
Software
Management

Kammerer

Software Management

Roland Kammerer

Institute of Computer Engineering
Vienna University of Technology

27. October 2010

Software
Management

Kammerer

Overview

1. Source Code Documentation

2. Source Code Management

3. FLOSS Development

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen Part I

Source Code Documentation

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

Why is documentation important?

I Documentation is helpful and not cumbersome

I Helps developer(s) (yourself and others)

I Increases readability

I API documentation for other developers

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

What should be documented

I Variable/Functionnames should be self-explanatory

I Comments in Source Code (e.g., tricky sections, tricky
algorithms)

I Functions (e.g., input parameters, return values → API
documentation)

I No “last modified by/date”. That is the job of SCMs.

I No redundant documentation (e.g. .h and .c files).
Document .h files

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

How to document source code

I Simple comments in source code

I Tools (e.g., javadoc, doxygen, pydoc,. . .)

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

Why doxygen?

I Free Software

I Easy to use

I Multilanguage support (e.g., C, C++, Java, Python,
Fortran,. . .)

I Multiple output formats (e.g., html, latex)

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

Doxygen example

/**
* \brief Adds two parameters

*
* This function takes two integers as parameters

* and returns the sum of them.

*
* \param a Fist summand

* \param b Second summand

* \return Sum of a and b

*/

int sum(int a, int b)
{

printf("Parameter a %d and b %d\n", a, b);

return a +b;
}

Software
Management

Kammerer

Docu
Why?

What?

How?

Doxygen

How to use doxygen

1. Install doxygen

2. $ doxygen -g <config-file>

3. Edit the config-file (e.g., output directory, output format)

4. Document your code

5. Generate documentation:
$ doxygen <config-file>

6. Add a rule to your Makefile

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Part II

Source Code Management (SCM)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Motivation for Source Code Management

$ cp main.c main.c.bak
$ vim main.c
$ make
$ cp main.c main.c.bak.tmp
$ cp main.c.bak main.c
$ vim main.c
$ make
$ cp main.c main.c_tmp_segfault
$...
$ tar -czvf proj-20101027.tar.gz proj/
$ #and mail it

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Motivation for Source Code Management (2)

I No manual cp-ing of files

I Revisions: Simple to get to a known/working state

I Sharing: No more sending tar-balls

I Branches: Work on a specific feature, then merge it back,
or discard it

I Tracking down bugs: Automatic bi-secting between
revisions (modern SCMS)

I Integrity: checksums, signed-off-by (again, modern SCMs)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Central Server Solutions

I One central server. Clients checkout/commit code from/to
server

I Server is single point of failure
I Commit-access problem
I Old style: CVS cannot rename files, SVN branching is a

mess
I “Advantage”: Considered simpler by beginners (e.g. no

separate commit/push stage)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Central Server Solutions (2)

I Current Versions System (CVS)
I Developed since 1989
I Not maintained any more

I Subversion (SVN)
I “Modern version of CVS”
I Developed since 2000
I Adopted by Apache Foundation → Apache Subversion

The slogan of Subversion for a while was “CVS done
right”, or something like that, and if you start with
that kind of slogan, there’s nowhere you can go.
There is no way to do CVS right. – Linus Torvalds

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Distributed SCMs

I No central server

I Every local repository is a full copy

I Allows distributed workflow

I Allows central server workflow

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Distributed SCMs (2)

I Mercurial (hg)
I Developed since 2005
I Very popular (Google, Microsoft, Mozilla, Python,. . .)

I git
I Developed since 2005
I Used by Linux (yes, the kernel not the OS), Perl, Qt,

Gnome, Ruby on Rails, Android,. . .)

I Bazaar (bzr)
I Developed since 2005-2006
I Used by Launchpad, Ubuntu, wget,. . .)

I darcs
I Developed since 2002-2003
I Very interesting from an academic standpoint (e.g.,

patch-theory)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

History of git

I Linux (the kernel) used proprietary DVCS: Bitkeeper

I Bitkeeper crisis in 2005 (Hint: this does not happen with
FLOSS software)

I Requirements for new SCM:
I Speed
I Simple desing
I Non-linear development (thousands of parallel branches)
I Fully distributed
I Support for large projects (speed and data size)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Cheap Local Branching

I Branching/Merging is easy

I In-repo branches

I Use branches for every feature (feature-branch)

I Easy to share branches with other developers

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Everything is Local

I In general true for every distributed SCM

I Only fetch/pull/push need communication to outside,
therefore actions are fast

I Offline commits (e.g., in trains, airplanes,. . .)

I No single point of failure because no central server

I Makes git very fast (init, add, status, diff, branching,. . .)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Everything is Local (2)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Git is Small

From “Django” project:
git hg bzr svn

repo alone 24M 34M 45M
entire dir 43M 53M 64M 61M

I Nice effect: no annoying .svn dirs

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

The Staging Area a.k.a The Index

I Area to draft commits

I Seams to be overkill, but is a really nice feature

or

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Any Workflow

I Central server workflow

I Integration Manager workflow

I Dictator and Lieutenants workflow

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Integration Manager Workflow

developer
public

developer
public

integration
manager

developer
publicblessed

repository

developer
private

developer
private

developer
private

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Dictator and Lieutenants Workflow

developer
public

developer
public

dictator

developer
public

blessed
repository

lieutenantlieutenant

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Snapshots, Not Differences

I Traditional SCMS (deltas):

I git (snapshots, “mini file system”):

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Installing git

I GNU/Linux:

$ apt-get install git-core #debian/ubuntu
$ pacman -S git #arch linux
$ yum install git-core #fedora

I Mac:
http://code.google.com/p/git-osx-installer

I Windows: http://code.google.com/p/msysgit

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Basic Setup

I Identity:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.net

I Editor:

$ git config --global core.editor vim

I Diff Tool:

$ git config --global merge.tool vimdiff

I Checking the Settings:

$ git config --list
$ git config user.name

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Getting Help

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Getting a Repository

I Initialize a new one

$ cd project
$ git init
$ git add *.c
$ git add README
$ git commit -m "initial commit"

I Clone an existing one

$ git clone git://github.com/schacon/grit.git
$ git clone git://github.com/schacon/grit.git mygrit

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Adding and Staging Files

I git add is used to add new files and to stage files

I Use git status to check the current state

I Use git diff to see a diff between repo and working

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
#new file: README
#
Changed but not updated:
(use "git add <file>..." to update what
will be committed)
#
#modified: benchmarks.rb
#

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Committing Changes

I git commit to commit files in staging area (pops up
editor)

I git commit -m "my commit msg" to commit and
specify commit message

I git commit -a add files to staging area and commit
them (skip explicit staging area)

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

(Re)Moving Files

I rm file.txt removes local file, but this change is not
in staging area

I git rm file.txt removes local file, and adds this
change to staging area → next commit will record the
remove

I git mv foo.txt bar.txt moves file and stages the
move

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Viewing Commit History

I git log to see commit messages

I git log -p to see commit messages and a diff output.
Very useful!

I Very flexible (man page for details)

I gitk for a graphical version

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Undoing Things

I Change your last commit (e.g. files forgotten):
git commit --amend

I Unstage a staged file: git reset HEAD <file>

I Unmodifying a modified file:
git checkout -- <file>

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Undoing Things (2)

I git reset: Reset HEAD pointer. Okay as long as you
have not made your changes public

I git revert: Revert existing commits (by applying
additional changes). The only way if a mistake was pushed.

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Tagging

Tags give a state/commit history a human readable name

I List tags: git tag

I Add tag: git tag -a v1.0 -m ’version 1.0’

I Tags can be signed → integrity

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Basics for Remotes

I Remotes specify remote repositories

I Used to get new code (pull), or to store local repository to
a remote place (push)

I Extremely powerful! You decide to which external
repositories you want to forward code (or to get code
from)

I If you clone a repo, there is the default remote origin
which points to the location you cloned from

$ git clone git://foo.net/bar.git
$ cd bar
$ git remote -v
origin git://foo.net/bar.git
$ git remote add myserver git://myserver.net/bar.git
$ git remote -v
origin git://foo.net/bar.git
myserver git://myserver.net/bar.git

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Interacting with Remotes

I Getting data from remotes: git fetch <remote>

I Forwarding data to remotes:
git push <remote> <branch>

I Renaming: git remote rename foo bar

I Removing: git remote rm bar

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Branches

I Branches are lightweight

I Creating/Switching/Merging is easy

I One of the “killer features” of git

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Creating and Switching to Branches

I Listing: git branch

I Creating: git branch testing

I Switching: git checkout testing

I Create and switch: git checkout -b testing

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Merging Branches

I Merging: git merge <branch>

$ git checkout -b hotfix
$ #fixing a bug in main.c
$ git add main.c #stage file
$ git status #ok, everything is okay
$ git commit -m ’fixed bug 123’
$ git checkout master #switch to master branch
$ git merge hotfix #merges and commits
$ git branch -d hotfix #delte the old branch

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Remote Branches

I Whenever code shall be shared, remotes/remote branches
are necessary

I Default remote branch that exists: origin/master (master
branch on the remote origin)

I Fetching data from remote: git fetch origin

I Merge fetched data to local repository:
git merge origin/master

I Fetch and merge: git pull. Fetches origin/master and
merges changes

I Pushing to a remote: git push origin hotfix

I To push to origin/master: git push

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Example Workflow

$ cd bar
$ git pull #any news?
$ git checkout -b newfeature
$ # modify e.g., main.c
$ git add main.c
$ git commit -m ’fixed it’
$ git checkout master
$ git merge newfeature
$ git push #update to server

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Appetizer: Finding Regressions

$ git bisect start
$ git bisect good v2.6.18
$ git bisect bad master
Bisecting: 3537 revisions left to test after this
[65934a9a028b88e83e2b0f8b36618fe503349f8e] BLOCK...

$ git bisect bad
Bisecting: 1769 revisions left to test after this
[7eff82c8b1511017ae605f0c99ac275a7e21b867] i2c...
$...
git bisect reset

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Appetizer: Imap Send

[imap]
folder = "[Gmail]/Drafts"
host = imaps://imap.gmail.com
user = [hidden email]
pass = p4ssw0rd
port = 993
sslverify = false

$ git format-patch -M --stdout origin/master |
git imap-send

I Generates patches between your version and
origin/master, attaches this patches to a mail in your Gmail
drafts folder, uses the short commit msg as mail subject
and the long as mail body.

Software
Management

Kammerer

SCM
Motivation

Central

Distributed

git
History

Details

Basics

Remotes

Branching

Examples

LU

Git and the ESE LU

I You have to use git for the ESE LU

I At a minimal and basic level

I You submit a tarball which contains your project (and the
.git directory)

I Your repo has to contain the tag abgabe

I This tag will be checked out and will be used for grading

I Details follow on the LVA homepage

Software
Management

Kammerer

FLOSS
What?

Linux

Part III

FLOSS (Free/Libre/Open Source
Software) - Development

Software
Management

Kammerer

FLOSS
What?

Linux

What is FLOSS?

I Liberally licensed software (right to use, study, change,
and improve)

I Licenses: GPL, BSD, MIT, . . .

I In most cases distributed development

I Great for students to get real-world experience. Use this
great opportunity

Software
Management

Kammerer

FLOSS
What?

Linux

What is FLOSS (2)?

I Free Software

I Libre Software

I OS Open Source

I Software

Software
Management

Kammerer

FLOSS
What?

Linux

A short history

I GNU: GNU (GNU’s not Unix) started to create a full OS
(compilers, editors, . . .). Kernel was missing.

I Minix: Nice OS kernel for teaching purposes (Andrew
Tanenbaum)

I Linus Torvalds did not like the license of Minix, and GNU
did not have a kernel → He started to write one

Software
Management

Kammerer

FLOSS
What?

Linux

Linux Kernel Development

I Linux: FLOSS (gpl v2) operating system kernel (not the
whole OS itself)

I Kernel of the GNU operating system → GNU/Linux

I Widely used OS kernel (Servers, Desktops, Mobile phones,
Routers,. . .)

I BDFL (Benevolent Dictatorship For Life): Linus Torvalds

I Distributed development from the beginning (mailing-lists
(LKML), distributed SCMs)

Software
Management

Kammerer

FLOSS
What?

Linux

Development Model

I Distributed

I Hierarchical

I Maintainers for every sub-/architecture

I Every file has a maintainer
(/usr/src/linux/MAINTAINERS)

I Chain of trust (signed-off-by messages)

Software
Management

Kammerer

FLOSS
What?

Linux

Release Model

Software
Management

Kammerer

FLOSS
What?

Linux

How git Helps

I Supports distributed development model

I Signed-off-by messages

I git blame

I Integrated integrity

I Rich set of tools (git bisect, git imap-send,
git archive,. . .)

Software
Management

Kammerer

FLOSS
What?

Linux

GNU/Linux Distributions

I Glue together software projects (Linux kernel, browser,
desktop environments, boot manager,. . .)

I Provide packages and packages management

I Provide updates and security updates

I Different software release life cycles (stable releases vs.
rolling release)

I Enormous number of distributions (advantage and
disadvantage!)

Software
Management

Kammerer

FLOSS
What?

Linux

Debian Release Model
UpStream

Sources

Security
Patches

Security
Team

Security
incoming

(Manual) package upload
automatic processing

 special/optional process
Standard process

BTS

package installation
Legend

maintenance responsibility
exchange help, discussion

submission, notification

builds

incoming

developer/
maintainer

packaging

experimental

unofficial archives
power user/
developer

 user/
production

backups

volatile

 testing
 security

unstable

testing

frozen

by
RM

testing

unstable

stable

stable

proposed updates

proposed updatessecurity updates
by
stable
RM

semi official repository

human/
group

transitional
state

Figure: From http://en.wikipedia.org/wiki/Debian

Software
Management

Kammerer

FLOSS
What?

Linux

Conclusion

I Source code documentation is important. It helps you and
other developers that read the code. Tools exist

I State of the art source code management is distributed
and has impact on code quality of real world projects

I FLOSS is an opportunity for students and still an emerging
field (e.g., Linux in safety-critical applications?)

I FLOSS development is professional (clear
development/release models, hierarchy and assignment of
responsibilities, software testing, quality management,. . .)

Software
Management

Kammerer

FLOSS
What?

Linux

References

I Pro Git: http://www.progit.org

I Why Git is better than X:
http://whygitisbetterthanx.com

	Source Code Documentation
	Docu
	Why?
	What?
	How?
	Doxygen

	Source Code Management (SCM)
	SCM
	Motivation
	Central
	Distributed

	git
	History
	Details
	Basics
	Remotes
	Branching
	Examples
	LU

	FLOSS (Free/Libre/Open Source Software) - Development
	FLOSS
	What?
	Linux

