Worst-Case Execution-Time Analysis
WCET Analysis

slides: P. Puschner, R. Kirner, B. Huber

Time in RTS Construction

Architecture, resource planning, schedules

Schedulability analysis, WCET analysis

From Design to Implementation
............. Task set with precedence
constraints and deadline

Task sequence:
\/ Q execution times,

.............. response time
' hmmm_
: t

Can we guarantee that: response time < deadline?

Timing-Analysis Abstraction

In general it is infeasible to model all possible execution
scenarios and combinations of task execution times

xt < WCET

xt = WCET

Timing analysis abstraction of different execution times:
one single value = WCET (worst-case execution time)

Y
RTS Timing Analysis

Schedulability objects
* Units of execution (simple tasks) with WCET
* Precedence relations
° Synchronization, communication, mutual exclusion
* Priorities

WCET-analysis objects
* Simple tasks

Interference ... (nasty and therefore widely neglected)
* “external” changes of task state that influence exec.time

I
Simple Task

* |nputs available at start
* Qutputs ready at the end
* No blocking inside

* No synchronization or
communication inside

* Execution time variations only
due to differences in

° inputs
* task state at start time
(no external disturbances)

Worst-Case Execution Time

Def. Worst Case Execution Time (WCET):
WCET of software is the maximum time it takes to
execute

* a given piece of code
* in a given application context (inputs, state)
* On a given machine

TU

WIEN

Task-Timing Terms

frequency

n : ol E -
BCET max.ET WCET Bound

observed

BCET ... best-case execution time
WCET ... worst-case execution time

B
WCET Analysis

WCET Analysis goal: derive upper bounds for the
execution time of pieces of code

<~ WCET bounds must be safe
(i.e., must never underestimate the WCET)

> WCET bounds should be tight
(i.e., must not be too pessimistic)

~ The analysis cost should be reasonable
(i.e., computational efforts must not be too high)

TU

WIEN

Measuring WCET

Start Timing Measurement

Timer,

Execute Task on Target HW :
. Logic Analyzer,

Stop Timing Measurement etc.

) 4
[WCET estimate ?]

B
Why not just Measure WCET?

* Measuring all different traces is intractable
(e.g., 1040 different paths in a mid-size task)

* Selected test data for measurement may fail to trigger the
longest execution trace

a) Test-data generation: rare execution scenarios may
be missed (e.g., exception handling, ...)

D) Internal processor state may not have been in its
worst-case setting at the beginning

Measurements: rough WCET estimates, WCET testing

Y
Static WCET Analysis

Static WCET Analysis: computes upper bounds for
the execution time of pieces of code

* models software, hardware, and context
* SW: source code, executable (with addresses resolved)
* HW: processor (pipeline), memory (areas, caches), ...

* (Context: Initial software + hardware state

™
WCET Determinants

Task

* Possible sequences of
actions of the task
(= execution paths) in
given application

* The duration of each
occurrence of an action
on each possible
(= feasible) path

™
WCET Determinants

Sequences of actions are determined by

* Semantics of code (incl. hardware specific
semantics, implementation specifics)

* Possible inputs in context (appl., call context)
Duration of actions
* Implementation of instructions in HW

* HW state that influences timing (caches,
pipelines, etc.)
= task-internal effects
= external effects = start state; state after preemption

[
Path Timing — Simple vs. Complex Arch.

Execution time of path k: xt(p,)

Simple Architecture
Duration of each action a; is constant:

xt(pi) = ; N t(a;) ’

Complex Architecture
Durations of actions vary:

xt(py) = 2 2 tajn)
i j(k)

Reasons: pipelining, caches, parallelism in CPU, ...

4
WCET Analysis — The Challenges

Path analysis: identifying (in)feasible paths
* Syntactic restrictions
* Semantic restrictions
* Input-data space

Modelling of hardware timing
WCET calculation
Dealing with different levels of code representation

° Source-language user interface versus
* Execution-time modeling at machine-code level

Generic WCET Analysis Framework

Source :> Extraction of <:
code (In)feasible Path

Compilation _‘ Transformation of I
iz Fait :> Calculation of
O Execution

Scenarios
:> Exec-Time @

Modeling (HW)

Path Information (= Flow Facts)

Loop bounds have to be known

Description of further characteristics improves the quality
of WCET analysis

fori:=1toNdo — loop bound: N
forj:=1toido —— loop bound: N; local: 1. 1..N
begin \

if c1 then A.long

else B.short \ (N+1)N
if c2 then C.short 2
else D.long
end)

executions

Path Information of Interest

Simple Architectures
* Information how often actions occur
<~ Execution-fequency bounds and relations
=~ Notation: marker, relations, and scopes

Complex Architectures

* |Information about occurrence order / patterns
<~ Characterization of (im)possible paths

<> Notation: based on regular expressions,
IDL (path Information Description Language)

Realization of Path Analysis

In general, automation is impossible (theoretically
equivalent to halting problem; state space ...)

Some information can be extracted automatically
* abstract interpretation
* symbolic modeling
* simulation

<~ Program constructs, annotations,
interactive input of path constraints by the user
(= documentation of possible execution traces)

Markers, Relations and Scopes

SCOPE
{
for (i=0; i<N; i++)
{
MAX ITERATIONS(N);

for (j=0; j<i; j++)

MAX_ITERATIONS(N);
MARKER(M1);

}
}
REL(FREQ(M1) == N * (N+1) / 2);
}

1
WCET Calculation Techniques

* Tree-based WCET calculation
* (Path-based WCET calculation)

* WCET analysis based on implicit path enumeration
(IPET)

3
Tree-Based WCET Calculation

Also called “timing-schema approach”
Bottom-up traversal of syntax tree

Timing schema: Rule computes the timing of a syntactic unit
from its constituents.

3
Tree-Based WCET Calculation

for (i=0; i<N; i++) T(for) =

\ (LB+1)*T(t/eit)/JrUB*T(bO/dY)

/

LB ... loop bound

|f (a=35)
}else ('f)\

T(test) +

max(T(then), T(else))
} /

/

Y
WCET Calculation using IPET

IPET ... Implicit Path Enumeration Technique

Program given as control-flow graph (CFG).

Use methods like integer linear programming (ILP) or
constraint-solving to calculate a WCET bound.

WCET analysis as optimization/maximization problem:

* Maximize goal function describing execution time under

° a set of constraints describing possible paths;
Constraints characterize:
" the structure of the control-flow graph,

= control-flow limitations due to semantics, and
= context.

M
WCET IPET: goal function (simple HW)

Program

WCET: maximize 2. Xi * 1

° X; ... variable: execution
frequency of CFG edge a;

° ti ... coefficient:
execution time of edge a;

Example: t;: 40, t,: 56, t3: 82, t4: 12, t5: 10, t5: 10, t7: 32, t5: 10, tg: 102
Goal function: 40x; +56x, +82x5; +12x, +10x5 +10xg +32%; +10xg +102x4

1
WCET IPET: constraints (simple HW)

Program Flow constraints:

X =1

X1+ Xg = X5

Xo = X3 + X4

X3 = Xs

Xy = Xg

X5 + Xg = X7

X7 = Xg + Xqg

X <=LB * x,
Example: loop bound 20
Loop constraint: x, <= 20 * x,

Y
WCET Calculation using IPET

IPET solution = WCET bound
Variable values (x;) characterize worst-case execution path(s)

Advantages:

Description of complex flow facts is possible.
Generation of structural constraints is simple.
Optimization problem can be solved by existing tools.

Drawbacks:
Solving ILP is in general NP hard - tool runtime.
Flow facts that describe execution order are difficult to integrate.

4
Exec-Time Modeling for Complex HW

Maps a sequence of instructions to an execution time.

Execution time of instruction may vary due to:

* different values of input parameters;
(max. value documented in HW manuals)

* internal state of the processor;
(footprint of the execution history)

HW features that influence the processor state:
instruction & data cache, instruction parallelism, branch
prediction, speculative execution, ...

Exec-Time Modeling (2)

Exec-time modeling typically done before WCET calculation in
separate phases:

1. cache analysis
2. pipeline analysis
3. path analysis + WCET calculation

[
Modeling Pipelines (Example)

Basic operations on reservation tables:
Sequential combination of two reservation tables

IF IF
D ID
EX EX
M M
F F

WB WB

IF
ID
EX
M
F
WB

Caches and WCET Analysis

Purpose: Bridge gap between fast CPU and slow memory
Essential to analyze caches on many architectures
Example: 40 cycles for a miss on MPC755

Types of Caches: Instructions, Data, BTB, TLB

Design: Direct Mapped, Set/Fully Associative

Replacement Policy: LRU, FIFO, PLRU, PRR

Many varieties: read-only / write through / write back, write

(no) allocate, Multi-Level Caches (inclusive/exclusive), ...

WCET analysis: assuming that every memory access is a
cache miss yields too pessimistic results

Categories of Cache Behavior

The cache behavior is analyzed to model the different timing of
memory accesses — fast cache hits vs. slow cache misses

Categorization of memory accesses:

ah always hit each access to the cache is a hit
(MUST analysis)

Y
Timing Anomalies (Example)

» Discrepancy between local and global timing
* Makes divide-and-conquer analysis difficult

Summary

Timing analysis
* Scheduling/schedulability — WCET analysis — interferences
WCET definition

* Simple tasks: code; machine; context (application, situation)
Measuring versus static WCET analysis

WCET framework

* Path analysis
* Modeling of hardware (instruction & memory-access timing)
* WCET computation technique

