
Do we need more e�ciency?

• Some software is fast/small enough

• Some isn't

• More frequent invocations, di�erent work �ow

• Bigger inputs

• Better functionality

• Energy savings

1

Types of e�ciency

Run time

• CPU

• hard disk/SSD

• network

• other I/O

Memory

• RAM

• ROM

• persistant storage

• removable storage

2

Costs of ine�ciency

• Loss of user time

• Di�erent work �ow

• Misses real time requirements

• More expensive hardware

• Energy

3

How much e�ciency is sensible?

• Command line: 300ms to response

• Music: 20ms latency

• Animated software: screen refresh rate (7-16ms).

• A di�erent component dominates

• Commercial considerations

4

Other goals

• Correctness

• Simplicity

• Development e�ort

• Maintenance e�ort

• Time-to-market

• Security

5

Extreme positions

• No e�ciency considerations

• Optimize everything!

6

Observations

• 80-20 Rule

• Programmers are bad at predicting hot spots

General approach

• Start simple, �exible, maintainable

• Measure

• Optimize critial parts

Problem: Bad e�ciency due to speci�cation and design

7

Method

unoptimized program

Tests
succeeded

Measurement

too inefficient

Profiling

program transformation

sufficiently efficient

8

Tools: time, execution count

• time, /bin/time: CPU time, elapsed time, maxresident

/bin/time tsp1 >/dev/null

• gprof: pro�ling at function level

gcc -pg -O tsp1.c -lm -o tsp1

tsp1 10000 >/dev/null

gprof tsp1

• gcov: Pro�ling at line level

gcc -O --coverage tsp1.c -lm -o tsp1

tsp1 10000 >/dev/null

gcov tsp1

cat tsp1.c.gcov

9

Is this not a job for the compiler?

Compilers use program transformations, too, but

• use the input program as speci�cation

• avoids potential pessimizations

• only performs optimizations that use little time and space during compilation.

• only performs optimizations useful for many applications (or for benchmarks)

• optimizations depend on each other

*s1==*s2 && *s1!=0 && *s2!=0

10

Optimization: Compiler vs. Programmer

gcc-5.2.0 -O0 [-fno...]

clang-3.5 -O0 [-fno...]

gcc-2.7.2.3 -O3

clang-3.5 -O3 [-fno...]

egcs-1.1.2 -O3

gcc-5.2.0 -O3
gcc-5.2.0 -O3 -fno...

speed

tsp1
tsp2

tsp3
tsp4

tsp5
tsp6

tsp8
tsp9

1

0.5

0.2

0.1

0.05

11

Example: Stumbling blocks for compilers

for (i=0, best=0; i<n; i++)

if (a[i]<a[best])

best=i;

return best;

for (p=a, bestp=a, endp=a+n; p<endp; p++)

if (*p < *bestp)

bestp = p;

return bestp-a;

for (i=0, bestp=a; a+i<a+n; i++)

if (a[i]<*bestp)

bestp=a+i;

return bestp-a;

RISC-V gcc-10 -O3

loop body

top middle

#a0=best a3=a[i] #a1=endp a4=*p

#a1=n a4=i #a2=bestp a5=p

#a2=a[best] a5=a+i #a3=*bestp

L4: ld a3,0(a5) L4: ld a4,0(a5)

addi a5,a5,8

bge a3,a2,L3 bge a4,a3,L3

mv a0,a4 mv a2,a5

mv a2,a3 mv a3,a4

L3: addi a4,a4,1 L3: addi a5,a5,8

bne a4,a1,L4 bltu a5,a1,L4

12

Common stumbling blocks for compilers

• Aliasing

*p = ...

... = *q;

for (i=0; i<n; i++)

a[i] = a[i]*b[j];

• side e�ects, exceptions

if (flag)

printf(...)

for (i=0; i<n; i++)

a[i] = a[i]+1/b[j];

13

Hardware properties

1c 2�8 independent instructions
1c latency of an ALU instruction

3�5c latency of a load (L1-hit)
14c latency of a load (L1-miss, L2-hit)
50c latency of a load (L2-miss, L3-hit)
50�ns latency of a load (L3-miss, main memory access)
3ns Transmission of a cache line (64B) from/to DDR4-2666, DDR5-5200

0�1c correctly predicted branch
20c mispredicted branch
4c latency integer multiply
4c latency FP addition/multiplication

30�90c latency division
>100us IP-Ping in local ethernet Ethernet

10us 1KB transmission across GB Ethernet
10ms latency hard disk access (seek+rotational delay)
10ms 2500KB sequential hard disk access (without delay)

14

Out of order execution

Source: Chester Lam:

https://chipsandcheese.com/p/

sandy-bridge-setting-intels-

modern-foundation

15

https://chipsandcheese.com/p/sandy-bridge-setting-intels-
https://chipsandcheese.com/p/sandy-bridge-setting-intels-
modern-foundation

Hardware properties: latency

while (i<n) {

r+=a[i];

i++;

}

add (%rdi),%rax

add $0x8,%rdi

cmp %rdx,%rdi
jne top1

Rocketlake: 1.52c/Iteration

while (a!=0) {

r += a->val;

a = a->next;

}

add 0x8(%rdi),%rax

mov (%rdi),%rdi

test %rdi,%rdi
jne top2

Rocketlake: 5c/iteration

16

Hardware properties: latency

while (i<n) {

r+=a[i];

i++;

}

add (%rdi),%rax

add $0x8,%rdi

cmp %rdx,%rdi
jne top1

1

1

5

1

iterations

c
y
c
le

s

Rocketlake: 1.52c/Iteration

while (a!=0) {

r += a->val;

a = a->next;

}

1

4
8

add 0x8(%rdi),%rax

mov (%rdi),%rdi

test %rdi,%rdi
jne top2

4

iterations

c
y
c
le

s

Rocketlake: 5c/iteration

17

Program properties: latency vs. throughput

// double a[], r;

while (i<n) {

r+=a[i];

i++;

}

Rocketlake: 3.73c/Iteration

with reassociation and

vectorization:

gcc -O3 -ffast-math

-march=rocketlake

-mtune=znver5

Rocketlake: 0.3c/Iteration

// double a[], f;

while (i<n) {

a[i]=a[i]+f;

i++;

}

Rocketlake: 1.27c/iteration

with vectorization:

gcc -O3 -march=rocketlake

-mtune=znver5

Rocketlake: 0.16c/iteration

18

Program properties

Latency dominated

• dependent operations

on the same data

• data often is in the cache

• most code (by lines)

• helpful:

OoO, branch prediction, caches

• sometimes independent instances

e.g., compilers, on-line-systems

helpful: multi-core CPUs

Throughput dominated

• same operations on lots of data

e.g., pictures, audio, graphics,

matrices, tensors, neural nets

• often needs (main) memory bandwidth

• little code (by lines)

much run time

• helpful: SIMD, multi-core CPUs, GPUs

memory bandwidth

19

Hardware properties: memory/cache

Simple View

CPU

Virtual Memory (VM) Performance

0x123abc

CPU
0x123abc

MMU

0x456abc

CPU

MMU

TLB
cache

20

Hardware properties: memory/cache

RAM cache

2-way set (64l=4KB)

set (64l=4KB)

line (64B)

• temporal locality (program property)

spatial locality (program property)

• compulsory misses (program property)

capacity misses

con�ict misses

• Intel Skylake (Core ix-6xxx):

data cache (L1): 32KB, 64B/line, 8-way, 4c

instruction cache (L1): 32KB, 64B/line, 8-way

L2 cache: 256KB, 64B/line, 4-way, 12c

L3 cache: 2-8MB, 64B/line, 4-16-way, ≥ 42c

RAM: ≈ 50ns

DTLB L1: 64 entries (4KB), 4-way

DTLB L1: 32 entries (2MB), 4-way

DTLB L2: 1536 e. (4KB, 2MB), 12-way, 9c

21

Tools

• perf stat: Performance monitoring counters

gcc -O tsp1.c -lm -o tsp1

perf list

perf stat -e cycles:u -e instructions:u -e L1-dcache-load-misses:u \

-e dTLB-load-misses:u tsp1 10000 >/dev/null

• perf-based pro�ling

perf record -e cycles:u tsp1 10000 >/dev/null

perf annotate -s tsp

perf report

22

Tools: Top-down Microarchitecture Analysis

• Top-Level

perf stat -M TopdownL1 tsp1 10000 >/dev/null

4161951605 TOPDOWN.SLOTS # 40.2 % tma_retiring

5.9 % tma_backend_bound

18.3 % tma_frontend_bound

35.6 % tma_bad_speculation

• Drill Down

perf stat -M tma_bad_speculation_group

23

Data structures and algorithms

• E�cient implementation of an ine�cient algorithm? Waste of time

• E�cient algorithm, never mind implementation e�ciency?

• E�cient implementation of an e�cient algorithm

• E�cient algorithm/data structure may con�ict with simplicity

• Data structure may a�ect much of the code

• Abstract data type

Ine�ciency due to abstraction:

interface overhead

lack of cost awareness

24

Algorithmic complexity (O(...))

• Helpful, but be aware of its limitations

• Often looks at the worst case

• Counts certain operations, not always relevant for run time

• Ignores constant factors

• logarithmic factors

• E.g.: Search substring (length m) in string (length n)

simple algorithm: O(mn) (worst), O(n) (best)

KMP: O(n), but usually slower than the simple algorithm

BM: O(n) (worst), O(n/m) (best)

• Quicksort: O(n2) (worst), O(n lnn) (usual), spatial and temporal locality

Heapsort: O(n lnn), bad locality

Mergesort: O(n lnn), good locality

25

Parallel processing

• Problems: �nd parallelism, express parallelism, synchronization overhead

• Between CPU cores: multithreading, parallel computing

• Between CPU and mass storage: prefetching, write bu�ering

• Between graphics card and screen: triple bu�ering

• Between CPU und main memory: prefetching

• Between instructions: instruction scheduling

• SIMD

26

Triple bu�ering

frame

buffer

Monitor

• Double bu�ering without vertical sync: Tearing

• Double bu�ering with vertical sync: Wait for vsync

• Triple bu�ering: no tearing and no waiting

27

Vectors/SIMD

0127255511

xmmymmzmm

SSEAVXAVX512

c c c c c c c c c c c c c c c c

d d

vmulpd %ymm2, %ymm3, %ymm1

* * * *

ymm2 ymm3

ymm1

• Data adjacent (also in memory)

• Mostly parallel operations

• Useful for some problems, good speedup

28

Vectorization

• Auto-vectorization (compilers)

works for simple loops

hit-and-miss in other cases

• Programmer help

arrange data

arrange computations

automatic?

• Manual vectorization

little programming language support

29

Vectorizable loop example

long comb(long *a, long *b,

long * restrict c, long * restrict d, long * restrict e,

size_t n, long r0, long inc)

{

size_t i;

long r1=0;

long r2=LONG_MAX;

for (i=1; i<n-1; i++) {

c[i]=r0; r0+=inc; /* operation must be associative */

d[i] = a[i]+b[i];

if (a[i]>a[i-1]) r1 += a[i]; /* operation must be associative */

if (a[i]<r2) r2 = a[i]; /* internally min */

if (d[i]>c[i]) e[i] = a[i-1]+a[i]+a[i+1];

}

return r1*r2;

}

30

Vectorizable loop recipe

• Loop with stride 1 or -1

• recurrence: variable living from one iteration to the next

recurrences are computed with associative operations: r0+=inc; r1 += a[i];

if (a[i]<r2) r2 = a[i]; min is associative

• All array accesses with index [i+const]

• Only one write access to each array per iteration

Writes through restricted pointers

• generation: c[i]=r0; Stores (recurrence based on) loop-invariant variables

• data-parallel: d[i] = a[i]+b[i];

stencil: e[i] = a[i-1]+a[i]+a[i+1];

• reduction: r1 += a[i]; Operation is associative

Not vectorizable: Use reduction result for computing array element

• Conditions based on array elements, constants, constant-based recurrences

31

Manual SIMD example (without SIMD instructions)

for (count=0; x > 0; x >>= 1)

count += x&1;

/* specific for 64-bit words */

x = (x & 0x5555555555555555L) + ((x>>1) & 0x5555555555555555L);

x = (x & 0x3333333333333333L) + ((x>>2) & 0x3333333333333333L);

x = (x+(x>>4)) &0x0f0f0f0f0f0f0f0fL;

x = (x+(x>>8)) /*&0x001f001f001f001fL*/;

x = (x+(x>>16))/*&0x0000003f0000003fL*/;

x = (x+(x>>32)) &0x7fL;

count = x;

0|0|0|1|1|0|1|1

0| 1| 1| 2

1| 3

4

32

E�ciency in speci�cation: Copy a memory block

memmove() (C) cmove (Forth) memcpy() (C)
move (Forth) rep movsb (AMD64)

no overlap source → dest. source → dest. source → dest.
start of dest. in source source → dest. pattern replication unde�ned
start of source in dest. source → dest. source → dest. unde�ned

implementation decision byte by byte bigger units
e�cient implementation decision

well speci�ed overspeci�ed underspeci�ed

Unde�ned behaviour?

+ Compiler can optimize more

− Programmer should optimize less

Should not make use of imple-

mentation properties

With a su�cient number of users of

an API, it does not matter what you

promise in the contract: all observable

behaviors of your system will be de-

pended on by somebody.

Hyrum's law

33

Programming languages

• inherent ine�ciency

• idiomatic ine�ciency

• compiler e�ciency

• (potential) e�ciency due to development speed

• assembly language?

34

Programming languages: Examples

• Aliasing: C vs. Fortran (inherent/idiomatic)

void f(double a[], double b[], double c[], long n) {

for (long i=0; i<n; i++)

c[i]=a[i]+b[i];

}

35

Programming languages: Examples

• Nested data: Java vs. C(++) (inherent)

struct mystruct { int a; float b; double c; }

struct mystruct a[10000];

struct mystruct *b[10000];

• Scaling in address arithmetics: C vs. Forth (inherent/idiomatic)

mystruct *p; ... constant p

mystruct *q; ... constant q

... ...

long d = q-p; q p - constant d1

mystruct *r = p+d; p d1 + constant r

36

Programming languages: Compiler e�ciency

41/

21/

1

2

4

8

16

32

benchgc
brainless

cd16sim
lexex

fcp
siev

bubble
matrix

fib
pentomino

sha512

Speedup over Gforth with code copying
Gforth threaded code + code copying + ip-update opt. + stack caching + static superinst.
SwiftForth VFX Forth gcc -O0 gcc -O1 gcc -O3

37

Programming languages: examples

• 0-terminated strings in C (inherent/idiomatic)

l=strlen(s);

strcat(strcat(strcat(s,s1),s2),s3);

• �C++ ist slow� (idiomatic)

• Microbenchmarks (compiler)

• programming contests (development speed)

• Riad air port

38

Code motion out of loops

for (...) {

.... computation ...

}

computation has no side e�ects

computation does not need values computed in the loop

temp = computation;

for (...) {

.... temp ...

}

39

Combining Tests

E.g., sentinel in search loops

for (i=0; i<n && a[i]!=key; i++)

a[n] is writable

a[n] = key;

for (i=0; a[i]!=key; i++)

;

lowers maintainability, reentrancy

40

Loop Unrolling

for (i=0; i<n; i++)

body(i);

for (i=0; i<n-1; i+=2) {

body(i);

body(i+1);

}

for (; i<n; i++)

body(i);

41

Transfer-Driven Unrolling/Modulo Variable Renaming

new_a = ...

... = ... a ...

a = new_a

Unrolling by 2

a2 = ...;

... = ... a1 ...;

a1 = ...;

... = ... a2 ...;

42

Software Pipelining

for (...) {

a = ...;

... = ... a ...;

}

Computing a has no side e�ects

a = ...;

for (...) {

... = ... a ...;

a = ...;

}

new_a = ...;

for (...) {

a = new_a;

new_a = ...;

... = ... a ...;

}

43

Unconditional Branch Removal

while (test)

code;

if (test)

do

code;

while (test);

44

Loop Peeling

while (test)

code;

if (test) {

code;

while (test)

code;

}

45

Loop Fusion

for (i=0; i<n; i++)

code1;

for (i=0; i<n; i++)

code2;

Iteration k in code2 does not depend on Iteration j > k in code1.

Code2 does not overwrite data that is read by code1.

for (i=0; i<n; i++) {

code1;

code2;

}

46

Exploit Algebraic Identities

~a&~b

~(a|b)

Computer �integers� are not Z.

FP numbers are not R.

Integer: Over�ow: a > b 6⇔ a +n > b +n

FP: round-o� errors: a + (b + c) 6= (a +b)+ c

47

Short-circuiting Monotone Functions

for (i=0, sum=0; i<n; i++)

sum += x[i];

flag = sum > cutoff;

All x[i]>=0, sum and i are not used later.

for (i=0, sum=0; i<n && sum <= cutoff; i++)

sum += x[i];

flag = sum > cutoff;

Unrolling for fewer comparisons and branches.

48

Arithmetics with �ags

if (flag)

x++;

x += (flag != 0);

#code produced by gcc 10.2

flag = a[i]!=3;

#some convincing required

otherwise same as the setne code

cmpq $0x3,(%rax)

je c <foo1+0xc>

add $0x1,%rdx

cmpq $0x3,(%rax)

setne %cl

movzbl %cl,%ecx

add %rcx,%rdx

49

Di�erent representation of �ags

if ((a<0) != (b<0))

if ((a^b) < 0)

#code produced by gcc 10.2

shr $0x3f,%rdi

shr $0x3f,%rsi

cmp %sil,%dil

je 16 <foo1+0x16>

xor %rsi,%rdi

js 2d <foo2+0xe>

50

Long-circuiting

A && B

A and B compute �ags, B has no side e�ects

A & B

When to use: If B is cheap and A is hard to predict

51

Reordering Tests

A && B

A and B have no side e�ects

B && A

Which order?

• Cheaper �rst

• More predictable �rst

• higher probability of short-circuiting �rst

52

Reordering Tests

if (A)

...

else if (B)

...

A and B have no side e�ects, ¬(A∧B).

if (B)

...

else if (A)

...

53

Boolean/State Variable Elimination

flag = ...;

S1;

if (flag)

S2;

else

S3;

flag is not used later.

if (...) {

S1;

S2;

} else {

S1;

S3;

}

54

Collapsing Procedure Hierarchies

• Inlining

• Specialization

foo(int i, int j)

{

...

}

... foo(1, a);

foo_1(int j)

{

...

}

55

Precompute Functions

int foo(char c)

{

...

}

foo() has no side e�ects.

int foo_table[] = {...};

int foo(char c)

{

return foo_table[c];

}

56

Exploit Common Cases

Handle all cases correctly and common cases e�ciently.

• Memoization: Remember results of earlier evaluations of expensive function

• Pre-computed tables or special code sequences for frequent parameters

57

Coroutines

Instead of multi-pass processing:

coroutine producer {

for (...)

... consumer(x); ...

}

coroutine consumer {

for (...)

... x = producer(); ...

}

Related: Pipelines, Iterators, etc.

58

Transformation on Recursive Procedures

• Tail call optimization

• Inlining

• Replace one recursive call by counter

• General case: Use explicit stack

• Use di�erent method for small problems

• Use recursion instead of iteration for automatic cache blocking

59

Tail Call Optimization

void traverse_simple(PNODE p)

{

if (p!=0)

{

traverse_simple(p->l);

...

traverse_simple(p->r);

}

}

void traverse_simple(PNODE p)

{ start:

if (p!=0)

{

traverse_simple(p->l);

...

p = p->r; goto start;

}

}

60

Replace one recursive call by counter

foo()

{

if (...) {

code1;

foo();

code2;

}

}

while (...) {

count++;

code1;

}

for (i=0; i<count; i++)

code2;

61

Compile-Time Initialization

• Initialize tables at compile-time instead of at run-time

• CPU time vs. load time from disk

62

Strength Reduction/Incremental Algorithms/Di�erentiation

y = x*x;

x += 1;

y = x*x;

y = x*x;

x += 1;

y += 2*x-1;

63

Common subexpression elimination/Partial Redundancy Elimination

a = Exp;

b = Exp;

Exp has no side e�ects

a = Exp;

b = a;

64

Pairing Computation

• Additional result for small e�ort

• E.g., division and remainder (C: div)

sin and cos (glibc: sincos)

65

Data Structure Augmentation

• Redundant data for accelerating certain operations

• Redundancy: possibility of inconsistency

• Caching

• Memoization

• Hints that can be correct, or not (e.g., branch prediction)

• Example: dictionary in Gforth: linked list augmented with hash table

swap drop if0

0

dict

66

Automata

• state represents something more complex

• �nite state machine for scanning

• pushdown automaton for parsing

• tree automaton for instruction selection

iburg (not an automaton) → burg

67

Lazy Evaluation

• Example: automaton for regular expressions

deterministic �nite automaton (DFA) is large

only a small part of the states are actually used

generate states only on �rst use

• Example: tree-parsing automaton

68

Memory e�ciency: Packing

• No unused Bytes/Bits (bit�elds in C, packed in Pascal)

• Data compression

• Code size

• cache behaviour

69

Memory E�ciency: Factoring, Interpreters

• Turn similar code fragments into procedures and call them

Opposite of inlining

• Implement schematic programs through an interpreter

70

Energy e�ciency

• Fewer Cycles → less power consumption

What do you do if the job is done? Rebound e�ect, Jevons paradox

• Dynamic Voltage and Frequency Scaling (DVFS)

P = CU2 f

• Tools (as root)

turbostat �show PkgWatt,CorWatt,GFXWatt,RAMWatt

powerstat

• Race to idle?

• How can you as user in�uence that?

set frequency limit

set power limit

71

Source: https://zhuanlan.zhihu.com/p/653961282

72

Source: https://chipsandcheese.com/2022/01/28/alder-lakes-power-efficiency-a-complicated-picture/

73

Source: https://chipsandcheese.com/2022/01/28/alder-lakes-power-efficiency-a-complicated-picture/

74

Program example: Traveling Salesman Problem

• Visit a set of cities, each city once

Minimize total distance traveled

• Optimal solution: NP-complete

• Example by Jon Bentley: suboptimal algorithm

Travel from each city to the nearest one (greedy)

O(n2), ≈ 25% worse than optimal

75

Traveling Salesman Problem: Hot code

for (i=1; i<ncities; i++) {

CloseDist = DBL_MAX;

for (j=0; j<ncities-1; j++) {

if (!visited[j]) {

if (dist(cities, ThisPt, j) < CloseDist) {

CloseDist = dist(cities, ThisPt, j);

ClosePt = j;

}

}

}

tour[endtour++] = ClosePt;

visited[ClosePt] = 1;

ThisPt = ClosePt;

}

cities

visited

tour

x y x y x y

0 1 ncities-1

76

tsp1 → tsp2: Common subexpression elimination

if (dist(cities,ThisPt,j) < CloseDist) {

CloseDist = dist(cities, ThisPt, j);

double ThisDist = dist(cities, ThisPt, j);

if (ThisDist < CloseDist) {

CloseDist = ThisDist;

77

tsp2 → tsp3: Eliminate sqrt

double dist(point cities[],

int i, int j) {

return sqrt(

sqr(cities[i].x-cities[j].x)+

sqr(cities[i].y-cities[j].y));

}

double ThisDist =

dist(cities, ThisPt, j);

double DistSqrd(point cities[],

int i, int j) {

return (sqr(cities[i].x-cities[j].x)+

sqr(cities[i].y-cities[j].y));

}

double ThisDist =

DistSqrd(cities, ThisPt, j);

78

tsp3 → tsp4: Eliminate visited

for (i=0; i<ncities; i++)

visited[i]=0;

...

for (j=0; j<ncities-1; j++) {

if (!visited[j]) {

double ThisDist =

DistSqrd(cities, ThisPt, j);

...

}

}

ThisPt = ClosePt;

tour[endtour++] = ClosePt;

visited[ClosePt] = 1;

for (i=1; i<ncities; i++)

tour[i]=i-1;

...

for (j=i; j<ncities; j++) {

double ThisDist =

DistSqrd(cities, ThisPt, tour[j]);

...

}

ThisPt = tour[ClosePt];

swap(&tour[i],&tour[ClosePt]);

cities

tour

0 1 ncities-2 ncities-1

79

tsp4 → tsp5: Inline DistSqrd

for (j=i; j<ncities; j++) {

double ThisDist =

DistSqrd(cities, ThisPt, tour[j]);

double ThisX = cities[ThisPt].x;

double ThisY = cities[ThisPt].y;

for (j=i; j<ncities; j++) {

double ThisDist =

sqr(cities[tour[j]].x-ThisX)+

sqr(cities[tour[j]].y-ThisY);

80

tsp5 → tsp6: lazy computation of y-Distance

double ThisDist =

sqr(cities[tour[j]].x-ThisX)+

sqr(cities[tour[j]].y-ThisY);

if (ThisDist < CloseDist) {

CloseDist = ThisDist;

ClosePt = j;

}

double ThisDist =

sqr(cities[tour[j]].x-ThisX);

if (ThisDist < CloseDist) {

ThisDist += sqr(cities[tour[j]].y-ThisY);

if (ThisDist < CloseDist) {

CloseDist = ThisDist;

ClosePt = j;

}

}

81

Skipped: Integers instead of FP numbers

82

tsp6 → tsp8: Direct reordering of the cities

void tsp(point cities[], int tour[],

int ncities)

...

double ThisX = cities[ThisPt].x;

double ThisY = cities[ThisPt].y;

CloseDist = DBL_MAX;

for (j=i; j<ncities; j++) {

double ThisDist =

sqr(cities[tour[j]].x-ThisX);

if (ThisDist < CloseDist) {

ThisDist +=

sqr(cities[tour[j]].y-ThisY);

...

}

ThisPt = tour[ClosePt];

void tsp(point cities[], point tour[],

int ncities)

...

double ThisX = tour[i-1].x;

double ThisY = tour[i-1].y;

CloseDist = DBL_MAX;

for (j=i; j<ncities; j++) {

double ThisDist =

sqr(tour[j].x-ThisX);

if (ThisDist < CloseDist) {

ThisDist +=

sqr(tour[j].y-ThisY);

...

}

83

tsp8 → tsp9: Sentinel

for (j=i; j<ncities; j++) {

double ThisDist = sqr(tour[j].x-ThisX);

if (ThisDist < CloseDist) {

ThisDist += sqr(tour[j].y-ThisY);

if (ThisDist < CloseDist) {

CloseDist = ThisDist;

ClosePt = j;

}

}

}

for (j=ncities-1; ;j--) {

double ThisDist = sqr(tour[j].x-ThisX);

if (ThisDist <= CloseDist) {

ThisDist += sqr(tour[j].y-ThisY);

if (ThisDist <= CloseDist) {

if (j < i)

break;

CloseDist = ThisDist;

ClosePt = j;

}

}

}

tour

0 ncities-1iSentinel

84

tspi4: Vectorized with AVX intrinsics

• Separate tour into tourx and toury (structure of arrays)

• no lazy computation of y-distance

• still does not �t the vectorizable loop recipe

• but can be vectorized

• loop until a closer city is found (tspi4)

• or treat �nding of the closest city as reduction (tspj, tspk)

always work with the tuple (dist, index) (not associative)

85

Example: Matrix multiply

C = AB

ci j =
n∑

k=1
ai kbk j

a11 a12 . . . a1n

a21 a22 . . . a2n

...

am1 am2 . . . amn





b11 b12 . . . b1p

b21 b22 . . . b2p

...

bn1 bn2 . . . bnp





c11 c12 . . . c1p

c21 c22 . . . c2p

...

cm1 cm2 . . . cmp




86

Example: Matrix multiply

for (i=0; i<n; i++)

for (j=0; j<p; j++) {

for (k=0, r=0.0; k<m; k++)

r += a[i*m+k]*b[k*p+j];

c[i*p+j]=r;

}

n, p,m = 1000: 4.6c/Iteration

n, p,m = 1000: 4.1c/Iteration THP

for (i=0; i<n; i++)

for (j=0; j<p; j++)

c[i*p+j] = 0.0;

for (i=0; i<n; i++)

for (j=0; j<p; j++)

for (k=0; k<m; k++)

c[i*p+j] += a[i*m+k]*b[k*p+j];

n, p,m = 1000: 5.0c/Iteration

n, p,m = 1000: 4.5c/Iteration THP

87

Which nesting? n, p,m = 1000

for (i=0; i<n; i++)

for (j=0; j<p; j++)

for (k=0; k<m; k++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 5.0c/It

-O2: 4.5c/It THP

-O3: 4.5c/It THP

for (i=0; i<n; i++)

for (k=0; k<m; k++)

for (j=0; j<p; j++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 2.3c/It

-O2: 2.2c/It THP

-O3: 0.84c/It THP

for (j=0; j<p; j++)

for (k=0; k<m; k++)

for (i=0; i<n; i++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 17.5c/It

-O2: 5.3c/It THP

-O3: 5.3c/It THP

for (j=0; j<p; j++)

for (i=0; i<n; i++)

for (k=0; k<m; k++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 4.4c/It

-O2: 4.2c/It THP

-O3: 4.2c/It THP

for (k=0; k<m; k++)

for (i=0; i<n; i++)

for (j=0; j<p; j++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 2.5c/It

-O2: 2.3c/It THP

-O3: 0.99c/It THP

for (k=0; k<m; k++)

for (j=0; j<p; j++)

for (i=0; i<n; i++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 17.9c/It

-O2: 5.1c/It THP

-O3: 5.0c/It THP

88

Which nesting? n, p,m = 1000

for (i=0; i<n; i++)

for (j=0; j<p; j++)

for (k=0; k<m; k++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 5.0c/It

-O2: 4.5c/It THP

-O3: 4.5c/It THP

for (i=0; i<n; i++)

for (k=0; k<m; k++)

for (j=0; j<p; j++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 2.3c/It

-O2: 2.2c/It THP

-O3: 0.84c/It THP

for (j=0; j<p; j++)

for (k=0; k<m; k++)

for (i=0; i<n; i++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 17.5c/It

-O2: 5.3c/It THP

-O3: 5.3c/It THP

for (j=0; j<p; j++)

for (i=0; i<n; i++)

for (k=0; k<m; k++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 4.4c/It

-O2: 4.2c/It THP

-O3: 4.2c/It THP

for (k=0; k<m; k++)

for (i=0; i<n; i++)

for (j=0; j<p; j++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 2.5c/It

-O2: 2.3c/It THP

-O3: 0.99c/It THP

for (k=0; k<m; k++)

for (j=0; j<p; j++)

for (i=0; i<n; i++)

c[i*p+j]+=a[i*m+k]*b[k*p+j];

-O2: 17.9c/It

-O2: 5.1c/It THP

-O3: 5.0c/It THP

89

Reasons

• spatial locality

TLB misses

cache misses

j as inner loop

j allows using SIMD instructions (auto-vectorization: -O3)

• Recurrences (Dependences between iterations)

not k als innermost loop

• temporal locality

k als middle loop: reuse c[i*p+j] line

A B C

90

mm2-ikj → mm3: explicit vecorization

void matmul(

double a[], double b[], double c[],

size_t m, size_t n, size_t p)

{

0.85c/It

typedef double v8d

__attribute__ ((vector_size (64)));

void matmul(

double a[], v8d b[], v8d c[],

size_t m, size_t n, size_t p)

{

p=p/8;

0.72c/It

91

mm3 → mm4: Loop-invariant code motion

for (j=0; j<p; j++)

c[i*p+j] += a[i*m+k]*b[k*p+j];

0.72c/It

double aik = a[i*m+k];

for (j=0; j<p; j++)

c[i*p+j] += aik*b[k*p+j];

0.70c/It

92

mm4 → mm5: Loop unrolling, interchange

for (k=0; k<m; k++) {

double aik = a[i*m+k];

for (j=0; j<p; j++)

c[i*p+j] += aik*b[k*p+j];

}

0.70c/It

A B C

for (k=0; k<m; k+=4) {

double aik0 = a[i*m+k+0];

double aik1 = a[i*m+k+1];

double aik2 = a[i*m+k+2];

double aik3 = a[i*m+k+3];

for (j=0; j<p; j++) {

v8d r;

r = aik0*b[(k+0)*p+j];

r += aik1*b[(k+1)*p+j];

r += aik2*b[(k+2)*p+j];

r += aik3*b[(k+3)*p+j];

c[i*p+j] += r;

}

}

0.66c/It
93

mm5 → mm6: Recursion

for (i=0; i<n; i++)

for (k=0; k<m; k+=4)

0.66c/It

A B C

A B C

static void matmul1(

double a[], v8d b[], v8d c[],

size_t m, size_t n, size_t p,

size_t m1, size_t n1)

{

if (m1>=8) {

size_t m2 = (m1/2)&~3;

size_t m3 = m1-m2;

matmul2(a ,b ,c,m,n,p,m2,n1);

matmul2(a+m2,b+m2*p,c,m,n,p,m3,n1);

} else {

matmul2(a,b,c,m,n,p,m1,n1);

}

}

0.28c/It
94

mm6 → mm7: Loop unrolling, interchange

for (i=0; i<n1; i++) {

double aik0 = a[i*m+0];

double aik1 = a[i*m+1];

double aik2 = a[i*m+2];

double aik3 = a[i*m+3];

for (j=0; j<p; j++) {

v8d r;

r = aik0*b[0*p+j];

r += aik1*b[1*p+j];

r += aik2*b[2*p+j];

r += aik3*b[3*p+j];

c[i*p+j] += r;

}

}

0.28c/It

for (i=0; i<n1; i+=2) {

double ai0k0 = a[(i+0)*m+0]; double ai1k0 = a[(i+1)*m+0];

double ai0k1 = a[(i+0)*m+1]; double ai1k1 = a[(i+1)*m+1];

double ai0k2 = a[(i+0)*m+2]; double ai1k2 = a[(i+1)*m+2];

double ai0k3 = a[(i+0)*m+3]; double ai1k3 = a[(i+1)*m+3];

for (j=0; j<p; j++) {

v8d bk0j = b[0*p+j]; v8d bk2j = b[2*p+j];

v8d bk1j = b[1*p+j]; v8d bk3j = b[3*p+j];

v8d ci0j = ai0k0*bk0j+ai0k1*bk1j+ai0k2*bk2j+ai0k3*bk3j;

v8d ci1j = ai1k0*bk0j+ai1k1*bk1j+ai1k2*bk2j+ai1k3*bk3j;

c[(i+0)*p+j] += ci0j; c[(i+1)*p+j] += ci1j;

}

}

0.25c/It

A B C

95

ATLAS, OpenBLAS

• ATLAS: 0.54c/It

• OpenBLAS (1 thread): 0.16c/It

96

I/O

• User input

• Mass storage (SSD, HDD)

• Network

• Synchronous (blocking) I/O: wait for result of request, no other progress

Do independent work in another thread

one thread per outstanding I/O request

thread-spawning is expensive → reuse threads

• Asynchronous I/O system calls, example: POSIX aio

request aio_read(), aio_write()

check aio_suspend() (non-blocking with zero timeout)

check request status with aio_error()

97

Asynchronous I/O: Event loop

while (true) {

timeout = (there is something to do) ? zero : NULL;

if (aio_suspend(..., timeout) == 0) {

for req in requests {

if (aio_error(req)==0) { /* request completed */

process req result, possibly sending out more requests

}

}

} else {

compute a short time, possibly sending out more requests

}

}

• possibly combine with threads

• variations in many languages (async/await in Rust)

• E�cient?

98

System calls

• Each system call has base cost

write(...,1) to a pipe: 1800c; write(...,3500): 3600c (Linux 6.12)

batching: fewer system calls, more data per call

Example: C stdio.h, e.g., fwrite()

Bu�ers several KB of data before write()

• Copying of data:

I/O device → OS bu�er → user-level bu�er → application

application → user-level bu�er → OS bu�er → I/O device

Interfaces with less copying (e.g., mmap())

Ideally zero-copy (e.g., splice())

• Perform work in the kernel: EBPF in Linux

• pass data through shared memory: io_uring in Linux

99

io uring

• Queues in memory shared between user-level and kernel

• Submission queue (SQ): requests and data from user-level to kernel

• Completion queue (CQ): results (error codes or data)

from kernel to user level

• asynchronous execution with kernel thread polling

or io_uring_enter()

100

