
Software Engineering & Projektmanagement VO

(188.410)

Felix Rinker felix.rinker@qse.ifs.tuwien.ac.at

Kristof Meixner kristof.meixner@tuwien.ac.at

29.05.2019 | Software Patterns

mailto:felix.rinker@qse.ifs.tuwien.ac.at


2

Agenda

▪ Industrial Use Case

– Software Engineering Integration for Flexible Automation Systems

▪ Complex Systems and Complexity Management

▪ Motivation for Software Patterns

▪ Software Pattern Categories

▪ Practical Examples

– Engineering Service Bus

▪ Conclusion



3

Industrial Scenario

▪ Large-scale Cyber-Physical 

(Production) Systems engineering 

projects

– e.g. steel-mill, car manufacturing 

plants, hydro power plants

▪ Require cooperation of engineers 

from different disciplines 

▪ Disciplines have specific 

engineering vocabularies & tools

▪ Manual effort needed for tool data 

exchange

– High risks



4

Complex Systems

Magnitude

 Number of Elements in the system

 Number of possible states of elements

 Difference between number of possible and 

usable solutions

Diversity

Magnitude of heterogeneity of elements

▪ Connectivity, structural complexity

Number of potential connections between elements

▪ Literature defines systems as complex if

 … they consists of a large number of interacting components,

 … simple linear modelling is insufficient for understanding,

 but requires sophisticated dynamic approaches (e.g., simulations). 



5

Managing Complexity

▪ Abstraction

– simplification of a scenario

▪ Decoupling

– identify the separation of system components that should not depend on each 

other

▪ Decomposition

– KISS - Keep It Simple, Stupid

– components that are easier to understand, manage, or maintain

– problem of reassembling

▪ Classification

– system parts with similar properties



6

Managing Complexity

▪ Standardization

– benefit of a structured and non-dynamic environment

▪ Modeling

– generating an abstract and simplified view

▪ Transformation

– transformation of the given problem to a domain with proven solution approach

▪ Experience

– documented experiences from experienced contributors



7

Industrial Scenario

▪ Complexity-drivers

– Technical heterogeneity 

“Engineering Polynesia”

– Semantic heterogeneity 

“Engineering Babylon”

– Process heterogeneity 

“Engineering Chaos”

▪ Engineering Service Bus

(https://github.com/openengsb)

▪ Operating Numbers

▪ 184 repositories

▪ 5508 Issues

▪ 170k LOC

▪ 74k LOConf

▪ 314 Project Dependencies



8

Pattern Definitions

▪ „…a solution to a problem in a context…“

▪ „A pattern is the abstraction from a concrete form which keeps recurring in specific 

non-arbitrary contexts”

▪ „Pattern“ has been defined as „an idea that has been useful in one practical 

context and will probably be useful in others.“



9

Elements of a Pattern

▪ A meaningful name

– Aliases, classifications

▪ Motivation and problem statement

▪ Context



10

Elements of a Pattern

▪ A meaningful name

– Aliases, classifications

▪ Motivation and problem statement

▪ Context

▪ Solution

– Structure

– Participants

– Collaboration

– Consequences

– Implementation

– Examples



11

Advantages for Software Development

▪ Common vocabulary saves discussions

▪ Help manage complex systems

– Patterns explicitly capture expert knowledge and design tradeoffs

• therefore make this expertise more widely available

– Combination of patterns

▪ Facilitates non-functional requirements

– Reusability, adaptability, extendability

▪ Minimizes development time and costs

▪ Improves documentation



12

Experience



13

Drawbacks of Patterns

▪ Patterns do not lead to direct code reuse

▪ Patterns are deceptively simple

▪ Teams may suffer from pattern overload

▪ Patterns are validated by experience and discussion

– rather than by automated testing

– http://clean-code-developer.de/



14

Classification of Patterns

▪ Architectural Patterns 

– Structure of software systems

– Subsystems, dependencies, communication

▪ Design Patterns

– Describes the structure and relations at the level of classes 

▪ Idioms

– Focus on low-level details

– Programming language specific

▪ Protopatterns

– Particular case

– A new, understandable solution to be used in larger scale

▪ Antipatterns

– Commonly used but ineffective techniques



15

When to use Patterns

▪ Solutions to problems that recur with variations

– No need for reuse if the problem only arises in one context

▪ Solutions that require several steps

– Patterns can be overkill if solution is simple linear set of instructions

▪ Solutions where the solver is more interested in the existence of the solution than 

its complete derivation

– Patterns leave out too much to be useful to someone who really wants to 

understand 



16

Most popular Patterns

▪ The most popular design pattern is the Interface pattern

http://dilbert.com/strips/comic/1994-06-10/

▪ The second most popular design pattern is Proxy Pattern

▪ The third most popular design pattern is "Big Ball of Mud"



17

Types of Patterns

▪ Fundamental patterns

- Deal with essential concepts of software architecture

▪ Creational patterns

– Deal with initializing and configuring classes and objects

▪ Structural patterns

– Deal with decoupling interface and implementation of classes and objects

▪ Behavioral patterns

– Deal with dynamic interactions among objects



18

Fundamental Patterns - Overview

▪ Interface

– Separation of interface description and implementation

▪ Delegation

– Extension of functionality without inheritance 

▪ Immutable

– Provides unchangeable object after initialization

▪ Marker / Annotation

– Enhances objects with metadata



19

Fundamental Pattern - Interface

▪ defines the signature operations of an entity

▪ should be stable - in comparison to implementation

▪ implementations can be added / changed easily 

Issue: Separate Interface description and concrete implementation



20

Fundamental Pattern - Interface

Code Example



21

Fundamental Pattern - Delegation

Issue: Class needs additional functionality



22

Fundamental Pattern - Delegation

Inheritance

Issue: Class needs additional functionality



23

Fundamental Pattern - Delegation

Delegation

Outsource functionality into third class and use its instance via delegation

Issue: Class needs additional functionality



24

Fundamental Pattern - Delegation

Code Example



25

Fundamental Pattern - Immutable

▪ Several threads accessing same object

▪ Configuration object properties

Issue: Object instance should be immutable

▪ Initialize variables in constructor

▪ Provide readable only access via Getter-Methods

Immutable Object



26

Fundamental Pattern - Immutable

Code Example



27

Creational Patterns - Overview

▪ Singleton

– Provision of a single instance only

▪ Factory

– Method in a derived class creates associates

▪ Abstract Factory

– Factory for building related objects without specifying their concrete classes

▪ Builder

– Factory for building complex objects in different variants

▪ Prototype

– Factory for cloning new instances from a prototypical instance



28

Creational Pattern - Singleton 

▪ Database access

▪ Id generator

▪ Logger

▪ Communication with hardware

Issue: Only one object instance should exist



29

Creational Pattern - Singleton 

Threadsafe??

Issue: Only one object instance should exist

Singelton



30

Creational Pattern - Singleton 

Code Example

In this case LOG is the same object even without static

due to the Singleton Pattern of the LoggerFactory

considering the Person.class parameter



31

Creational Pattern - Factory 

▪ Initialization of additional sub-instances required

▪ Complex configuration process steps

Issue: Object creation depends on complex requirements

Helps decoupling as only interface is known!



32

Creational Pattern - Factory 

Code Example



▪ Abstract Factory

– a group of individual factories that have a common theme

▪ Two hierarchies

– various abstractions client is interested in

– abstract AbstractFactory class provides interface

• for each class that is responsible for creating the members of a particular family

▪ Client only knows abstract interface

– Family may grow independently of the client

33

Creational Pattern – Abstract Factory 

Issue: Achieving higher abstraction by grouping individual factories with a common theme



34

Structural Patterns - Overview

▪ Facade

– Facade simplifies the interface for a subsystem

▪ Adapter

– Translator adapts a server interface for a client

▪ Proxy

– One object approximates another

▪ Bridge

– Abstraction for binding one of many implementations

▪ Composite

– Treats individual objects and compositions uniformly

▪ Flyweight

– Many fine-grained objects shared efficiently



35

Structural Pattern - Facet

▪ Provides a simplified, higher-level interface of a subsystem

– easier to use, understand, and test subsystem

– balance between simple but restricted and rich but complex

▪ May help creating a layered architecture

Issue: Need simplified access to a complex subsystem



36

Structural Pattern - Facet

Code Example



37

Structural Pattern - Adapter

▪ wrapper pattern or simply a wrapper

▪ provides access to external functionality 

– e.g., access to external libraries, (proprietary) systems

– typically no direct access because of incompatible interfaces

Issue: Need to integrate incompatible external functionality 

▪ translates an external interface 

into a compatible interface

– Perform data transformations 

into appropriate forms



38

Structural Pattern - Adapter

OESB Example



39

Structural Pattern - Proxy

▪ Extends concept of the delegation pattern

▪ Enriches interface functionality

– Implements interface and acts as a representative of the „original“ implementation

▪ Cascading Proxies

Issue: Need to integrate further actions before intended method call

▪ Use cases

- security

- logging

- caching



40

Structural Pattern - Proxy

Issue: Need to integrate further actions before intended method call

Use case: Access control



41

Remote Connectors

Code Example



42

Behavioral Patterns - Overview

▪ Observer

– Dependents update automatically when a subject changes

▪ Decorator

– Decorator extends an object transparently

▪ State

– Object whose behavior depends on its state

▪ Strategy

– Vary algorithms independently

▪ Chain of Responsibility

– Request delegated to the responsible service provider

▪ Iterator

– Aggregate elements are accessed sequentially

▪ Command

– Object represents all the information needed to call a method at a later time

▪ Mediator

– Mediator coordinates interactions between its associates

▪ Memento

– Snapshot captures and restores object states



43

Behavioral Pattern - Observer

▪ in case of changes of the instance‘s state execute specific action(s)

– e.g., notification of instances interested in change

– one-to-many dependency

Issue: Need to react to object state changes



44

Behavioral Pattern - Decorator

▪ Dynamically add new functionality to an existing object

– Some basic work still has to be done at design time

Issue: Need to extend object functionality during runtime

▪ Elements

– Interface Component

– Implemented by concrete components

– Abstract decorator class

• Implements interface

• and keeps reference to interface

to forward functionality

– Concrete decorator

implementations

▪ Drawback

– Testing

– proxy



45

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Cake



46

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Cake



47

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: GUI toolkit



48

Behavioral Pattern - Decorator

Issue: Need to extend object functionality during runtime

Example: Stream



49

Behavioral Pattern - State 

▪ Allow an object to update its behavior when its internal state changes

– Makes state transitions explicit 

– May result in lots of subclasses 

Issue: Need to change object behavior based on current state 



50

Behavioral Pattern - State 

Issue: Need to change object behavior based on current state 

http://sourcemaking.com/design_patterns/state

public interface Observer {

public void notify();

}



51

Behavioral Pattern - Strategy

Issue: Need to extend strategies at runtime

▪ Dynamically add new algorithms

– context choose algorithm to use



52

Behavioral Pattern - Strategy

▪ Currently close binding between person and email/sms

– no use of additional communication technique without changing code

– Notification service decides technique of communication

Issue: Need to extend strategies at runtime

Example: Notification strategy



53

Behavioral Pattern - Strategy

Issue: Need to extend strategies at runtime

Example: Notification strategy

▪ Context object decides which strategy to use



54

Behavioral Pattern - Strategy

Code Example



55

Behavioral Pattern - Chain of Responsibility

▪ Chain of Objects

– a source of command objects

– a series of processing objects with logic capable of handling specific command objects 

Issue: Improve loose coupling between a series of processing logic



56

Behavioral Pattern - Chain of Responsibility

▪ Chain of Objects

– a source of command objects

– a series of processing objects with logic capable of handling specific command objects 



57

Behavioral Pattern - Chain of Responsibility

Example: Remote service request

Json encoded request



58

Behavioral Pattern - Chain of Responsibility

Example: Remote service request



59

Example: Remote service request



60

Summary

▪ Industrial Use Case

▪ Engineering Service Bus

▪ Design patterns provide a structure in which problems can be solved.

– Review different applications of one pattern

– Gain experience

– "code smells"

▪ Offering Topics

– http://qse.ifs.tuwien.ac.at/topics.htm

– felix.rinker@qse.ifs.tuwien.ac.at

mailto:felix.rinker@qse.ifs.tuwien.ac.at


61

How to gain experience

▪ Participate in open source projects, e.g.

- OPS4J https://github.com/ops4j

- Apache Projects https://projects.apache.org/projects.html

- Google Summer of Code https://developers.google.com/open-source/gsoc/

- …

▪ Build up your own technology radar

- Martin Fowler: Catalog of Patterns of Enterprise Application Architecture

https://martinfowler.com/eaaCatalog/

- study Stack Overflow design pattern topics 

https://stackoverflow.com/questions/tagged/design-patterns

https://github.com/ops4j
https://developers.google.com/open-source/gsoc/
https://martinfowler.com/eaaCatalog/
https://stackoverflow.com/questions/tagged/design-patterns


62

References

▪ Shannon C. E. A Mathematical Theory of Communication. Bell Syst. Techn. J., 1948.

▪ McDermid, J.A. Complexity: Concept, Causes and Control. in 6th IEEE Int. Conference on 

Complex Computer Systems. 2000: IEEE Computer

▪ Society..

▪ Norman D. O. and M. L. Kuras. Engineering Complex Systems. Technical Report, the MITRE 

Corporation, 2004.

▪ Developer.com, A Survey of Common Design Patterns, 2002, 
http://www.developer.com/design/article.php/1502691/A-Survey-of-Common-Design-Patterns.htm

▪ Anand, R. and H.C. Roy, What is the complexity of a distributed computing system? Complexity, 

2007. 12(6): p. 37-45.

▪ Bob, C., Complexity in Design. IEEE Computer, 2005. 38(10): p. 10-12.

▪ Dirk Riehle and Heinz Zullighoven. 1996. Understanding and using patterns in software 

development. Theor. Pract. Object Syst. 2, 1 (November 1996)

▪ Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software AW, ’94

▪ Pattern Languages of Program Design series by AW, ’95-’99. 

▪ Siemens & Schmidt, Pattern-Oriented Software Architecture, Wiley, volumes ’96 & ’00

▪ http://sourcemaking.com/design_patterns


