
Worst-Case Execution-Time Analysis
WCET Analysis

slides: P. Puschner, R. Kirner, B. Huber

Time in RTS Construction

2

Design
Architecture, resource planning, schedules

Timing Analysis
Schedulability analysis, WCET analysis

Implementation

From Design to Implementation

3

T1

T4

T2 T3

t

Task set with precedence
constraints and deadline

T1 T2 T3 T4
t

Task sequence:
execution times,
response time

Can we guarantee that: response time < deadline?

Timing-Analysis Abstraction

4

T1 T2 T3 T4

T1 T2 T3 T4
t

In general it is infeasible to model all possible execution
scenarios and combinations of task execution times

T1 T2 T3 T4
T1 T2T3 T4

Timing analysis abstraction of different execution times:
one single value ð WCET (worst-case execution time)

Ti
Ti

xt < WCET

xt = WCET

RTS Timing Analysis

Schedulability objects
• Units of execution (simple tasks) with WCET
• Precedence relations
• Synchronization, communication, mutual exclusion
• Priorities

WCET-analysis objects
• Simple tasks

Interference ... (nasty and therefore widely neglected)
• “external” changes of task state that influence exec. time

5

• Inputs available at start
• Outputs ready at the end
• No blocking inside
• No synchronization or

communication inside
• Execution time variations only

due to differences in
• inputs
• task state at start time
(no external disturbances)

6

Task

Input

Output

State

State

Simple Task

Worst-Case Execution Time

7

Def. Worst Case Execution Time (WCET):
WCET of software is the maximum time it takes to
execute
• a given piece of code
• in a given application context (inputs, state)
• on a given machine

Task-Timing Terms

8

t

fr
eq

ue
nc

y

WCET Boundmax. ET
observed

BCET WCET

BCET … best-case execution time
WCET … worst-case execution time

WCET Analysis

WCET Analysis goal: derive upper bounds for the
execution time of pieces of code

9

➭ WCET bounds must be safe
 (i.e., must never underestimate the WCET)

➭ WCET bounds should be tight
 (i.e., must not be too pessimistic)

➭ The analysis cost should be reasonable
 (i.e., computational efforts must not be too high)

Measuring WCET

10

Stop Timing Measurement

Execute Task on Target HW

Start Timing Measurement

WCET estimate ?

Timer,
Logic Analyzer,

etc.

Why not just Measure WCET?

• Measuring all different traces is intractable
(e.g., 1040 different paths in a mid-size task)

• Selected test data for measurement may fail to trigger the
longest execution trace

a) Test-data generation: rare execution scenarios may
be missed (e.g., exception handling, …)

b) Internal processor state may not have been in its
worst-case setting at the beginning

Measurements: rough WCET estimates, WCET testing

11

Static WCET Analysis

Static WCET Analysis: computes upper bounds for
the execution time of pieces of code

• models software, hardware, and context

• SW: source code, executable (with addresses resolved)

• HW: processor (pipeline), memory (areas, caches), …

• Context: Initial software + hardware state

12

WCET Determinants

• Possible sequences of
actions of the task
(= execution paths) in
given application

• The duration of each
occurrence of an action
on each possible
(= feasible) path

13

a1

a2

a3 a4

a5 a6

a7

a9

a8

Task

WCET Determinants
Sequences of actions are determined by
• Semantics of code (incl. hardware specific

semantics, implementation specifics)
• Possible inputs in context (appl., call context)

Duration of actions
• Implementation of instructions in HW
• HW state that influences timing (caches,

pipelines, etc.)
§ task-internal effects
§ external effects ð start state; state after preemption

14

Path Timing – Simple vs. Complex Arch.

Execution time of path k: xt(pk)

Simple Architecture
 Duration of each action ai is constant:

xt(pk) = S nk,i t(ai)

Complex Architecture
 Durations of actions vary:

xt(pk) = S S t(ai,j(k))

 Reasons: pipelining, caches, parallelism in CPU, …
15

ai

i

i j(k)

WCET Analysis – The Challenges

Path analysis: identifying (in)feasible paths
• Syntactic restrictions
• Semantic restrictions
• Input-data space

Modelling of hardware timing

WCET calculation
Dealing with different levels of code representation

• Source-language user interface versus
• Execution-time modeling at machine-code level

16

Generic WCET Analysis Framework

17

source
code

object
code

Compilation Transformation of
(In)feasible Path

Extraction of
(In)feasible Path

Exec-Time
Modeling (HW)

WCET

Calculation of
Execution
Scenarios

context

Path Information (= Flow Facts)
Loop bounds have to be known
Description of further characteristics improves the quality

of WCET analysis

18

for i := 1 to N do
for j := 1 to i do
begin

if c1 then A.long
else B.short

if c2 then C.short
else D.long

end

loop bound: N
loop bound: N; local: i: 1..N

(N+1)N
2 executions

Path Information of Interest

Simple Architectures
• Information how often actions occur
➭ Execution-fequency bounds and relations
➭ Notation: marker, relations, and scopes

Complex Architectures
• Information about occurrence order / patterns
➭ Characterization of (im)possible paths
➭ Notation: based on regular expressions,

 IDL (path Information Description Language)
19

Realization of Path Analysis

In general, automation is impossible (theoretically
equivalent to halting problem; state space …)

Some information can be extracted automatically
• abstract interpretation
• symbolic modeling
• simulation

➭ Program constructs, annotations,
interactive input of path constraints by the user
(≈ documentation of possible execution traces)

20

Markers, Relations and Scopes

SCOPE
{
 for (i=0; i<N; i++)
 {
 MAX_ITERATIONS(N);
 for (j=0; j<i; j++)
 {
 MAX_ITERATIONS(N);
 MARKER(M1);
 …
 }
 }
 REL(FREQ(M1) == N * (N+1) / 2);
}

21

WCET Calculation Techniques

• Tree-based WCET calculation
• (Path-based WCET calculation)
• WCET analysis based on implicit path enumeration

(IPET)

22

Tree-Based WCET Calculation

Also called “timing-schema approach”
Bottom-up traversal of syntax tree
Timing schema: Rule computes the timing of a syntactic unit

from its constituents.

23

Tree-Based WCET Calculation

 for (i=0; i<N; i++)
 {
 …
 }

24

T(if) =
 T(test) +
 max(T(then), T(else))

if (a==5)
 {
 …
 }
 else
 {
 …
 }

T(for) =
 (LB+1)*T(test) + LB*T(body)

LB … loop bound

WCET Calculation using IPET
IPET ... Implicit Path Enumeration Technique

Program given as control-flow graph (CFG).
Use methods like integer linear programming (ILP) or

constraint-solving to calculate a WCET bound.

WCET analysis as optimization/maximization problem:
• Maximize goal function describing execution time under
• a set of constraints describing possible paths;

Constraints characterize:
§ the structure of the control-flow graph,
§ control-flow limitations due to semantics, and
§ context. 25

WCET IPET: goal function (simple HW)

26

a1

a2
a3 a4

a5 a6
a7

a9

a8

Program

WCET: maximize S xi · ti
• xi … variable: execution

frequency of CFG edge ai
• ti … coefficient:

execution time of edge ai

Example: t1: 40, t2: 56, t3: 82, t4: 12, t5: 10, t6: 10, t7: 32, t8: 10, t9: 102
Goal function: 40x1 +56x2 +82x3 +12x4 +10x5 +10x6 +32x7 +10x8 +102x9

WCET IPET: constraints (simple HW)

27

a1

a2
a3 a4

a5 a6
a7

a9

a8

Program Flow constraints:
x1 = 1
x1 + x8 = x2
x2 = x3 + x4
x3 = x5
x4 = x6
x5 + x6 = x7
x7 = x8 + x9

x2 <= LB * x1
Example: loop bound 20
Loop constraint: x2 <= 20 * x1

WCET Calculation using IPET
IPET solution = WCET bound
Variable values (xi) characterize worst-case execution path(s)

Advantages:
Description of complex flow facts is possible.
Generation of structural constraints is simple.
Optimization problem can be solved by existing tools.

Drawbacks:
Solving ILP is in general NP hard à tool runtime.
Flow facts that describe execution order are difficult to integrate.

28

Exec-Time Modeling for Complex HW

Maps a sequence of instructions to an execution time.

Execution time of instruction may vary due to:
• different values of input parameters;

(max. value documented in HW manuals)
• internal state of the processor;

(footprint of the execution history)

HW features that influence the processor state:
instruction & data cache, instruction parallelism, branch
prediction, speculative execution, …

29

Exec-Time Modeling (2)
Exec-time modeling typically done before WCET calculation in
separate phases:

1. cache analysis
2. pipeline analysis
3. path analysis + WCET calculation

30

Modeling Pipelines (Example)

Basic operations on reservation tables:
Sequential combination of two reservation tables

31

IF
ID
EX
M
F
WB

IF
ID
EX
M
F
WB

IF
ID
EX
M
F
WB

Caches and WCET Analysis

Purpose: Bridge gap between fast CPU and slow memory
Essential to analyze caches on many architectures
Example: 40 cycles for a miss on MPC755

Types of Caches: Instructions, Data, BTB, TLB
Design: Direct Mapped, Set/Fully Associative
Replacement Policy: LRU, FIFO, PLRU, PRR
Many varieties: read-only / write through / write back, write

(no) allocate, Multi-Level Caches (inclusive/exclusive), ...

WCET analysis: assuming that every memory access is a
cache miss yields too pessimistic results 32

33

Categories of Cache Behavior
The cache behavior is analyzed to model the different timing of

memory accesses – fast cache hits vs. slow cache misses
Categorization of memory accesses:

ah always hit each access to the cache is a hit
(MUST analysis)

am always miss each access to the cache is a miss
(complement of MAY analysis)

ps(S) persistent for each entering of context S, first access is nc, but
all other accesses are hits (PERSISTANCE analysis)

nc not
classified

the access is not classified as one of the above
categorizations

34

Timing Anomalies (Example)
• Discrepancy between local and global timing
• Makes divide-and-conquer analysis difficult

Summary
Timing analysis

• Scheduling/schedulability – WCET analysis – interferences
WCET definition

• Simple tasks: code; machine; context (application, situation)

Measuring versus static WCET analysis

WCET framework
• Path analysis
• Modeling of hardware (instruction & memory-access timing)
• WCET computation technique

35

