
Zusammenfassung: Programm- und
Systemverifikation

An dieser Zusammenfassung und der zugehörigen Formelsammlung
kann gerne auf Github mitgewirkt werden!

Contents
Coverage 2

Control Flow Based Coverage Criteria 2
Path Coverage . 2
Statement Coverage . 3
Branch Coverage . 3
Decision Coverage . 3
Notes on Branch Coverage vs. Decision Coverage 3
Condition Coverage . 3
Condition/Decision Coverage . 4
Modified Condition / Decision Coverage (MC/DC) 4
Multiple Condition Coverage . 4

Data Flow Based Coverage Criteria . 4
Mutation Testing . 4

Automated Test Case Generation 5
Model based test case generation . 5
Assertion Violations . 6
Oracle . 6

Model Checking 6
Bounded Model Checking . 6
Unbounded Model Checking . 7

1

https://github.com/cornhead/zusammenfassungen.git

Temporal Logic 7
CTL* . 7
Subsets of CTL* . 8

SAT 9
Tseitins Transformation . 9
Resolution Rules . 9
Decision making . 9

Examples 11
Coverage . 11

Example 1, taken from the exam in June 2016 11
Example 2, taken from the exam in June 2017 13
Example 3, taken from the exam in June 2018 14
Example 4, taken from the exam in June 2020 16

Hoare-Logic . 17
Example 1, taken from the exam in June 2016 17
Example 2, taken from the exam in June 2018 18
Example 3, taken from the exam in June 2019 19
Example 4, taken from the exam in June 2020 20

Satisfiability . 21
Example 1, taken from the exam in June 2016 21

Temporal Logic . 22
Example 1, taken from the exam in June 2016 22
Example 2, taken from the exam in June 2018 23
Example 3, taken from the exam in June 2019 24

• Fault: cause of an error
• Error: erroneous state, but not directly observable in behaviour → might

lead to failure, but not necessarily
• Failure: deviation from expected behaviour

Coverage
Coverage criteria state when enough testing has been done.

Control Flow Based Coverage Criteria
Path Coverage

Execute every path the program could take at least once.

Easy counter example to see that path coverage has not been reached are loops:
every new loop iteration constitutes a new path and all paths have to be taken.
Path coverage is generally not always reachable, e.g., it es not achievable for the
following program:

1 while (1) {
2 if (getchar () == EOF)
3 break ;
4 }

2

Statement Coverage

Execute every statement of the program (merely syntactic) at least once.

Statement Coverage is implied by path coverage. Hence, if statement coverage
can’t be achieved, path coverage can’t be achieved either. On the other hand, if
path coverage can’t be achieved for a given program, statement coverage still
can be reached, as is the case in above program.

If for a given program statement coverage can’t be achieved, it is said to contain
unreachable code:

1 if (false){
2 ...
3 }

Branch Coverage

Execute every branch at least once.

In literature, the definitions of branches are rather imprecise → what about
unconditional jumps, goto, function calls or fall-throughs?

Decision Coverage

Exercise every decision outcome at least once (one time true, one time false)

Again, definition of decisions is imprecise.

Notes on Branch Coverage vs. Decision Coverage

Branch coverage implies decision coverage

• if “decision” means boolean expression at branching points only

Decision coverage implies branch coverage

• if “branch” doesn’t include unconditional jumps
• if “decision” refers to all boolean expressions

Condition Coverage

Exercise every boolean sub-expression/atom/condition outcome (but their values
do not necessarily have to affect the overall outcome)

Condition coverage does not imply descision coverage, as can be seen by the
following program, with the test cases {x = 5, y = −3} and {x = −1, y = 2}

1 if ((x > 0) && (y > 0))
2 x++;

All outcomes of the sub-expressions are exercised once but the decision never
evaluated to true.

3

Condition/Decision Coverage

Combination of condition and decision coverage:

• cover all condition outcomes
• cover all decision outcomes

but not all branches of the ‘decision tree’ might be executed

Modified Condition / Decision Coverage (MC/DC)

Every condition in a decision has to have taken affect on the outcome (independ-
ently) at least once. (remember the stuck-at error model in the lecture on digital
design)

For example, see the exam of 2018, task on coverage, subtask D

MC/DC is defined in DO-178B (high relevance in industry)

Multiple Condition Coverage

For n sub-conditions in a decision, try all 2n combinations.

Data Flow Based Coverage Criteria
• Definitions: assignment of a value to a variable
• Use: statement where the value of a variable is read

– C(omputation)-Use: defines/computes other variables
– P(redicate)-Use: within conditional statements

Table 1: Data Flow Criteria

Name Criteria
all-defs all definitions get used at some point

all-c-uses one path from a definition to each c-use that is
affected by that definition

all-p-uses one path from a definition to each p-use that is
affected by that definition

all-c-uses/some-p-uses same as all-c-uses, but if there are no c-uses, than
at least one affected p-use needs to be triggered

all-p-uses/some-c-uses same as all-p-uses, but if there are no c-uses, than
at least one affected c-use needs to be triggered

all-uses all-c-uses and all-p-uses → all uses need to be
executed

all-du-paths same as all-uses, but all possible du paths have to
be taken at least once, not just one path

Mutation Testing
Aim: test how well a test suite is capable of finding bugs in software

Idea: create mutation of that software by deliberately injecting a bug → check

4

Figure 1: subsumption lattice

whether test suite “kills” mutant

or the other way around: create mutant P2 of program P1, encode behaviour of
P1 and P2 in formula and use SAT solver to see whether P1 ⊕ P2 is satisfiably
→ if yes, then satisfying assignment represents a testcase that kills that mutant;
if no, then the bug can’t be found

Automated Test Case Generation
Model based test case generation
General scheme:

1. develop an (abstract) model of the system.
2. automatically derive abstract test cases from the abstract model
3. map the abstract test cases to concrete ones
4. apply the concrete test cases to the implementation

Figure 2: procedure for model based test case generation

Don’t:

• extract test-cases from implementation

5

• apply test-cases extracted from model to generated code
• let coverage criteria drive your test-case generation

Assertion Violations
Idea: try to find inputs that crash the system → no need to check output for
correctness

Assertions can be used to express partial specifications:

• buffer overflow: assert (i < len); ... a[i]
• division by zero: assert (y != 0); ... x/y
• invalid pointer: assert (p != NULL); ... *p
• assertions for further specification

utilize SMT solvers to find such crashing inputs:

1. perform symbolic execution of a path → derive SMT formula representing
current program state

2. at any assertion, ask an SMT solver for input values that lead to assertion
failure

Naive exploration of paths quickly becomes a problem (search space explosion)
→ heuristics:

• breadt-first search
• depth-first search
• coverage-optimized (take that path that increases coverage the most)
• random selection

If we can check for assertion violations, we can check contracts.

Oracle
Alternatively, we can ask an oracle for correct output.

The oracle could be:

• a less efficient (but correct) implementation
• an executable specification
• . . .

Model Checking
Bounded Model Checking
We wish, we could automate Haore reasoning, but finding loop invariants can’t be
generated automatically. Work-around: we restrict ourselves to a finite amount
of loop iteration → bounded model checking

“Forwards with Hoare”: calculate stronges post-condition to a given pre-condition
and a statement sp(stmt, P)

6

Table 2: Rules for “Forwards with Hoare” (stronges post-condition)

stmt sp(stmt, P)
x := e; ∃x′ : x = e[x/x′] ∧ P [x/x′]

assert R; P ∧R
stmt1; stmt2; sp(stmt2, sp(stmt1, P))

ite(B, C1, C2); sp(C1, B ∧ P) ∨ sp(C2,¬B ∧ P)

The last rule in the table is interesting: it merges two paths → useful to avoid
exponential blow up through loop unwinding.

Loop unwinding: Unwindig a loop for a given amount of iterations. In last
iteration, insert so called unwinding assertion, which lets us know if more
iterations were possible.

The program fragment while(B){ BODY } can be unwound to the following
program:

1 if (B){
2 BODY
3 if (B){
4 BODY
5 .
6 .
7 .
8 if (B){
9 assert false; // unwinding assertion

10 }
11 .
12 .
13 .
14 }
15 }

Unbounded Model Checking
Uses model in form of a Kripke structure to check statements in temporal logic
(see chapter on temporal logic)

Finding out for which states a given formula in temporal logic (either CTL or
LTL) holds:

1. split up formula into subformulas (tree-like)
2. recursively find states for which subformulas hold → begin at leaves (pro-

positional formulas) and work your way to the root

Temporal Logic
CTL*

7

Table 3: Syntax and semantics for temporal operators

Syntax Semantics
X path formula M,π |= Xφ iff M,π1 |= φ

F path formula M,π |= Fφ iff ∃k ∈ N ∪ {0} : M,πk |= φ

G path formula M,π |= Fφ iff ∀k ∈ N ∪ {0} : M,πk |= φ

path formula U path formula M,π |= φ1Uφ2 iff
∃k ∈ N ∪ {0} : M,πk |= φ2 ∧
∀j, 0 ≤ j < k : M,πj |= φ1

path formula R path formula //todo

Table 4: Syntax and semantics for path quantifiers

Syntax Semantics
A path formula M, s |= Aφ iff ∀π starting at s:M,π |= φ
E path formula M, s |= Eφ iff ∃π starting at s:M,π |= φ

Subsets of CTL*
CTL: Like CTL* but every temporal operator has to be preceded immediately
by a path quantifier

LTL: The formula has to start with the A-operator but apart from that, no
path quantifiers are allowed. (Usually the preceding A can be omitted)

There are CTL formulas that can’t be expresed in LTL and vice versa

CTL has 10 basic operators – 5 temporal operators times 2 path quantifiers –
but all of them can be expressed through EX, EG and EU

Figure 3: expressing the remaining 7 basic operators of CTL through EX, EG
and EU

8

SAT
Tseitins Transformation
Goal: come up with CNF formula that is equisatisfiable to a given propositional
logic formula

1. express formula only through conjunctions and disjunctions (a⇒ b ≡ ¬a∨b
and so forth)

2. build syntax tree of formula, introducing new variables for every subformula
3. build CNF formula by expressing each subtree through three CNF clauses,

bottom-up (see illustration)

Figure 4: Tseitin Transformation: build CNF formula from tree

Resolution Rules
(C ∨ a) (D ∨ a)

(C ∨D)
and in particular

(C ∨ a) a

C
unit propagation

Decision making
whenever possible, propagate units, but what if there ware no units to propagate?
→ make a decision for one variable (i.e. assignment)

What if decision a decision leads to a conflict? rightarrow backtracking: determ-
ine a “learnd clause” and return to highest decision level that is not contained
in conflict clause (or to 0)

How to find good conflict clause? Choose conflict clause such that it contains
the first unique implication point (UIP), i.d., a node (other than the conflict
node) that lies on all paths from the decision node to the conflict node and is
closest to the conflict node. (the decision node is a UIP by definition)

DPLL algorithm:

1. if conflict at decision level 0 → UNSAT
2. repeat:

9

(a) if all variables assigned, return SAT
(b) make decision
(c) propagate constraints
(d) if no conflict, goto 1.
(e) if decision level is 0, return UNSAT
(f) analyse conflict and add conflict clause
(g) backtrack and go to 3.

Like with BDDs, variable order makes difference. How to choose which variable
to assign next if a decision has to be made? Heuristics:

• Dynamic largest individual sum (DLIS): choose assignment such that
number of satisfied clauses is maximised (high overhead)

• Variable state independent decaying sum (VSDIS): favour literals in recently
added conflict clauses. With right data structures, decision is possible in
O(1)

Table 5: comparison of BDDs and SAT-solvers

BDDs SAT solvers
#(variables) hundreds hundreds of thousands
complexity PSPACE-complete NP-complete
assignments O(n) SAT-run

canoncial yes no
equality check O(1) SAT-run of F ⊕G

quantifier elimination yes co-factoring

10

Examples
Alle Angaben ohne Gewähr. Etwaige Fehler bitte auf Github anmerken/ändern.

Coverage
Example 1, taken from the exam in June 2016

Consider the following program fragment and test suite:

1 int maxsum (int max, int val){
2 int result = 0;
3 int i = 0; // Test Suite
4 if (val < 0) // --------------------
5 val = -val; // max val result
6 while ((i < val) && (result <= max)){ // ----- ----- --------
7 i = i+1; // 0 0 0
8 result = result + i; // 0 -1 0
9 } // 10 1 1

10 if (result <= max) // --------------------
11 return result;
12 else
13 return max;
14 }

A) Control flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-
suite above (assume that the term “decision” refers to all non-constant Boolean
expressions in theprogram).

Criterion Satisfied Not Satisfied
path coverage X

statement coverage X
branch coverage X
decision coverage X

condition/decision coverage X

B) Data flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite
above(here, the parameters of the function do not constitute definitions, and the
return statements are c-uses)

Criterion Satisfied Not Satisfied
all-defs X

all-c-uses X
all-p-uses X

all-c-uses/some-p-uses X

11

https://github.com/cornhead/zusammenfassungen.git

Criterion Satisfied Not Satisfied
all-p-uses/some-c-uses X

12

Example 2, taken from the exam in June 2017

Consider the following program fragment and test suite:

1 bool prime (unsigned n){
2 bool result = true; // Test Suite
3 unsigned i = 2; // ---------------
4 while ((i != n) && result){ // n result
5 if (n % i == 0) // ---- ------
6 result = false; // 0 false
7 else // 3 true
8 i = i + 1; // 42 false
9 } // ---------------

10 return result;
11 }

A) Control flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-
suite above (assume that the term “decision” refers to all non-constant Boolean
expressions in theprogram).

Criterion Satisfied Not Satisfied
path coverage X

statement coverage X
branch coverage X
decision coverage X

condition/decision coverage X

B) Data flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite
above(here, the parameters of the function do not constitute definitions, and the
return statements are c-uses)

Criterion Satisfied Not Satisfied
all-defs X

all-c-uses X
all-p-uses X

all-c-uses/some-p-uses X
all-p-uses/some-c-uses X

13

Example 3, taken from the exam in June 2018

Consider the following program fragment and test suite

1 bool range_check (unsigned m, unsigned n){
2 if (m > n){
3 unsigned t = m; // Test Suite
4 m = n; // ---------------
5 n = t; // m n result
6 } // --- --- ------
7 bool result = false; // 3 7 true
8 bool tmp = true; // 1 0 false
9 unsigned i = m; // 2 5 true

10 while ((i > 0) && (i < n)){ // ---------------
11 i = i + 1;
12 if (i % m == 0)
13 result = result || tmp;
14 }
15 return result;
16 }

A) Control flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-
suite above (assume that the term “decision” refers to all non-constant Boolean
expressions in theprogram).

Criterion Satisfied Not Satisfied
statement coverage X

branch coverage X
decision coverage X

modified condition/decision coverage ?

B) Data flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite
above (here, the parameters of the function do not constitute definitions, and
the return statements are c-uses).

Criterion Satisfied Not Satisfied
all-defs X

all-c-uses X
all-p-uses X

all-c-uses/some-p-uses X
all-p-uses/some-c-uses X

C) not given here

14

D) MC/DC {#2018_mcdc}

Consider the expression ((a ∧ b) ∨ c), where a, b, and c are Boolean variables.
Provide a minimal number of test cases such that modified condition/decision cov-
erage is achieved for the expression. Clarify for each test case whichcondition(s)
independently affect(s)the outcome.

a b c (a && b) || c
0 1 0 0
1 1 0 1
1 0 0 0
0 0 1 1

15

Example 4, taken from the exam in June 2020

1 unsigned gcd (unsigned x, unsigned y) {
2 unsigned m, k; // Test Suite
3 if (x > y) { // ----------------
4 k = x; // x y return
5 m = y; // --- --- --------
6 } else { // 0 0 0
7 k = y; // 0 1 0
8 m = x; // 3 2 1
9 } // ----------------

10 while (m != 0) {
11 unsigned r = m % k;
12 k = m;
13 m = r;
14 }
15 return k;
16 }

A) Control flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite
above.

Criterion Satisfied Not Satisfied
path coverage X

statement coverage X
branch coverage X
decision coverage X

B) Data flow based criteria

Indicate (X) which of the following coverage criteria are satisfied by the test-suite
above (here, the parameters of the function do not constitute definitions, and
the return statements are c-uses).

Criterion Satisfied Explanation
all-defs yes

all-c-uses no No path from line 7 to 11
all-p-uses yes

all-c-uses/some-p-uses no all-c-uses not satisfied
all-du-paths no all-c-uses/some-p-uses not

satisfied

16

Hoare-Logic
Example 1, taken from the exam in June 2016

Prove the Hoare Triple below (assume that the domain of all variables in the
programare the natural numbers including 0, i.e., x, y ∈ N0 or, equivalently,
both x and y are of type unsigned). You need to find a sufficiently strong loop
invariant. Annotate the following code directly with the required assertions.
Justify each assertion by stating which Hoare rule you used to derive it, and
the premise(s) of that rule. Ifyou strengthen or weaken conditions, explain your
reasoning

1 {true}
2

3 assert true; // if-then-else-rule
4

5 if (x > y){
6 assert x > y && true; // strengthening
7 assert y <= x+1; // assignment rule
8 t := x;
9 assert y <= t+1; // assignment rule

10 x := y;
11 assert x <= t+1; // assignment rule
12 y := t;
13 assert x <= y+1; // if-then-else rule
14 }
15 else{
16 assert !(x > y) && true; // non-existing assignment + strenthening
17 skip;
18 assert x <= y+1; // if-then-else rule
19 }
20

21

22 assert x <= y+1; // loop rule
23

24 while (x < y){
25 assert x < y; // strengthening (actually, it's equivalent),
26 // also it's implied by loop condition => induction step
27 assert x+1 <= y; // assignment rule
28 x := x + 1;
29 assert x <= y; // assignment rule
30 y := y - 1;
31 assert x <= y+1; // invariant
32 }
33 assert !(x < y) && x <= y+1; // loop rule
34 assert (x-y) <= 1; // weakening (actually, it's the same)
35 {x-y<=1}

17

Example 2, taken from the exam in June 2018

Prove the Hoare Triple below (assume that the domain of all vari-
ables in the program are the unsigned integers including zero, i.e.,
x, y, n,m ∈ N ∪ {0}). You need to find a sufficiently strong loop invariant.
Hint: you will need an expression that represents how often the loop has been
executed.

1 {true}
2 assert true; // strengthening
3 assert 0 == 0 && n == n; // assignment rule
4 x := n;
5 assert 0 == 0 && x == n; // assignment rule
6 y := 0;
7 assert y == 0 && x == n; // if-then-else rule
8 if (m != 0){
9 assert m != 0 && y == 0 && x == n; // strengthening

10 assert y == (n-x)*m; // loop rule
11 while (x != 0){
12 assert y+m == (n-x+1)*m; // assignment rule,
13 // implied by invariant => inductiveness
14 x = x - 1;
15 assert y+m == (n-x)*m; // assignment rule
16 y = y + m;
17 assert y == (n-x)*m; // invariant
18 }
19 assert x == 0 && y == (n-x)*m; // strengthening / loop rule
20 assert y == n*m; // if-then-else rule
21 }
22 else{
23 assert m == 0 && y == 0 && x == n; // strengthening
24 skip;
25 assert y == n*m; // if-then-else rule
26 }
27

28 assert y == n*m;
29 {y=n*m}

18

Example 3, taken from the exam in June 2019

Prove the Hoare Triple below (assume that the domain of all variables except done
in the program are the unsigned integers including zero, i.e., i,m, n ∈ N ∪ {0},
and that done is a Boolean variable). You need to find a sufficiently strong loop
invariant.

1 {true}
2 assert true; // if-then-else rule
3 if (m > n){
4 assert m > n && true; // assignment rule and strengthening
5 i = n;
6 assert true; // if-then-else rule
7 }
8 else{
9 assert m <= n && true; // assignment rule and strengthening

10 i = m;
11 assert true; // if-then-else rule
12 }
13

14 assert true; // strengthening
15 assert true || m%(i-1) == 0; // assignment rule
16 done = false;
17

18 assert (!done || m%(i-1) == 0); // loop rule
19

20 while ((i > 1) && !done) {
21 assert !done || m%(i-1) == 0; // if-then-else rule,
22 // implied by loop condition => induction step
23 if ((m % i == 0) && (n % i == 0)){
24 assert (m % i == 0) && (n % i == 0) && (!done || m%(i-1) == 0); // strengthening
25 assert false || m%i == 0; // assignment rule
26 done = true;
27 assert !done || m%i == 0; // if-then-else rule
28 }
29 else{
30 assert (m%i != 0 || n%i != 0) && (!done || m%(i-1) == 0); // assignment rule and strengthening
31 i = i - 1;
32 assert !done || m%i == 0; // if-then-else rule
33 }
34 assert !done || m%i == 0; // invariant
35 }
36 assert (i <= 1 || done) && (!done || m%i == 0); // loop rule / strengthening
37 // proof by case splitting
38 assert i == 0 || m%i == 0;
39 {(i = 0) || (m % i = 0)}

19

Example 4, taken from the exam in June 2020

Prove the Hoare Triple below (assume that the domain of all variables in the
program are the integers, i.e., t,m, n ∈ Z. You need to find a sufficiently strong
loop invariant.

1 {true}
2 assert true; // if-then-else rule
3 if (m > n) {
4 assert m > n && true; // strenthening
5 assert n <= m; // assignment rule
6 int t = n;
7 assert t <= m; // assignment rule
8 n = m;
9 assert t <= n; // assignment rule

10 m = t;
11 assert m <= n; // if-then-else rule
12 } else {
13 assert m <= n && true; // strenthening
14 skip;
15 assert m <= n; // if-then-else rule
16 }
17 assert m <= n; // loop rule
18 while (m < n) {
19 assert m < n; // strenthening (equivalent)
20 // is implied by loop condition => inductiveness
21 assert m+1 <= n; // assignment rule
22 m = m + 1;
23 assert m <= n; // invariant
24 }
25 assert !(m < n) && m <= n; // loop rule
26 assert m == n;
27 {(m = n)}

20

Satisfiability
Example 1, taken from the exam in June 2016

Check the satisfiability of the following SMT formulas. Assume that
x, y, z, a, b, c ∈ Z are integer constants, and f : Z × Z → Z and g : Z → Z are
binary and unary uninterpreted functions over integers respectively. Whenever
a formula is satisfiable, give a satisfyingassignment for it, i.e., integer values for
all variables and function interpretations overintegers that make the formula
true under the assignment. Whenever a formula is notsatisfiable, give a reason
why it is unsatisfiable.

formula SAT
f(3, y) = 6 ∧ f(y, x) = f(x, y)
∧ f(y, 4) = 8 ∧ f(y, y) = 4

yes

f(1, x) = 3 ∧ f(1, x) = f(x, 1)
∧ g(x) = f(1, x) ∧ g(g(g(1))) = 1
∧ g(g(1))6 = f(x, 1) ∧ x = g(g(1))

no,
g(x) = 1 g(x) = 3

f(x, x) = x∧f(y, y) = y∧a6 = b∧f(x, y) = f(y, x)
∧ f(0, 1) = a ∧ f(1, 0) = b ∧ (f(x, x) = 0
∨ f(x, x) = 1) ∧ (f(y, y) = 0 ∨ f(y, y) = 1)

yes

21

Temporal Logic
Example 1, taken from the exam in June 2016

Consider the following Kripke Structure:

Figure 5: Kripke-structure

For each formula, give the states of the Kripke structure for which the formula
holds. In other words, consider the computation trees starting with one of the
states from the set {s0, s1, s2, s3}, and for each tree, check whether the given
formula holds on it or not.

formula states in which it holds
b ∧AXa {s0}
a ∨AXb {s1, s2, s3}

AFAGa ∨AFAGb {s0, s1, s2, s3}
EFG¬b {s0, s1, s2}

AGa {s1}

22

Example 2, taken from the exam in June 2018

Consider the following Kripke Structure:

Figure 6: Kripke-structure

For each formula, give the states of the Kripke structure for which the formula
holds. In other words, for each of the states from the set {s0, s1, s2}, consider
the computation trees starting at that state, and for each tree, check whether
the given formula holds on it or not.

formula states in which it holds
AXa {s2}
EXa {s0, s1, s2}
AFb {s1}
EGa {s0, s2}

A(aUb) {s1}

23

Example 3, taken from the exam in June 2019

A)

Consider the following Kripke Structure:

Figure 7: Kripke-structure

For each formula, give the states of the Kripke structure for which the formula
holds. In other words, for each of the states from the set {s0, s1, s2}, consider
the computation trees starting at that state, and for each tree, check whether
the given formula holds on it or not.

formula states in which it holds
A(FGa) {s0, s1, s2}
AFAGa {s1, s2} (is s0 correct?)

A(a ∧Xa) {s2}
E(bUa) {s0, s1, s2}

B)

Consider the following Kripke Structure with initial state s0 :

Figure 8: Kripke-structure

Does the LTL formula AFXb hold in the initial state s0 ?

→ yes, because all paths have to pass s2 or s4 eventually. Before they do so, Xb
will hold

Does the CTL formula AFAXb hold in the initial state s0 ?

→ no, because the path that loops around s0 → s1 → s2 → s0 →. . . does not
satisfy it.

24

	Coverage
	Control Flow Based Coverage Criteria
	Path Coverage
	Statement Coverage
	Branch Coverage
	Decision Coverage
	Notes on Branch Coverage vs. Decision Coverage
	Condition Coverage
	Condition/Decision Coverage
	Modified Condition / Decision Coverage (MC/DC)
	Multiple Condition Coverage

	Data Flow Based Coverage Criteria
	Mutation Testing

	Automated Test Case Generation
	Model based test case generation
	Assertion Violations
	Oracle

	Model Checking
	Bounded Model Checking
	Unbounded Model Checking

	Temporal Logic
	CTL*
	Subsets of CTL*

	SAT
	Tseitins Transformation
	Resolution Rules
	Decision making

	Examples
	Coverage
	Example 1, taken from the exam in June 2016
	Example 2, taken from the exam in June 2017
	Example 3, taken from the exam in June 2018
	Example 4, taken from the exam in June 2020

	Hoare-Logic
	Example 1, taken from the exam in June 2016
	Example 2, taken from the exam in June 2018
	Example 3, taken from the exam in June 2019
	Example 4, taken from the exam in June 2020

	Satisfiability
	Example 1, taken from the exam in June 2016

	Temporal Logic
	Example 1, taken from the exam in June 2016
	Example 2, taken from the exam in June 2018
	Example 3, taken from the exam in June 2019

