Do we need more efficiency?

Some software is fast/small enough

Some isn't

More frequent invocations, different work flow
Bigger inputs

Better functionality

Energy savings

Types of efficiency

Run time Memory
EP;J disk /SSD * RAM
ard disk/ . ROM
network .
e persistant storage
other I/O

removable storage

Costs of inefficiency

Loss of user time

Different work flow

Misses real time requirements
More expensive hardware

Energy

How much efficiency is sensible?

Command line: 300ms to response

Music: 20ms latency

Animated software: screen refresh rate (7-16ms).
A different component dominates

Commercial considerations

Correctness
Simplicity
Development effort
Maintenance effort
Time-to-market

Security

Other goals

Extreme positions

e No efficiency considerations

e Optimize everything!

Observations

80-20 Rule

Programmers are bad at predicting hot spots

General approach

Start simple, flexible, maintainable

Measure

Optimize critial parts

Problem: Bad efficiency due to specification and design

Method

unoptimized program

Tests

succeeded
\/

Measurement

sufficiently efficieV : too inefficient

Profiling

l

program transformation

_

Tools: time, execution count

e time, /bin/time: CPU time, elapsed time, maxresident
/bin/time tspl >/dev/null
o gprof: profiling at function level

gcc -pg -0 tspl.c -1m -o tspl
tspl 10000 >/dev/null
gprof tspl

e gcov: Profiling at line level

gcc -0 --coverage tspl.c -1m -o tspl
tspl 10000 >/dev/null
gcov tspl

cat tspl.c.gcov

Is this not a job for the compiler?

Compilers use program transformations, too, but

use the input program as specification

avoids potential pessimizations

only performs optimizations that use little time and space during compilation.

only performs optimizations useful for many applications (or for benchmarks)

optimizations depend on each other

*sl==%xg52 && *sl1!=0 && *s2!=0

10

Optimization: Compiler vs. Programmer

speed

1 -

0.51

0.2

0.1

0.05

tsp1

tsp2

tsp4

tsp6

|tsb3 |tsb5 |tsb8 |

tsp9

11

Example: Stumbling blocks for compilers

for (i=0, best=0; i<n; i++) RISC-V gcc-10 -03
if (alil<al[best]) loop body
best=1;
return best; top middle
#a0=best a3=al[i] #al=endp ad=*p
for (p=a, bestp=a, endp=atn; p<endp; p++) #al=n ad=i #a2=bestp ab=p
if (*p < *bestp) #a2=a[best] ab=a+i #a3=xbestp
bestp = p; L4: 1d a3,0(ab) L4: 1d a4,0(ab)
return bestp-a; addi ab,ab,8
bge a3,a2,L3 bge a4,a3,L3
for (i=0, bestp=a; ati<a+n; i++) mv a0,ad mv a2,ab
if (al[il<*bestp) mv a2,a3 mv a3,ad
bestp=a+i; L3: addi a4,a4,1 L3: addi ab,ab,8
return bestp-a; bne a4,al,lL4 bltu ab,al,L4

12

Common stumbling blocks for compilers

e Aliasing
Xp = ...
. = *q;
e Side effects, exceptions
if (flag)
printf(...)

for (i=0; i<n; i++)

alil

alil*b[j];

for (i=0; i<n; i++)

alil

alil+1/b[j];

13

Hardware properties

1C 2—8 independent instructions
1cC latency of an ALU instruction
3-5cC latency of a load (L1-hit)
14c latency of a load (L1-miss, L2-hit)
50cC latency of a load (L2-miss, L3-hit)
50—ns latency of a load (L3-miss, main memory access)
3ns Transmission of a cache line (64B) from/to DDR4-2666, DDR5-5200
O—1c correctly predicted branch
20cC mispredicted branch
4cC latency integer multiply
Vi¥e latency FP addition/multiplication
30—90c latency division
>100us IP-Ping in local ethernet Ethernet
10us 1KB transmission across GB Ethernet
10ms latency hard disk access (seek-rotational delay)
10ms 2500KB sequential hard disk access (without delay)

14

Out of order execution

Source: Chester Lam:
https://chipsandcheese.com/p/
sandy-bridge-setting-intels-

modern-foundation

Sandy Bridge

Diagram By Clamchowder

Branch Predictor
ITLE L1 Instruction Cache
Lo BTB 25 64 entry 32 KB 8-Way
8 entry
L1BTB 16 Bytes/Cycle
AK entry 16 Bytes/Cycle
Return Stack
16 entry -
Instruction Queue
{2%20 entry)
4 Instructions
Micro-Op Cache Fill Rialiarjtecad
Decoder Decoder Decoder Decoder Microcode
4 Micro-Ops 4 Micro-Ops
32B Window
Micro-Op Cache Micro-Op Queue / LSD
{1536 entry) (2x28 entry)
3 = Rename / Dispatch 5 3
Zeroing ldioms 4 Micro-Ops J Cycle Max Register Alias Tables
Front End
Branch Order Buffer 4 Micro-Ops Instruction Retire
{48 entry)
Reorder Buffer
{168 entry)
Q00 Resources Superqueue L3 Cache
Integer Register File FP/Vector Register File MXCSR Register File
(160 entry) (144 entry) (8 entry) 1.2 Cache
256 KB 8-Way
32 Bytes/Cycle
Unified Scheduler
{54 entry) L2TLB
512 entry 4-way
|
_— | |
Execution | | | | |
Engine
Load/Store Load Queue Store Queue
{64 entry) {36 entry)
32 Bytes/Cycle Load
16 Bytes/Cycle Store
L ETLE 32 BytesiCycle
64 entry L1 Data Cache
32 KB 8-Way
Memory Subsystem

15

https://chipsandcheese.com/p/sandy-bridge-setting-intels-
https://chipsandcheese.com/p/sandy-bridge-setting-intels-
modern-foundation

Hardware properties: latency

while (i<n) { while (a!=0) {
r+=ali]; r += a->val;
i++; a = a->next;

} }

add (%rdi),%rax add 0x8(%rdi),%rax

add $0x8,%rdi mov (%trdi),%rdi

cmp %rdx,%rdi test %rdi,%rdi

jne top1 jne top2

Hardware properties: latency

while (i<n) {

r+=ali];

add $0x8,%rdi 1

cmp %rdx,%rdi
jne top1

cycles

<

iterations
e

Rocketlake: 1.52c/Iteration

while (a!=0) {

r += a->val;

a = a->next;

add OX8(%rdi),%@

mov (%rdiA,%rdi 4

test %rdi,%rdi
jne top2

cycles

iterations

<.

r

Rocketlake: 5c/iteration

17

Program properties: latency vs. throughput

// double al[], r;
while (i<n) {
r+=ali];
1++;
+
Rocketlake: 3.73c/Iteration
with reassociation and
vectorization:
gcc -03 -ffast-math
-march=rocketlake

-mtune=znverb5

Rocketlake: 0.3c/Iteration

// double al[], f;
while (i<n) {
alil=al[i]+f;
1++;
+
Rocketlake: 1.27c/iteration
with vectorization:
gcc -03 -march=rocketlake

-mtune=znverb

Rocketlake: 0.16c/iteration

18

Program properties

Latency dominated

dependent operations

on the same data

data often is in the cache

most code (by lines)

helpful:

Oo00O, branch prediction, caches
sometimes independent instances
e.g., compilers, on-line-systems
helpful: multi-core CPUs

Throughput dominated

same operations on lots of data

e.g., pictures, audio, graphics,
matrices, tensors, neural nets

often needs (main) memory bandwidth
little code (by lines)

much run time

helpful: SIMD, multi-core CPUs, GPUSs
memory bandwidth

19

Simple View

0x1 2W

CPU

Hardware properties: memory/cache

Virtual Memory (VM)

Ox123abc

CcPU— MMU
\

Ox456abc

Performance

TLB

20

RAM

Hardware properties: memory/cache

cache
line (64B)

set (641=4KB)

set (64|1=4KB)

o temporal locality (program property)

spatial locality (program property)
compulsory misses (program property)
capacity misses

conflict misses

o Intel Skylake (Core ix-6xxx):

data cache (L1): 32KB, 64B/line, 8-way, 4cC
instruction cache (L1): 32KB, 64B/line, 8-way
L2 cache: 256KB, 64B/line, 4-way, 12c

L3 cache: 2-8MB, 64B/line, 4-16-way, =42cC
RAM: =50ns

DTLB L1: 64 entries (4KB), 4-way

DTLB L1: 32 entries (2MB), 4-way

DTLB L2: 1536 e. (4KB, 2MB), 12-way, 9c

21

Tools

e perf stat: Performance monitoring counters

gcc -0 tspl.c -1Im -o tspl

perf list

perf stat -e cycles:u -e instructions:u -e Ll-dcache-load-misses:u \
-e dTLB-load-misses:u tspl 10000 >/dev/null

e perf-based profiling

perf record -e cycles:u tspl 10000 >/dev/null
perf annotate -s tsp

perf report

22

Tools: Top-down Microarchitecture Analysis

e TOp-Level
perf stat -M TopdownLl tspl 10000 >/de
4161951605 TOPDOWN . SLOTS

e Drill Down

perf stat -M tma_bad_speculation_group

v/null

40.2 %
5.9 %
18.3 %
35.6 Y

tma_retiring
tma_backend_bound
tma_frontend_bound

tma_bad_speculation

23

Data structures and algorithms

Efficient implementation of an inefficient algorithm? Waste of time
Efficient algorithm, never mind implementation efficiency?

Efficient implementation of an efficient algorithm

Efficient algorithm/data structure may conflict with simplicity
Data structure may affect much of the code

Abstract data type
Inefficiency due to abstraction:
interface overhead

lack of cost awareness

24

Algorithmic complexity (O(...))

Helpful, but be aware of its limitations

Often looks at the worst case

Counts certain operations, not always relevant for run time
Ignores constant factors

logarithmic factors

E.g.: Search substring (length m) in string (length n)
simple algorithm: O(mn) (worst), O(n) (best)

KMP: O(n), but usually slower than the simple algorithm
BM: O(n) (worst), O(n/m) (best)

Quicksort: 0(n?) (worst), O(nlnn) (usual), spatial and temporal locality
Heapsort: O(nlnn), bad locality
Mergesort: O(nlnn), good locality

25

Parallel processing

Problems: find parallelism, express parallelism, synchronization overhead
Between CPU cores: multithreading, parallel computing

Between CPU and mass storage: prefetching, write buffering

Between graphics card and screen: triple buffering

Between CPU und main memory: prefetching

Between instructions: instruction scheduling

SIMD

26

Triple buffering

frame
buffer

— —

Monitor A

e Double buffering without vertical sync: Tearing
e Double buffering with vertical sync: Wait for vsync

e Triple buffering: no tearing and no waiting

Vectors/SIMD

vmulpd %ymm2, %ymm3, %ymmf

AVX512 AVX SSE ymm2 ymm3

zmm ymm xmm

L 1

d d ymm1

« Data adjacent (also in memory)
e Mostly parallel operations

e Useful for some problems, good speedup

28

Vectorization

o Auto-vectorization (compilers)
works for simple loops
hit-and-miss in other cases

e Programmer help
arrange data
arrange computations
automatic?

e Manual vectorization
little programming language support

29

Vectorizable loop example

long comb(long *a, long *b,
long * restrict c, long * restrict d, long * restrict e,
size_t n, long r0, long inc)

{
size_t 1i;
long ri1=0;
long r2=LONG_MAX;
for (i=1; i<n-1; i++) {
c[i]=r0; rO+=inc; /* operation must be associative */
d[i] = a[il+b[il;
if (ali]>ali-1]) rl1 += al[il; /* operation must be associative */
if (alil<r2) r2 = alil; /* intermnally min */
if (dl[il>cl[i]) eli] = ali-1]l+al[il+al[i+1];
+
return rilx*r2;
}

30

Vectorizable loop recipe

Loop with stride 1 or -1

recurrence: variable living from one iteration to the next
recurrences are computed with associative operations: rO+=inc; r1l += ali];
if (alil<r2) r2 = al[il; min iS associative

All array accesses with index [i+const]

Only one write access to each array per iteration
Writes through restricted pointers

generation: c[i]l=r0; Stores (recurrence based on) loop-invariant variables

data-parallel: d[i] = alil+bl[il];
stencil: e[i] = ali-1]+al[i]+ali+1];

reduction: r1 += al[i]; Operation is associative
Not vectorizable: Use reduction result for computing array element

Conditions based on array elements, constants, constant-based recurrences
31

Manual SIMD example (without SIMD instructions)

for (count=0; x > 0; x >>= 1)
count += x&1;

/* specific for 64-bit words */

= (x & 0x5555555555555555L) + ((x>>1) & 0x5555555555555555L) ;
= (x & 0x3333333333333333L) + ((x>>2) & 0x3333333333333333L);
= (x+(x>>4)) &0x0f0£f0£f0£f0£f0f0£f0fL;

= (x+(x>>8)) /*&0x001f001f001f001fL*/;

= (x+(x>>16))/*&0x0000003f0000003fLx*/ ;

= (x+(x>>32)) &O0x7fL;

count = X;

TS T T B B

ololol1l1]0l1]1
ol 1| 1] 2
1] 3
4

32

Efficiency in specification: Copy a memory block

memmove () (C) cmove (Forth) memcpy () (C)
move (Forth) | rep movsb (AMDG64)
no overlap source — dest. source — dest. source — dest.
start of dest. in source | source — dest. | pattern replication undefined
start of source in dest. | source — dest. source — dest. undefined
implementation decision byte by byte bigger units

efficient implementation decision

well specified overspecified underspecified

Undefined behaviour?

+ Compiler can optimize more

— Programmer should optimize less
Should not make use of imple-
mentation properties

With a sufficient number of users of
an API, it does not matter what you
promise in the contract: all observable
behaviors of your system will be de-
pended on by somebody.

Hyrum’'s law

33

Programming languages

inherent inefficiency

idiomatic inefficiency

compiler efficiency

(potential) efficiency due to development speed

assembly language?

34

Programming languages: Examples

e Aliasing: C vs. Fortran (inherent/idiomatic)

void f(double al], double b[], double c[], long n) {
for (long i=0; i<n; i++)
clil=alil+b[i];

35

Programming languages. Examples

e Nested data: Java vs. C(++4) (inherent)

struct mystruct { int a; float b; double c; }
struct mystruct a[10000];
struct mystruct *b[10000];

e Scaling in address arithmetics: C vs. Forth (inherent/idiomatic)

mystruct *p; ... constant p
mystruct *q; ... constant q
long d = g-p; q p - constant dil
mystruct *r = p+d; p dl1 + constant r

36

32

16

1/2 1

1/4 -

Programming languages: Compiler efficiency

Speedup over Gforth with code copying
Gforth threaded code M + code copy -q M -+ ip- ﬁdate opt. M + stack caching [l + $tatic superinst.
" SwiftForth B VFX Forth © gcc -O0 B gcc -O1 gcc -03

benchgc cd16sim bubble sha512
brainless lexex siev matrix pentomino

37

Programming languages: examples

O-terminated strings in C (inherent/idiomatic)

l=strlen(s);
strcat (strcat (strcat(s,sl1),s2),s3);

“C++ ist slow” (idiomatic)
Microbenchmarks (compiler)
programming contests (development speed)

Riad air port

38

Code motion out of loops

for (...) {

. computation ...

computation has no side effects
computation does not need values computed in the loop

temp = computation;
for (...) {
. temp ...

39

Combining Tests

E.g., sentinel in search loops

for (i=0; i<n && alil'!'=key; i++)
aln] is writable

aln] = key;

for (i=0; alil'!'=key; i++)

lowers maintainability, reentrancy

40

for (i=0; i<n; i++)
body (i) ;

for (i=0; i<n-1; i+=2) {
body (i) ;
body (i+1) ;

}

for (; i<n; i++)
body (i) ;

Loop Unrolling

41

a2

al

Transfer-Driven Unrolling/Modulo Variable Renaming

42

Software Pipelining

Computing a has no side effects

a= ..
for (.
- T

new_
for

new

n ~ @

¢

) o

43

while (test)

code;

if (test)
do
code;
while (test);

Unconditional Branch Removal

44

while (test)

code;

if (test) {
code;
while (test)

code;

Loop Peeling

45

Loop Fusion

for (i=0; i<n; i++)
codel;
for (i=0; i<n; i++)

code?2;

Iteration k in code2 does not depend on Iteration j>k in codel.
Code2 does not overwrite data that is read by codel.

for (i=0; i<n; i++) {
codel;

code?2;

46

Exploit Algebraic Identities

~“a&”b
~(alb)

Computer “integers’ are not Z.
FP numbers are not R.

Integer: Overflow: a>bé a+n>b+n

FP: round-off errors: a+(b+c¢)#(a+b)+c

47

Short-circuiting Monotone Functions

for (i=0, sum=0; i<n; i++)
sum += x[i];

flag = sum > cutoff;

All x[1]1>=0, sum and i are not used later.

for (i=0, sum=0; i<n && sum <= cutoff; i++)
sum += x[i];

flag = sum > cutoff;

Unrolling for fewer comparisons and branches.

48

if (flag)
X++;

b

x += (flag !'= 0);

Arithmetics with flags

#code produced by gcc 10.2

flag = al[i]!=3;

#some convincing required

otherwise same as the setne code
cmpqg $0x3, (Yrax)

je c <fool+0xc>

add $0x1,%rdx

cmpqg $0x3, (Yrax)
setne Ycl

movzbl %cl,%ecx
add hrcx, firdx

49

if ((a<0) !'= (b<0))

if ((a~b) < 0)

Different representation of flags

#code produced by gcc 10.2

shr
shr

cmp

je

Xor

js

$0x3f,%rdi
$0x3f,%rsi
%hsil,’%dil
16 <fool+0x16>

%rsi,frdi
2d <foo02+0xe>

50

Long-circuiting

A && B
A and B compute flags, B has no side effects
A & B

When to use: If B is cheap and A is hard to predict

51

Reordering Tests

A && B

A and B have no side effects
B && A

Which order?

e Cheaper first
e More predictable first

e higher probability of short-circuiting first

52

Reordering Tests

if (A)

else if (B)

A and B have no side effects, 7 (AAB).
if (B)

else if (A)

53

Boolean/State Variable Elimination

flag = ...;
S1;
if (flag)
S2;
else
S3;

flag is not used later.

if (...) {
S1;
S2;

} else {
S1;
S3;

54

Collapsing Procedure Hierarchies

e Inlining
e Specialization

foo(int i, int j)

{

. foo(1l, a);

foo_1(int j)
{

55

int foo(char c¢)

{

foo() has no side effects.

int foo_tablel[] = {...};

int foo(char c¢)

{

return foo_tablelc];

Precompute Functions

56

Exploit Common Cases

Handle all cases correctly and common cases efficiently.

e« Memoization: Remember results of earlier evaluations of expensive function

e Pre-computed tables or special code sequences for frequent parameters

57

Coroutines

Instead of multi-pass processing:

coroutine producer {
for (...)

. consumer (x) ;

coroutine consumer {
for (...)

. X = producer();

Related: Pipelines, Iterators, etc.

58

Transformation on Recursive Procedures

Tail call optimization

Inlining

Replace one recursive call by counter
General case: Use explicit stack

Use different method for small problems

Use recursion instead of iteration for automatic cache blocking

59

Tail Call Optimization

void traverse_simple(PNODE p)

{
if (p!=0)
{

traverse_simple(p->1);

traverse_simple(p->r);

}

void traverse_simple(PNODE p)
{ start:

if (p!=0)

{

traverse_simple(p->1);

p = p->r; goto start;
}

60

foo ()

if (...) {

codel;
foo();

code?2;

Replace one recursive call by counter

while (...) {
count++;

codel;

}
for (i=0; i<count; i++)

code?2;

61

Compile-Time Initialization

e Initialize tables at compile-time instead of at run-time

e CPU time vs. load time from disk

62

Strength

+= 2%x-1;

Reduction/Incremental Algorithms/Differentiation

63

Common subexpression elimination/Partial Redundancy Elimination

a = Exp;
b = Exp;

Exp has no side effects

a = Exp;
b = a;

64

Pairing Computation

e Additional result for small effort

e E.g., division and remainder (C: div)
sin and cos (glibc: sincos)

65

Data Structure Augmentation

Redundant data for accelerating certain operations
Redundancy: possibility of inconsistency

Caching

Memoization

Hints that can be correct, or not (e.g., branch prediction)

Example: dictionary in Gforth: linked list augmented with hash table

—_—

0

,, N

swap| O drop| ~ if|

Automata

state represents something more complex
finite state machine for scanning
pushdown automaton for parsing

tree automaton for instruction selection
iburg (not an automaton) — burg

67

lLazy Evaluation

e Example: automaton for regular expressions
deterministic finite automaton (DFA) is large
only a small part of the states are actually used

generate states only on first use

e Example: tree-parsing automaton

68

Memory efficiency: Packing

No unused Bytes/Bits (bitfields in C, packed in Pascal)
Data compression
Code size

cache behaviour

69

Memory Efficiency: Factoring, Interpreters

e Turn similar code fragments into procedures and call them
Opposite of inlining

e Implement schematic programs through an interpreter

70

Energy efficiency

Fewer Cycles — less power consumption
What do you do if the job is done? Rebound effect, Jevons paradox

Dynamic Voltage and Frequency Scaling (DVFS)
P =CU?*f

Tools (as root)
turbostat -show PkgWatt,CorWatt,GFXWatt,RAMWatt

powerstat
Race to idle?

How can you as user influence that?
set frequency limit
set power limit

71

CPU Core VID & Frequency

1.3
1.2

1.1

VID (V)

0.9

0.8

0.7 o—

0.6
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Frequency (MHz)

=@ PHX2 Zen4 classic —@— PHX2 Zen4d dense

Source: https://zhuanlan.zhihu.com/p/653961282
72

libx264 Transcode, Performance vs Core Power

12 B ——

— 10
=
j
[
]
[+ 1)
A
= 8
o
L1
w
5
g B
a
w
[+ 1)
)
i
o
=
=]
%]
ey
o2

0

0 5 10 15 20 25 30 35 40 a5 50 55 &0 B5 Fil 75 B0 85 o0
Total Core Power (Watts)
— [7-12700K, 4x Gracemont —— [7-12700K, 4x Golden Cove —— AN D RS 3250K, 4x Zen 2 — ¥ — AMD Ryzen 4800H

Source: https://chipsandcheese.com/2022/01/28/alder-lakes-power-efficiency-a-complicated-picture/

73

libx264 Transcode Energy Efficiency

12000

10000

B0

&000

4000

2000

Total Energy Consumed by Cores (loules)

0.5 1 15 2 2.5 3 3.5 4 4.5 5
Maximum Boost Clock (GHz)

—e [7-12T00K, 4x Gracemont — [7-12700K, 4% Golden Cove —— A D RS 3850K, dx Zen 2 — 3 — AMD Ryzen 42800H

Source: https://chipsandcheese.com/2022/01/28/alder-lakes-power-efficiency-a-complicated-picture/

74

Program example: Traveling Salesman Problem

e Visit a set of cities, each city once
Minimize total distance traveled

e Optimal solution: NP-complete

e Example by Jon Bentley: suboptimal algorithm
Travel from each city to the nearest one (greedy)
0(n?), =25% worse than optimal

75

Traveling Salesman Problem: Hot code

for (i=1; i<ncities; i++) {
CloseDist = DBL_MAX;
for (j=0; j<ncities-1; j++) {
if ('visited[j1) {
if (dist(cities, ThisPt, j) < CloseDist) {
CloseDist = dist(cities, ThisPt, j);

ClosePt = j;
+
+
} visited [[] []
tour [endtour++] = ClosePt; 0 o ncities-1
visited[ClosePt] = 1; cties| X | y | X |y | . X |y
ThisPt = ClosePt;
} tour

76

tspl — tsp2: Common subexpression elimination

double ThisDist = dist(cities, ThisPt, j);
if (dist(cities,ThisPt,j) < CloseDist) { if (ThisDist < CloseDist) {
CloseDist = dist(cities, ThisPt, j); CloseDist = ThisDist;

77

tsp2 — tsp3: Eliminate sqrt

double dist(point citiesl], double DistSqrd(point citiesl],
int i, int j) { int i, int j) {
return sqrt(return (sqr(cities[i].x-cities[j].x)+
sqr(cities[i] .x-cities[j].x)+ sqr(cities[i] .y-cities[jl.y));
sqr(cities[i].y-cities[j]l.y)); +
}
double ThisDist = double ThisDist =

dist(cities, ThisPt, j); DistSqrd(cities, ThisPt, j);

78

tsp3 — tsp4:

for (i=0; i<ncities; i++)
visited[i]=0;

for (j=0; j<ncities-1; j++) {
if ('visited[j]) {
double ThisDist =
DistSqrd(cities, ThisPt, j);

+
ThisPt = ClosePt;

tour [endtour++] = ClosePt;
visited[ClosePt] = 1;

Eliminate visited

for (i=1; i<ncities; i++)

tour[il=i-1;

for (j=i; j<ncities; j++) {

double ThisDist =
DistSqrd(cities, ThisPt, tourl[jl);

}
ThisPt = tour[ClosePt];

swap (&tour [i] ,&tour[ClosePt]) ;
0 1 ncities-2 ncities-1

cities

- — »

tour

79

tsp4 — tspb: Inline DistSqrd

double ThisX = cities[ThisPt].x;
double ThisY = cities[ThisPt].y;

for (j=i; j<ncities; j++) { for (j=i; j<ncities; j++) {
double ThisDist = double ThisDist =
DistSqrd(cities, ThisPt, tourl[jl); sqr(cities[tour[j]l].x-ThisX)+

sqr(cities[tour[jl].y-ThisY);

80

tspb — tsp6: lazy computation of y-Distance

double ThisDist = double ThisDist =

sqr(cities[tour[j]].x-ThisX)+ sqr(cities[tour[j]l].x-ThisX);

if (ThisDist < CloseDist) {

sqr(cities[tour[j]].y-ThisY); ThisDist += sqr(cities[tour[jl].y-ThisY);
if (ThisDist < CloseDist) { if (ThisDist < CloseDist) {

CloseDist = ThisDist; CloseDist = ThisDist;

ClosePt = j; ClosePt = j;

+

+ }

81

Skipped: Integers instead of FP numbers

82

tsp6 — tsp8: Direct reordering of the cities

void tsp(point cities[], int tourl[], void tsp(point cities[], point tourl[],
int ncities) int ncities)
double ThisX = cities[ThisPt].x; double ThisX = tour[i-1].x;
double ThisY = cities[ThisPt].y; double ThisY = tour[i-1].y;
CloseDist = DBL_MAX; CloseDist = DBL_MAX;
for (j=i; j<ncities; j++) { for (j=i; j<ncities; j++) {
double ThisDist = double ThisDist =
sqr(cities[tour[j]l].x-ThisX); sqr (tour [j] .x-ThisX) ;
if (ThisDist < CloseDist) { if (ThisDist < CloseDist) {
ThisDist += ThisDist +=
sqr(cities[tour[jl].y-ThisY); sqr (tour[j].y-ThisY);
} }

ThisPt = tour[ClosePt];

383

tsp8 — tsp9: Sentinel

for (j=i; j<ncities; j++) {

double ThisDist =

if (ThisDist < CloseDist) {
ThisDist += sqr(tourl[j].y-ThisY);
if (ThisDist < CloseDist) {

CloseDist = ThisDist;

ClosePt = j;

tour

Sentinel

sqr (tour[j] .x-ThisX);

for (j=ncities-1; ;j--) {
double ThisDist = sqr(tour[j].x-ThisX)
if (ThisDist <= CloseDist) {
ThisDist += sqr(tour[jl.y-ThisY);
if (ThisDist <= CloseDist) {
if (j < 1)
break;
CloseDist = ThisDist;
ClosePt = j;

i ncities-1

84

tspi4: Vectorized with AVX intrinsics

Separate tour into tourx and toury (structure of arrays)
no lazy computation of y-distance

still does not fit the vectorizable loop recipe

but can be vectorized

loop until a closer city is found (tspi4)

or treat finding of the closest city as reduction (tspj, tspk)
always work with the tuple (dist,index) (not associative)

85

Example: Matrix multiply

\ (\
ain b11 blp

Example: Matrix multiply

for (i=0; i<n; i++)
for (j=0; j<p; j++)
c[i*p+j] = 0.0;

for (i=0; i<n; i++) for (i=0; i<n; i++)
for (j=0; j<p; j++) { for (j=0; j<p; j++)
for (k=0, r=0.0; k<m; k++) for (k=0; k<m; k++)
r += al[ixm+k]*b[k*p+j]; clixp+j] += ali*m+k]*b[k*p+j];
c[i*p+jl=r;
+
n,p,m=1000: 4.6¢/Iteration n,p,m=1000: 5.0c/Iteration
n,p,m=1000: 4.1c/Iteration THP n,p,m=1000: 4.5c/Iteration THP

87

Which nesting? n,p,m=1000

for (i=0; i<n; i++) for (i=0; i<n; i++) for (j=0; j<p; j++)
for (j=0; j<p; j++) for (k=0; k<m; k++) for (k=0; k<m; k++)
for (k=0; k<m; k++) for (j=0; j<p; j++) for (i=0; i<n; i++)
c [ixp+jl+=ali*m+k]*b[k*xp+j]; c[ixp+jl+=ali*m+k]*b[k*xp+j]; c [i*p+jl+=ali*m+k]*b[k*p+j];
for (j=0; j<p; j++) for (k=0; k<m; k++) for (k=0; k<m; k++)
for (i=0; i<n; i++) for (i=0; i<n; i++) for (j=0; j<p; j++)
for (k=0; k<m; k++) for (j=0; j<p; j++) for (i=0; i<n; i++)
c[ixp+jl+=ali*m+k]*b[k*xp+j]; c[ixp+jl+=ali*m+k]*b[k*xp+j]; c [i*p+jl+=ali*m+k]*b[k*p+j];

388

Which nesting? n,p,m=1000

for (i=0; i<n; i++)
for (j=0; j<p; j++)
for (k=0; k<m; k++)

c [i*p+jl+=ali*m+k]*b[k*p+j];

-02:
-02:
-03:

5.0c/It
4.5c/It THP
4 5c/It THP

for (j=0; j<p; j++)
for (i=0; i<n; i++)

for (k=0; k<m; k++)

c [i*p+jl+=a[i*m+k]*b[k*p+j];

-02: 4.4c/It
-02: 4.2c/It THP
-03: 4.2c/It THP

for (i=0; i<n; i++)
for (k=0; k<m; k++)
for (j=0; j<p; j++)

c [i*p+jl+=ali*m+k]*b[k*p+j];

-02: 2.3c/It
_02: 2.2¢/It THP
_03: 0.84c/It THP

for (k=0; k<m; k++)
for (i=0; i<n; i++)

for (j=0; j<p; j++)

c [i*p+jl+=ali*m+k]*b[k*p+j];

-02: 2.5c/It
_02: 2.3c/It THP
03: 0.99¢/It THP

for (j=0; j<p; j++)

for (k=0; k<m; k++)
for (i=0; i<n; i++)
c [i*p+jl+=ali*m+k]*b[k*p+j];

-02: 17.5¢c/It

_02: 5.3c/It THP
_03: 5.3c/It THP

for (k=0; k<m; k++)
for (j=0; j<p; j++)
for (i=0; i<n; i++)
c [i*p+jl+=ali*m+k] *b[k*p+j];
-02: 17.9c/It
-02: 5.1c/It THP
-03: 5.0c/It THP
89

Reasons

e Spatial locality

TLB misses

cache misses

j as inner loop

j allows using SIMD instructions (auto-vectorization: -03)
e« Recurrences (Dependences between iterations)

not k als innermost loop
e temporal locality

k als middle loop: reuse c[ixp+j] line

90

mm2-ikj — mm3: explicit vecorization

typedef double v8d
__attribute__ ((vector_size (64)));

void matmul (void matmul (
double a[], double b[], double cl[], double al[], v8d bll, v8d cl],
size_t m, size_t n, size_t p) size_t m, size_t n, size_t p)
{ {
p=p/8;
0.85c/It 0.72c/It

91

mm3 — mm4: Loop-invariant code motion

for (j=0; j<p; j++)
clixp+j] += ali*m+k]*b[k*p+j];

0.72c/It

double aik = a[i*m+k];
for (j=0; j<p; j++)
c[i*p+j] += aik*b[k*p+j];

0.70c/It

92

mm4 — mm5: Loop unrolling, interchange

for (k=0; k<m; k++) { for (k=0; k<m; k+=4) {
double aik = al[i*m+k]; double aik0 = al[i*m+k+0];
double aikl = a[i*m+k+1];
double aik2 = ali*m+k+2];
double aik3 = al[i*m+k+3];

for (j=0; j<p; j++) for (j=0; j<p; j++) {
v8d r;
cli*p+j] += aik*xb[k*p+j]; r = aikOxb[(k+0)*p+j];
r += aikl*b[(k+1)*p+j];
A B C r += aik2*b[(k+2)*p+j];

r += aik3*b[(k+3)*p+j];
cli*p+j]l += r;

-\’

¥ econ - }
0.70c/It 0.66¢/It

mm5 — mm6:. Recursion

for (i=0; i<n; i++) static void matmull(
for (k=0; k<m; k+=4) double al[], v8d bl[l, v8d cl],
size_t m, size_t n, size_t p,
A B C size_t ml, size_t nl)
{
if (m1>=8) {

-

size_t m2 = (m1/2)&"3;

size_t m3 = ml-m2;

matmul2(a ,b ,C,m,n,p,m2,nl);
matmul2(a+m2,b+m2*p,c,m,n,p,m3,nl);
} else {

matmul2(a,b,c,m,n,p,ml,nl);
IIIII }
}

0.66¢c/It 0.28c/It

94

mm6 — mm7. Loop unrolling, interchange

for (i=0; i<ml; i++) {

double aik0 = al[i*m+0];
double aikl = al[i*m+1];
double aik2 = al[i*m+2];
double aik3 = al[i*m+3];
for (j=0; j<p; j++) {

v3d r;

r = aikO0*b[0*p+j];

r += aikl*b[1*xp+j];

r += aik2*b[2*xp+j];

r += aik3*b[3*p+j];

clixp+j]l += r;

}
0.28c/1It

for (i=0; i<nl; i+=2) {

double aiOk0 =
double ailOkl =
double ailOk2 =
double ailOk3 =

v8d bkOj
v3d bk1lj
v8d ci0]
v3d cilj

}
0.25c/It

al[(i+0)*m+0]; double ailkO

al(i+1)*m+0] ;

al[(i+0)*m+1]; double ailkl = al[(i+1)*m+1];

al(i+0)*m+2]; double ailk2
al[(i+0)*m+3]; double ailk3
for (j=0; j<p; j++) {

b[0*p+j]; v8d bk2j
b[1*p+jl; v8d bk3j

al(i+1)*m+2] ;
al(i+1)*m+3];

b[2*p+j];
b [3*p+j];

= aiOkOxbk0j+aiOkl*bklj+aiOk2*xbk2j+aiOk3*bk3j;
= ailkO*bkOj+ailkl*bklj+ailk2*bk2j+ailk3*bk3j;
c[(i+0)*p+j] += ciOj; c[(i+1)*p+j] += cilj;

A

B

95

ATLAS, OpenBLAS

e ATLAS: 0.54c/It

e OpenBLAS (1 thread): 0.16¢/It

96

/O

User input
Mass storage (SSD, HDD)
Network

Synchronous (blocking) I/O: wait for result of request, no other progress
Do independent work in another thread

one thread per outstanding I/O request

thread-spawning is expensive — reuse threads

Asynchronous I/O system calls, example: POSIX aio
request aio_read(), aio_write()

check aio_suspend() (non-blocking with zero timeout)
check request status with aio_error()

o7

Asynchronous I/O: Event loop

while (true) {
timeout = (there is something to do) 7 zero : NULL;

if (aio_suspend(..., timeout) == 0) {
for req in requests {
if (aio_error(req)==0) { /* request completed */
process req result, possibly sending out more requests
}

}
} else {
compute a short time, possibly sending out more requests

}
}

e possibly combine with threads
e variations in many languages (async/await in Rust)

o Efficient?

98

System calls

Each system call has base cost

write(...,1) to a pipe: 1800c; write(...,3500): 3600c (Linux 6.12)

batching: fewer system calls, more data per call
Example: C stdio.h, e.9., furite()
Buffers several KB of data before write()

Copying of data:

I/O device — OS buffer — user-level buffer — application
application — user-level buffer — OS buffer — I/O device
Interfaces with less copying (e.g., mmap())

Ideally zero-copy (e.g., splice())

Perform work in the kernel: EBPF in Linux

pass data through shared memory: io_uring in Linux

99

io_uring

Queues in memory shared between user-level and kernel
Submission queue (SQ): requests and data from user-level to kernel

Completion queue (CQ): results (error codes or data)
from kernel to user level

asynchronous execution with kernel thread polling

Or io_uring_enter ()

100

