.userprog: Defines how to build user
programs

I Binaries
I Build process creates loader.bin and kernel.bin
I loader.bin: 512 byte boot loader at 0x7c00
I kernel.bin: ELF, limited to 512K, entry at start, linking

controlled by threads/kernel.lds.S (linker script)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Intro Project

I Two small tasks, a lot of reading
I Alarm Clock

I Current implementation of sleep uses busy wait
I Instead, block the thread until time has expired
I Recommended: write a least one kernel test

I Argument passing and stack setup
I Currently, stack setup is not implemented
I Moreover, user programs do not accept arguments
I Implement both argument parsing and stack setup
I The stack page is user space memory; access it correctly
I Dump the stack (hex_dump) to debug your

implementation
I Recommended: write and run at least one user program

(see examples)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Requirements and Design Document

I For each of the projects, there is a document 2 including
I An introduction to the topic
I Overview of affected files
I Requirement list
I A link to the design document
I A FAQ to help you out

I To get a perfect score, you need to meet all requirements,
and pass all tests for the assignment

2http:
//pan.vmars.tuwien.ac.at/progos/doc/progos/pintos.html

http://pan.vmars.tuwien.ac.at/progos/doc/progos/pintos.html
http://pan.vmars.tuwien.ac.at/progos/doc/progos/pintos.html

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Design Document Example

I Alarm Clock
I Data Structures

I Copy here the declaration of each new or changed struct or
struct member, global or static variable, typedef, or
enumeration. Identify the purpose of each in 25 words or
less.

I Algorithms
I Briefly describe what happens in a call to timer_sleep(),

including the effects of the timer interrupt handler.
I What steps are taken to minimize the amount of time spent

in the timer interrupt handler?
I Synchronization

I How are race conditions avoided when multiple threads call
timer_sleep() simultaneously?

I Rationale
I Survey Questions

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Automated Tests

I There is a set of automated tests for each project
I For each project, there is one directory to

I Build the kernel (make)
I Run automated tests (make check)
I Run grading script (make grade)

[~] cd pintos-progos/intro
[intro] make
[intro] make check
[intro] make grade

Project 1
[threads] make check

Project 2
[vm] make check

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Project 1: Priority Scheduling

I Goal: Implement priority scheduling

I Scheduler should select thread with highest priority

I Prevent priority inversion by implementing priority
donation for locks

I Priority donation is tricky!
I Design and verify a correct strategy before starting to

implement
I Check your design against the test cases provided for

priority scheduling

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Priority Donation Test

ASSERT (thread_get_pr ior i ty () == PRI_DEFAULT) ;
lock_acquire (&a) ;
lock_acquire (&b) ;

/∗ thread a needs lock a , boosts main thread ∗/
thread_create ("a" , PRI_DEFAULT + 3 , a_thread_func , &a) ;
msg ("Main thread should have p r i o r i t y %d. Actual p r i o r i t y : %d . " ,

PRI_DEFAULT + 3 , thread_get_pr ior i ty ()) ;

/∗ thread c does not need a lock , runs un t i l completion ∗/
thread_create ("c" , PRI_DEFAULT + 1 , c_thread_func , NULL) ;

/∗ thread b needs lock b , boosts main thread ∗/
thread_create ("b" , PRI_DEFAULT + 5 , b_thread_func , &b) ;
msg ("Main thread should have p r i o r i t y %d. Actual p r i o r i t y : %d . " ,

PRI_DEFAULT + 5 , thread_get_pr ior i ty ()) ;

/∗ af te r release , main threads p r i o r i t y i s s t i l l highest ∗/
lock_release (&a) ;
/∗ af te r release , main thread p r i o r i t y i s default ∗/
lock_release (&b) ;

msg ("Threads b , a , c should have jus t finished , in that order . ") ;

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Project 2: Virtual Memory Management

I Goal: improve the virtual memory management of pintos

I You need to manage additional information on pages
(where to get the initial data, whether you need to write
back to disk)

I Pages should be loaded into memory on demand (page
fault handler)

I Stack should grow if necessary (heuristic to detect stack
accesses)

I Support for mmaping files into memory (write-back on
munmap)

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Registering as a group

I Submit your group member suggestions until Friday, 16.3

I Groups will be assembled until next Monday
I Each group needs to register itself for one tutor

I In myTI, register your group for “Gruppenanmeldung
Tutor”

I Ignore the actual timeslots for this myTI date, but pick a
tutor which has compatible time constraints

I Each group is assigned to one particular tutor

I The tutor will contact you via email as soon as the
assignment is complete

Introduction to
Pintos

Pintos
Basics

Pintos
Basics

Threads

Synchronization

User
Processes

Memory
Manage-
ment

File System

Pintos In-
frastructure

Assignments

Working as a group

I Get to know your team members (email)
I Setup a shared git repository

I As soon as group accounts are available
I We will provide a script to setup the shared repository
I One team member initializes the repository and shares the

git clone URL
I Then all team members clone their local copies from this

URL

I Attend the design talks with your Tutor as a group

I Have fun!

	Pintos Basics
	Pintos Basics
	Threads
	Synchronization
	User Processes
	Memory Management
	File System
	Pintos Infrastructure
	Assignments

