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Exercise 31
Note from TUWEL: Assume |V |1 = |V |2 and (this I haven’t seen in time) use W =
V1 \ S instead of the W in the task description. The new W led to a lot of discussion
in the exercise presentation.

⇐ If there is a perfect matching in G then there must be |W | ≤ N (W ), because the
edges of the perfect matching match each vertex in W to a distinct vertex in N (W ),
and this is impossible if N (W ) < |W |.

⇒ The capacity of all edges that were originally in G is infinite. Therefore, any minimal
cut cannot contain half of any such edges. Hence, we have N (W ) ⊆ S ∩ V2. but this
means that (second line is equivalent to second bullet point which is to show)

c(S, S̄) =
∑

x∈S,y∈S̄

c(x, y)

=
∑

x∈(S∩{s}),y∈(S̄∩V1)

c(x, y) +
∑

x∈(S∩V2),y∈(S̄∩{t})

c(x, y)

≤ n− |W |+ |N (W )|
≤ n− |W |+ |W |
= n

Any (minimal) cut S has to go through at least n = |V |1 = |V |2 vertices of weight
1. Therefore, c(S) ≥ n. So any minimal cut has capacity n; therefore, there is a flow
with value n. Such a flow sends one unit to each vertex in V1, and sends one unit from
each vertex in V2 to t; therefore, the edges marked 1 in G by such a flow form a perfect
matching of Gs vertices.
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Exercise 32
Vowi

For every area A1, A2, . . . , Am and B1, B2, . . . , Bm we draw a node. For every set Ai

and Bj that share a common area Ai ∩Bj 6= ∅ we draw an edge between their nodes.
This creates a bipartite graph. To prove the existence of such a permutation π we
need to find a perfect matching.

Example:
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Let S be a subset of the vertices of A1, A2, . . . , Am of size s. Then S represents an
area of size sa

m . Now you need at least s parts of B1, B2, . . . , Bm to cover this area, so
|N (S)| ≥ |S|. By Hall’s Marriage Theorem, we now have a perfect matching.

Exercise 33
vowi

We construct a bipartite graph by placing a node for every set Bi on the left side.
Then we place a node for every element aj on the right side. We connect nodes Bi

with every node aj which contains an element of Bi. The task of finding an injective
mapping is now equivalent to finding a perfect matching in the graph.
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Example:

A = {a1, . . . , an} = {1, 2, 3}
B = {B1, . . . , Bn} = {{1}, {1, 2}, {2, 3}} ⊆ 2A

By Hall’s marriage theorem there is a perfect matching in the constructed graph if
and only if for every subset W of vertices of the right side |W | ≤ |N (W )| holds.
By our reduction, this proves that the injective mapping exists if and only if for all
I ⊆ {1, 2, . . . , n} it holds that |∪i∈IBi| ≥ |I|.

Exercise 34
Proof by induction.

Base: The hypercube Q1 is the complete graph on two vertices. The only edge is
incident to all vertices. Thus, this is a perfect matching.

Induction step: Assume Qn−1 has a perfect matching. We know that hypercubes Qn

are constructed from the disjoint union of two hypercubes Qn−1 by adding an edge
from each vertex in one Qn−1 hypercube to the single "corresponding" (the "same" so
to say) vertex in the other Qn−1 hypercube.

Example: Construction of Q3 by connecting pairs of corresponding vertices in two
copies of Q2.
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Those added edges form a matching, as there is exactly one corresponding vertex for
each vertex. The matching is also complete, as every vertex is incident to one such
edge. Thus, we have a perfect matching for Qn. This completes our proof.

Exercise 35
⇒ Assume G = (V,E) is bipartite. That means V = A ∪ B such that A ∩ B = ∅
and that all edges e ∈ E are such that e is of the form {a, b} where a ∈ A and b ∈ B
(definition bipartite graph).

Suppose G has (at least) one odd cycle C of length n. Let C = (v1, v2, . . . , vn, v1).
Wlog let v1 ∈ A. It follows that v2 ∈ B, then v3 ∈ A and so on.

Hence we see that ∀k ∈ {1, 2, . . . , n}, we have:

vk ∈

{
A : k odd
B : k even

But as n is odd, vn ∈ A.

But v1 ∈ A, and vn, v1 ∈ Cn.

So vn, v1 ∈ E which contradicts the assumption that G is bipartite.

Hence if G is bipartite, it has no odd cycles.

⇐ It is enough to consider G as being connected, as otherwise we could consider each
component separately.

Suppose G has no odd cycles.
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Choose any vertex v ∈ G.

Divide G into two sets of vertices like this:

Let A be the set of vertices such that the shortest path from each element of A to v
is of odd length; Let B be the set of vertices such that the shortest path from each
element of B to v is of even length.

Then v ∈ B and A ∩B = ∅.

Suppose a1, a2 ∈ A are adjacent.

Then there would be a closed walk of odd length (v, . . . , a1, a2, . . . , v).

A graph containing a closed walk of odd length also contains an odd cycle. It follows
that G would then contain an odd cycle.

This contradicts our initial supposition that G contains no odd cycles.

So no two vertices in A can be adjacent.

By the same argument, neither can any two vertices in B be adjacent.

Thus A and B satisfy the conditions for G = (A ∪B,E) to be bipartite.
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Exercise 36
(a) As shown by Chartrand 1

Proposition 1. Every eulerian graph is sequential.
Proof. If G is an eulerian graph, then G contains a closed path P containing each
line of G exactly once, say P : x0, x1, . . . , xq−1, xq = x0, where xi and xi+1 are
adjacent for i = 0, 1, . . . , q−1. This ordering of the edges of G serves to show that
G is sequential.

Proposition 2. Every hamiltonian graph is sequential.
Proof. Let C be a hamiltonian cycle of a hamiltonian graph G whose points are
arranged cyclically as, say, v0, v1, . . . , vp−1, vp = v0. To show that G is sequential,
we exhibit an appropriate ordering of the edges of G. We begin the sequence of
lines by selecting all those diagonals incident with v0 (there may be none). These
lines may be taken in any order, and, each two are adjacent with each other. We
follow these with the edge v0v1. The next edges in the sequence are those diagonals
incident with v1 (again, there may be none). As before, these lines may be taken
in any order. The next line in the sequence is v1v2, followed by all those diagonals
incident with v2 which are not in the part of the sequence already formed. We
continue this until we finally arrive at the edge vp−1vp = vp−1v0, which is adjacent
with the first line in the sequence. From the way the sequence was produced, makes
that every line of G appears exactly once and that any two consecutive edges in
the sequence are adjacent as are the first and last lines. Thus G is sequential.

Theorem 1. A necessary and sufficient condition that the line-graph Ḡ of a graph
G be hamiltonian is that G is sequential.
Proof. The result follows by observing that the points of Ḡ can be ordered
v0, v1, . . . , vp−1, vp = v0, where vi and vi+1 are adjacent for i = 0, 1, . . . , p − 1
if and only if Ḡ is hamiltonian, and such an ordering is possible if and only if
the edges of G can be ordered x0, x1, . . . , xp−1, xp = x0, where xi and xi+1 are
adjacent for i = 0, 1, . . . , p− 1. This latter condition states that G is sequential.

Proposition 1 and 2 and Theorem 1 yield the required corollaries:

Corollary 1: If G is an eulerian graph, then Ḡ is both eulerian and hamiltonian.

Corollary 2: If G is a hamiltonian graph, then Ḡ is hamiltonian.

From the fact that Ḡ is Hamiltonian, we cannot conclude that G is Hamiltonian.

1Gary Chartrand. On Hamiltonian Line-Graphs. 1968.
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(b) Assume G is an Eulerian graph (connected, different components are irrelevant
for subdivision). Then all vertices of G have even degree. A subdivision G′ of G
replaces each edge (vn, vm) by two (or more, but this would be analog reasoning)
edges (vn, vx), (vx, vm). The degree of vn, vm has not changed. The degree of vx
is two. All vertice degrees are even. Therefore, G′ has a Eulerian tour.

Assume G is an Hamiltonian graph (connected, different components are irrelevant
for subdivision). Then there is an Hamiltonian cycle in it. Then every vertex v
is visited exactly once (except start=end). v has a successor v′ in the cycle. A
subdivision of G′ replaces the edge (v, v′) with two (for simplicity; could be more,
but the idea still holds) edges (v, u), (u, v′). Now u is the success or of v and
v′ is the successor of u. Consequently, each vertex is still visited exactly once.
Therefore, G′ is a Hamiltonian graph.

Exercise 37
We proof that Km,n has a hamiltonian cycle if and only if m = n.

⇒ Assume Km,n has a hamiltonian cycle. As Km,n is bipartite, the cycle visits the
two subsets alternately. The cycle also visits every vertex. Assume m 6= n then there
are two vertices from the same subset/side that must be connected. This contradicts
the bipartite condition. Therefore, we get m = n if Km,n has a hamiltonian cycle.

⇐ Assume m = n. Km,n is complete and bipartite. Then, for subsets X,Y there
is a path x0, y0, x1, y1, x2, y2 . . . , xn, yn. This path visits every vertex exactly once.
Connecting x0, yn gives a cycle. Therefore, if m = n then there is a hamiltonian cycle.

Exercise 38
Proof by induction on n. In the base case n = 2, the 2-dimensional hypercube, the
length four cycle starts from 00, goes through 01, 11, and 10, and returns to 00.

Suppose now that every (n − 1)-dimensional hypercube has an Hamiltonian cycle.
Let v ∈ {0, 1}n−1 (space of all (n − 1)-length vectors consisting of 0s and 1s) be a
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vertex adjacent to 0n−1 (the notation 0n−1 means a sequence of n − 1 zeroes) in the
Hamiltonian cycle in a (n−1)-dimensional hypercube. The following is a Hamiltonian
cycle in an n-dimensional hypercube: have a path that goes from 0n to 0v by passing
through all vertices of the form 0x (this is simply a copy of the Hamiltonian path in
dimension (n− 1), minus the edge from v to 0n−1 ), then an edge from 0v to 1v, then
a path from 1v to 10n−1 that passes through all vertices of the form 1x, and finally an
edge from 10n−1 to 0n . This completes the proof of the Theorem.
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Exercise 39

We know that every second edge of P is in M . We denote this set as X. As P is
extending, it starts and ends with an edge, which does not belong to the matching M .
Therefore, the number of edges in P must be odd. Consequently |P \M | = |X|+ 1

Let v ∈ P be arbitrary. By definition of matching, v is incident to exactly one edge
x ∈ X. P is alternating. Therefore, v is also incident to exactly one edge x′ ∈ P \X =
P \ M . Hence, P \ X = P \ M is a matching of P . Additionally, this shows that
no edge in E \ P that is incident to v can be part of the matching M . As v was
chosen arbitrarily and the matching M \P (everything outside of P so to say) was left
unchanged, we get that M4P is a matching, too.

As the matching M \P was left unchanged, especially its cardinality has not changed
either. With our initial cardinality calculation of |P \M | we get |M4P | = |M |+ 1.

Exercise 40
χ(Kn) = n =⇒ χ(H) = n ≤ χ(G)

In general, there is no bound on the chromatic number of a graph in terms of the size
of its largest complete subgraph, since there are graphs containing no triangle, but
having arbitrarily large chromatic numbers. 2

Any odd cycle C2k+1 is a graph with χ(G) = 3 and does not admit K3 as subgraph.

2S. Wagon. A Bound on the Chromatic Number of Graphs without Certain Induced Subgraphs.
1978.
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