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Scientific Research Abstraction of Experimental
problem Reality Environment
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Solution finding

Insight
Intervention

Modeling

Abstraction
Simplification

Adaptation

Interpretation
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Solving Problems

Analytical or by
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What is Computer Simulation ? m

Definition (Shannon, 1975)

Simulation is the process of designing a model of a
real system and conducting experiments with this

model for the purpose either of understanding the
behavior of the system and its underlying causes or

of evaluating various designs of an artificial system or

strategies for the operation of the system.
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What is Computer Simulation ?

Simulation

Definition 2 (VDI-Richtlinie 3633)

Simulation is a (virtual) copy of a real system with its dynamic processes in a
(virtual) model (computer model) and (virtual) experiments with experiments

with this model, which allow interpretations for the real system.

In a practical sense, simulation is i) preparing, ii) performing, and iii)

evaluating experiments with a simulation model.

Simulation allows to study time-dependent behaviour of complex dynamical

systems in a simulation model.




Modelling and
Simulation

Dynamlcal SYStemS m Mathematical

A system is a set of interacting or interdependent components
forming an integrated whole

. . SURROUNDINGS
A dynamic system is a set of

dynamically interacting or e
interdependent components forming
an integrated whole ' SYSTEM

(BDUNDAEY




Modelling and

Simulation

Dynamlcal SYStemS m Mathematical

SURROUNDINGS
A dynamic system is a set of dynamically piremes s T
interacting or interdependent 1

components forming an integrated whole SYSTEM

(BDUNDAEY

- Dynamical systems change their behaviour dependent on acting
input signals, disturbances, and initial values

= The behaviour of a dynamical system is not direct proportional
to input and disturbance change, it changes its behaviour on
basis of its own dynamic and on inputs.
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« Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

SURROUNDINGS

= The behaviour of a dynamical system is not direct ! SYSTEM

proportional to input and disturbance change, it |

changes its behaviour on basis of its own dynamic (
BO

and on inputs.

UNDARY

Initial Conditions Elements of a Dynamical System

. « States x(t)
Dynamic System - Inputs u(t)
(States) - Disturbances w(t) = Inputs
» Outputs y(t)
 Fixed Parameters, Intial Conditions
Disturbances « Time dependent Parameters (Inputs)

Outputs
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« Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

SURROUNDINGS

= The behaviour of a dynamical system is not direct SYSTEM

proportional to input and disturbance change, it |

changes its behaviour on basis of its own dynamic (
BO

and on inputs.

UNDARY

Initial Conditions

________ | static formula

BF = Faktor - PC

Outputs

Potential
Customers

el Dynamic System
(States)

dynamic model
Disturbances BF (t) = Function (PC(t), BF (t),t, Par)
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(States) | |
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4 )

dynamic model

BF (t) = Function (PC(t), BF(t),t, Par)

Simulation
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Initial Conditions

Potential . 4 . .
custome BB WISVSOS Bt Dynamic mathematical model
rbnputs Dynamic Outputs i
(States) L Simulation y
Disturbances

Feedbacks

System input

A dynamical system
may consist of a set of
components, which
themselves are
dynamical subsystems

and which influence \\SYStem/

each other Subsystem Interconnection

nel it Toud E
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What is a Model?

Mathematical
Modelling and
Simulation

1. Mapping - A model is a

representation of a natural
or an artificial object.

2. Reduction - A model is
usually simplified and does
not have all attributes of the
original object.

3. Pragmatism - A model is
always created for a certain
purpose, a certain subject
and a certain time-span.

(Stachoviak 1973)

21
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models

N

material immaterial

Basic Simulation
imulatiorfgResults
Comparison &
it of Simulation

‘ Bad Fit

Good Fit
Experiments _witl
odel
imulation”’

Problem ¥ Solution

scaled analogue  symbolic formal *

math. mathematic grafic math.-grafic
algorithmic \ / \ / \
simulation analytic simulation analytic simulation

models models models models models
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models
material immaterial
scaled analogue  symbolic verbal

math.—graD

math.
algorithmic

simulation
models

simulation
models

analytic
models

analytic
models
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Mathematical
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Modelling by Abstraction m

Two Steps of Abstraction

« Structural Abstraction - Qualitative Knowledge
Identification of system borders and states

 Phenomenological Abstraction - Quantitative

Knowledge
quantisation of states, identification of physical,
economic, biologic, ... interactions in and with

subsystems

24
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MOdellIng VS MOdel m Mathematical

Simulation

Modelling Approach

System Dynamics (SD)
Transfer Functions (TF)
Compartment Modelling
Math. Formula
Lagrange Formalism
Port-based physical
Modelling

Difference Equation
Modelling

Cellular Automata
Modelling
Agent-based Modelling
Event Graphs

Process Flow

Model Type

Ordinary Differential
Equations (ODEs)
Partial Differential
Equations (PDEs)
Differential Algebraic
Equations (DAEs)
Difference Equations
(DEs)

Cellular Automata (CAs)
Agent-based
Systems/Models (ABMs)
Discrete Event Systems
(DES)
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Modelling Approach

« System Dynamics (SD)
 Tra fons (IF)

Compartment Modelling
Math. Formula
Lagrange Formalism
Port-based physical
Modelling

Difference Equation
Modelling

Cellular Automata
Modelling
Agent-based Modelling
Event Graphs

Process Flow

Mathematical
Modelling and
Simulation

Model Type

@inary Differential
Equations (ODEs)
« Partial Ditferential
Equations (PDEs)
« Differential Algebraic
Equations (DAEs)
« Difference Equations
(DEs)
« Cellular Automata (CAs)
« Agent-based
Systems/Models (ABMs)
« Discrete Event Systems
(DES)




Landmap of Modelling Methods Mathematial

Simulation

The variety of different
Modelling approaches can be

seen like a structured landmap. ‘
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Landmap of Modelling Methods -
Dynamic Models

Mathematical
Modelling and

Simulation
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Dynamic Models - Time

. . Mathematical
Discrete/Continuous m Modelling and

Simulation

Neglecting quantum-mechanics (space as well as)
time can be seen to be a continuous number.

= A model is called time-continuous if the
output value of the model can be calculated
at any time (= t € R).

= |[n the opposite a model is called time-
discrete if values are only calculated at a
finite number of predefined timesteps (= t €
N).

29



Dynamic Models - Time
. . Mathematical
Discrete/Continuous m Modelling and

Simulation

« Usually time-continuous models are preferred
to time-discrete models, but the simulation
process is usually more difficult.

* Yet, there are processes in real world for
which time continous models are not
necessary or even dont make sense.

« Very often, time-continuous models cannot
be simulated continously. So they need to be
reformalised in a time-discrete manner - this
process is called discretisation.

30



Landmap of Modelling Methods - Time
Discrete / Continous

Mathematical
Modelling and

Simulation
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Dynamic Models - Value
. . Mathematical
Discrete/Continuous m Modelling and
Simulation

Similar to time-discrete/continuous, also output
values can be determined discrete or
continuously.

= Value-discrete:
- Number of passengers on a plane
- Number of cars searching for a parking spot.

= Value-continuous:
- Voltage/Current in an Electrical Circuit
- Angular Velocity of a Pendulum

32



Dynamic Models - Value
. . Mathematical
Discrete/Continuous m Modelling and

Simulation

= Although simulation output is expected to be
continuous/discrete, it is not necessarily
modelled in a continuous/discrete way.

E.g.:
Population of a country is a discrete number...

... yet it can be modelled by a continous
model

It requires a correct result interpretation!

33



Examples -Discrete/Continuous

Mathematical
Modelling and
Simulation

value

Electricity Consumption

A

-

v

time

value

People in check-in hall

v

time

value

Monthly Budget

[

Number of passengers
 each flight

value

PR
X X ......
time -
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Landmap of Modelling Methods -
Discrete / Continous

Mathematical
Modelling and

Simulation
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Model Procedures

Mathematical
Modelling and
Simulation

Theoretical Modelling Experimental Modelling
Deductive Analysis Analysis

Modelling by Laws and Rules Modelling by using models
with observed behaviour

White Box Modelling Black Box Modelling

Ohms Law ‘

yit) “_| /

SupplyiDema
Supply/Demand Law Mathematical Model

36
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Simulation

Application vs. Modelling Approach m Mathematical

White Box Modeling

Electrotechni = | aws

que

« Mechanics = Laws and Observations

* Environment .
= Laws and Observations

* Medicine

= Observations and Characterisation
« Economy
- Sociology = Observations and Characterisation

Black Box Modeling

37



Model Reduction m Mathematical
Modelling and

Simulation

From Deduction to Induction

. Electrotechni = | aws

que

« Mechanics = Laws and Observations

* Environment .
= Laws and Observations

* Medicine

= Observations and Characterisation
« Economy
- Sociology = Observations and Characterisation

Deductive models may contain too many parameters -
problems with identification

38
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Mathematical
Modelling and
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Modelling and
Simulation

Stochastic/Deterministic m Mathematical

 |f the output of the simulation of a model is
uniquely defined by input parameters, initial
conditions and model parameters the model
is called deterministic.

 Otherwise it is called stochastic.

/" Results: /" Results:
14.2 14.3
1:; —> deterministic 1:8 —> stochastic
14.2 14.2

O e ) O e )

40
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Stochastic/Deterministic m

Simulation

Stochastic models are necessary...

= ... if random effects are included in the system.
— coin toss, rolling a dice, ...

= ... if emelents of the system are too complex to
be described by deterministic rules.

— human behaviour, problems at system borders,...

41
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Stochastic/Deterministic m Mathematical

Stochastic models are necessary...

= ... if random effects are included in the system.
— coin toss, rolling a dice, ...

= ... if emelents of the system are too complex to
be described by deterministic rules.

— human behaviour, problems at system borders,...

— coin toss, rolling a dice, ...
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Modelling and

Microscopic/Macroscopic Models m Mathematical

Simulation

 |f systems consist of a big set of similar
subsystems...

- subsidiar
___Wwraa | e
... the question arises whether a micro- meso-
or macroscopic model should be used.

44
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Microscopic/Macroscopic Models M Mathematical

Simulation

* Microscopic models treat each subsystem as
an individual model. Finally they are linked in
order to model the whole system.

individual individual

individual individual

individual individual

individual

individual

individual individual
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Microscopic/Macroscopic Models m Mathematical

Modelling and

Simulation

* Macroscopic models treat the whole system,
neglecting the fact, that it consists of
subsystems.

Population

46



Landmap of Modelling Methods -
Microscopic/Macroscopic

Mathematical
Modelling and

Simulation
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Differential equations
Stochastic
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System dynamics Queuing models

DYNANMO
World dynamics

STELLA Lifemod Multilevel modelliing Multi-agent
- Warkflow CA models models

BPRH

(Troitzsch)
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Modelling

Model Structure
Model NOT OK
( Model Analysis ) Identification: L >
Numeric/Programming Parameter Determination JModel structure &
Simulator, OK
( )
Basic Simulation

Simulation| Results

" validation: Comparison & ) [ Validation: Analysis }

_ Fit of Simulation / Reality | Parameter / Model
A

Bad Fit

Good Fit

Experiments with Model
(,Simulation™)

Problem l Solution
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Modelling and

What is System Dynamics m Mathematical

Simulation

Forrester, 1961

System Dynamics is a field that resulted from the pioneering
efforts of Jay W. Forrester to apply the engineering principles of

feedback and control to social systems.

System Dynamics generates qualitative models based on

causalities.

By appropriate parameterisation, the qualitative models can be
transformed into “quantitative” computer models to simulate the

investigated system

(44
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Modelling and
Simulation

Systems Dynamics and DYNAMO received widespread

interest mainly because they were used to build large
world models such as

 WORLD2 (World Dynamics, Forrester1971);

« WORLD3 (The Dynamics of Growth in a Finite World,
[Meadows]);

« and WORLD?3 revisited (Beyond the Limits).
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Modelling and

Simulation

Key to develop SD Models m Mathematical

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)
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Simulation

HOW tO bUlld a SD MOdEl7 m Mathematical

1. ldentify system variables and system
boundaries

2. Capture links of variables in a
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

* Implement the model in a simulator
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1. System Variables and Boundaries m

Simulation

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation.

b. Start collecting information and data. Start

developing hypothesis about the parts of the
system.

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.




1. System Variables and Boundaries
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Input

Links

System
bg(mdary

1

\\ Output

N

—>

h

\

System variables

>
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2. Causal Loop Diagram m

Simulation

Capture the behavior and links of and within the
system by interlinking system variables that are related
to each other

 Feedback Loops
« System memory (stocks)
« Delays in material and information delays
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2. Causal Loop Diagram m

Simulation

Main components of ClLDs:
« System variables: names of elements
« Link - positive:

Eating ~_ Weight
+

Represented by a plus-sign

Increase in variable Eating results in an increase in
variable Weight
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2. Causal Loop Diagram m

Simulation
Main components of CLDs:
« Link - negative:

Diet - Weight

Represented by minus-sign.

Increase in variable Diet results in a
decrease in variable Weight




Modelling and

2. Causal LOOp Dlagl'am m Mathematical

Simulation

Main components of ClLDs:

 Feedback Loops: are closed loops of arrows,
represented by a:

“(+)" (or "(R)"” for reinforcing) or

“(-)” (or “(B)” for balancing) sign in the middle.
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2. Causal Loop Diagram m

Main components of ClLDs:

 Feedback Loops: are closed loops of arrows,
represented by a

“(+)" (or "(R)"” for reinforcing) or

“(-)” (or “(B)” for balancing) sign in the middle.

Immigration

Births + ) Population D Deaths

\_/*J- Nassg S i
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2. Causal Loop Diagram m

Simulation

Eeedback Loops

= Search to identify closed, causal feedback loops
is one key element of System Dynamics

= The most important causal influences will be

exactly those that are enclosed within feedback
loops
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2. Causal LOOp Dlagl'am m Mathematical

Simulation

Types of behavior due to loops:
= Exponential Growth: arises from positive
(reinforcing) feedback loop.

Example:

/\ Exponential Growth

.+ :
Population + Births

N__ "7

Time —
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2. Causal LOOp Dlagl'am m Mathematical

- : - lati
« Correlation represents past behavior and not
the structure of the system

« Causation represents the causal links of the
structure

Wrong: Right:
Ice Creme Murder Ice Creme Murder
Sales *> Rate Sales R 7Rate
Avgerage

Temperature
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2. Causal LOOp Dlagram m Mathematical

Simulation

At least one negative feedback loop is
necessary to receive a stable system

/\ /\

Lack of Space Population’ .

\ d
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3. Stock and Flow Diagram m Mathematical

Problem: Not all system elements are system variables!

Solution: distinguish between
« Sources/Sinks
 Levels/Stocks

 Flows

* Auxiliaries

« Paramters

 Links




Mathematical

Modelling and

Simulation
Sources/Sinks:

Source represents systems of levels and

({C;:B rates outside the boundary of the
model

Sink is where flows terminate outside
the system

E.g..: Raw Material (Source for
,Cconstruction® Flow), Graveyard (Sink for
,Dying" Flow)
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Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of
people waiting in a queue, Number of
goods waiting to be transported, etc.
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Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow

X in order to change its value.

E.g.: Birth (Changes the value of the
stock ,population®), Eating (Changes the
value of the stock ,amount of food"), etc.
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Mathematical

Modelling and

Simulation
Auxiliary:

Everything that can directly/analytically be
calculated out of stocks and constants.
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated
by the stocks/constants ,mass” and
,volume*®), Quelength (calculated by stock
,people in queue” and constant ,average
size of one person®), etc.
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Simulation
Parameter /Constant

Everything that is predefined for the
whole simulation - usually it is a
constant but can be a function too.

E.g.: Average Temperature, Number of
Cash Desks (In a supermarket), Birth
Rate, Maximum capacity of a Room, etc.
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X >
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PRED_MERS
1.6 ~
P

Simulation

Predator - Prey System m Mathematical

Dynamics: Predator eats Prey
@ Predator / Prey births, deaths
\/
{ Modelling }

o
Model l "/{

Environment: isolated
A \‘ Measurement: Predator Population
= T 5 Years = 60 months, quarterly

2.4

0.8

S N A Problem: When is a reasonable time to use
chemical pesticides to reduce number of
0 12 24 3 48 60 prEdatorS?

0.0
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Predator - Prey System

Event-oriented system Continuous System

*
>

Problem i

Modelling

Model l

Dependent variable
Dependent variable

continuous time, t continuous time, t
discrete values continuous values

Time discrete system Hybrid system

.

Dependent variable

Dependent variable

“ ‘ >

discrete time, t continuous time t
continuous values piecewise continuous
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Continuous System \

Predator - Prey System

~

Event-oriented system

*
>

Problem i

[ Modelling

Model |

-_—
Dependent variable
Dependent variable

continuous time, t continuous time, t
discrete values continuous values

Y(t) ... Prey
Separation — X(t) ... Predators /
ISOIated envwonment Time discrete system Hybrid system

discrete time, t continuous time t
continuous values piecewise continuous

-

.

Choice -
2 variables = 2 states

Dependent variable

Dependent variable
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Model | Y(t) .. Prey Population
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Causality - Predator - Prey - Model

Y(t) .. Prey,
X(t) .. Predator
Problem | System Dynamics - Population interaction
- Ctoastng > |
Model l
Then #Preys If #Prey
decreases increases
If #Predator Then #Predators
increases increases
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Y(t) .. Prey,
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System Dynamics - Population interaction

Then #Preys

decreases —

If #Prey

increases +

If #Predator

increases +

Then #Predators

increases +
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Causality - Predator - Prey - Model

Y(t) .. Prey,
X(t) .. Predator
Problem | System Dynamics - Population interaction
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Model l
Causal
- Loop
Diagram
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System Dynamics - Population interaction
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Growth + Loss
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Population rate = Growth rate + food

rate
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Population development over time:

individuals
2.5

1.5 7

0.5

0 10 20 30 40 a0 &0
— Predator Population — Prey Population — Dataset Predators  time

Simulation

Simulator

Basic Simulation

Simulation{ Results

Parameters:
Predator Growth Rate Per1 Prey 0.6
Predator Loss Rate 0.25
Prey Eating Rate 0.7
Prey Growth Rate 0.5

X=(a-b-y)x
y=(-Cc+d-Xx)y
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P . . . .
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Simulation Circle: Predator - Prey

Modelling and
Simulation
Problem |
Modelling <
y, Model Structure
Model | NOT OK
Model Analysis Identification: L Y
Numeric/Programming Parameter Determination JModeI Structure
Simulator, OK
( N\
Basic Simulation
" /
Simulation| Results
" Validation: Comparison & | [ Validation: Analysis }
_ Fit of Simulation / Reality Parameter / Model

/
Bad Fit ‘

Good Fit ﬂs\=

E i ts with Model
xperiments wi ode
[ (,Simulation™) } 4
=\’=/_\=
Problem l Solution -~
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rey (-\ rey

Lo =

Simulation| Results

alidation: Comparison &
it of Simulation / Reali

Growth Loss

Bad Fit

Good Fit Food
+ Rate
Model Extension:

\

\J

o

» Both the predator and the

prey compete for food and Pred \J‘ Pred +

shelter in the forest. Growth L oss
op

« Competition sets in and the -
population of each species tends

to control itself via a negative

effect, that is the population

decreases with a rate directly

proportional to the present

population of that species.
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Simulation| Results

alidation: Comparison &
it of Simulation / Reali

Bad Fit

Good Fit

Model Extension:
» Both the predator and the
prey compete for food and
shelter in the forest.

« Competition sets in and the
population of each species tends
to control itself via a negative
effect, that is the population
decreases with a rate directly
proportional to the present
population of that species.
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Model Modification

Simulation| Results

alidation: Comparison &
it of Simulation / Reali

Bad Fit

Good Fit

Pred
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Simulation| Results

alidation: Comparison &
it of Simulation / Reali

% Bad Fit

Good Fit

Prey growt T Prey loss
T B
2 " Stock
) _ and

f.

+
d * ¢ Flow
x /\Predator .
EH:> Population %ﬁ: ; Di ag Fam
redator loss

Predator growth T
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Simulation| Results

alidation: Comparison &
it of Simulation / Reali

Bad Fit

Good Fit

Stock
and
Flow

Diagram

Prey growt
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Prey loss
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1
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l Diagram ] I To Bar Piot ] I To Time Plot ] l To Phase Plot I
Predator Growth Rate Per 1 Prey 0.6
Predator Loss Rate 0.25 Predator Competition Rate 0.008
Prey Eating Rate 07 Prey Competition Rate 0.018
Prey Growth Rate 05
Play ] I Stop ] l Reset
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Simulation| Results

alidation: Comparison &
it of Simulation / Reali

Bad Fit
Good Fit
prey (inthousands)

z —~_

181 ."_.,. .y -_.o..,___;-. \ : !
—
e
1.6 ;-/. AT = -
1.4 4 .‘. o ! ‘...""o. .‘\"i\ \.\‘
K "'-.‘ Su, .
1.2 7 r T NI ™
i B A
14 ' T T | w, \
,
i i .\
0.5 " ) L
‘.\‘ LY
0.6 \ 1
0.4 4 } ';
PR

0.2 4 Pt

e S .- T T

o 05 1 15 H 25
+= Predator ws Prey predators

(in thousands)

Parameters:

Predator Growth Rate Per 1 Prey
Predator Loss Rate

Prey Eating Rate

Prey Growth Rate

Predator Competition Rate

Prey Competition Rate
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0.6

0.25
i

0.5

0.0080

0.018

X=(a—b-y)x—e-x*=(a—e-x—b-y)x

y=(-c+d-x)y—f.-y*=(—c—f-y+d-x)y
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Simulation Circle: Predator - Prey

Modelling and
Simulation
Problem l
Modelling <
Q y, Model Structure
Model il NOT OK

Model Analysis | Identification:
Numeric/Programming Parameter Determination
4 N Model Structure

Simulator oK
( )
Basic Simulation
\ J
Simulation| Results
" validation: Comparison & ) [ Validation: Analysis }
_ Fit of Simulation / Reality | Parameter / Model

Bad Fit ‘

Experiments with Model
(,Simulation™)

Good Fit

Problem l Solution

132



Model Modification

Mathematical
Modelling and
Simulation
Simulation, Results
alidation: Comparison &
it of Simulation / Reali Parameters:
Bad Fit Fredator Growth Rate Per 1 Pray 0.6
Predator Loss Rate 0.25
Good Fit Prey Eating Rate o7
Prey Growth Rate 0.5
individuals
s Predator Competition Rate 0.0080
Prey Competition Rate 0.018

1] 10 20 30 40 50
— Predator — Prey — Dataset Predators

a0

time

X=(a—b-y)x—e-x*=(a—e-x—b-y)x
y=(-c+d-x)y—f.-y*=(—c—f-y+d-x)y
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Mathematical
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Problem |
Modelling <
\ y Model Structure
Model | NOT OK
Model Analysis Identification: 1
Numeric/Programming Parameter Determination JModeI structure K
Simulator oK
( )
Basic Simulation
\ J
Simulation| Results
" validation: Comparison & ) [ Validation: Analysis }
_ Fit of Simulation / Reality Parameter / Model

A

Bad Fit

Good Fit

Experiments with Model
(,Simulation™)

Problem Solution
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Experiments with Model
L~Simulation”

Results Interpretation / Analysis

Good Fit

Problem l Solution

T
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Determination of long time behavior /
stationary solutions (equilibria)

40
.0
20

24
1
1

T

16
0.8

1.0 o0&
I]l,III III|,4
a[_l.l] :;- 0_a
[
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Results Interpretation / Analysis

Good Fit

Experiments with Model
L~Simulation”

Problem l Solution

3.0

18

////// I

FRED

-] 1.2

0.0

7z

=~
S

N

1.0

=3
=

b Bopy

12 Har 9 0B, Z5:31 2006
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Determination of long time behavior /
stationary solutions (equilibria)

14 H 4 0B, 3E: 31 2006
0E 1
T N
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Use of Pesticide m Mathematical
Modelling and

Simulation

Good Fit

Modification of Predator-prey model with intraspecific Experiments with Model
competition ‘J)

,Simulation”

o . . Probl Soluti
Assume, that at a specific time poison is released roviem l omHon

Into the system, e.g. some of predators are
removed _ _
from the population by hunting.

The growth rate a of prey is changed to:
where K is growth rate change.

This change occurs at the specific time point.

The new growth rate a depends on the difference
between populations at this specific time point and
stays constant after that.
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Use of Pesticide
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Prey Growth Rate Change 0.25 attime 20.0
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l Play Reset l
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t :

Good Fit

Adequate
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Experiments with Mode

(., Simulation™)

time Iinstant

doig = d

C new?

=.

ax — bxy — ex

dreeu — dnir + dc' (x(rc)
nfr.'eu = -fc fm’r

Problem l Solution

1:old — fnew

2

—cy +dxy — fy?

= ()
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Modification of Predator-prey model )
. . P up athematical
with intraspecific competition m Modelling and

Simulation

Population development over time: Good Fit

- dividuals Experiments with Mode

) individuals (..Simulation™)
(inthousands) o s yinal Model (in thousands] yqgel with control :
25 14 Problem l Solution
[\ 17 |
7 |
10 ll
1.5 - ll PI
| I
1 "7 \ I"
} | . \ ) Parameters:
]
z -*\ Jl \l | \ \ Pred Loss Rate Change 2.0
0 - - 0 \ T L J attime 20.0
0 20 40 &0 0 20 40 £l
J— Predatgr [— PrE':." time —_— F'r'EdEItDr —_— F'rE';.-' timE

Mote: Please note the different scaling of the plots.

dneu — dair T dc‘ (.?C(f(,) — y(fc ))
]Fm?u = j; fm’r
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Modification of Predator-prey model
with intraspecific competition

Population development over time:

prey

1.5 4

0.5 1

s Predator vs Prey

predators

prey

Model with Control

0 5 10 15
s+ Predator vs Prey predators

Mathematical
Modelling and
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Good Fit

Experiments with Mode
(.Simulation™)

Problem l Solution

Parameters:

Fred Loss Rate Change 2.0

attime 200

dneir — dair T dc (x(fc’) — y(fc ))

]Fm?u - j; fm’r
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Modification of Predator-prey model

. . . g .y Mathematical
with intraspecific competition Modelling and

Simulation
Problem Good Fit l

Experiments with Model

Modelling } [ (.Simulation”) }
Model | @Iem So@

Assignment: short time,

Dynamics: Prey - Predators changes the growth of preys,
Environment: isolated damping parameter
Measurement: natural enemies Approach: optimal time point
5 Years = 60 months t. is dependent on the
quarterly population difference

Problem: When is a reasonable time Result: The assignment is not
to use chemical pesticides? conducive
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The DON'Ts of Mathematical Modelling m

(S. W. Golomb, Simulation 14 (1970), 197-198)

DON'T believe that the model is the reality

DON'T extrapolate beyond the region of fit

DON'T distort reality to fit the model

DON'T retain a discredited model

DON'T fall in love with your model
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Introduction to System Dynamics




OVE rview Mathematical
Modelling and
Simulation

 Introduction

« General Information

 How to Build a System Dynamics Model
— System Variables and Boundaries
— Causal Loop Diagrams
— Stock-and-Flow Diagrams

« Helpful Tools

* Analysis

« Simulators

« Conclusion

* Further Steps
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General Information (1) m Mathematical

Simulation

« System Dynamics (short SD) is a modelling and
simulation method developed by Jay W. Forrester.

 He adapted methods formerly used for system
analysis of technological systems to social systems
(MIT Sloan School of Management, 1956).

* Thus he was criticising mathematical models
developed for management sciences.

« SD has roots on control theory and nonlinear
dynamics

« SD is very intuitive, supported by graphics
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General Information (2)

Problem

Modelling
Model Structure

Model | NOT OK

Model Analysis \ Identification: l
Numeric/Programming Parameter Determination J Model Structure &
Simulator OK
( N\
Basic Simulation
. J
Simulation |Results
" Validation: Comparison & | { Validation: Analysis
_ Fit of Simulation / Reality | Parameter / Model

-_—

A

Bad Fit

Good Fit

System Dynamics is a method
to develop a conceptual/formal

{ Experiments with Model }
model...

(,Simulation™)

Problem l Solution

Simulation Circle




General Information (2)
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Problem

A

Modelling
Model |

NOT OK

Model Analysis
Numeric/Programmin

Identification: )
Parameter Determination J

dl
«

Model Structure 4

Simurato—+—

( )

Basic Simulation
. J

Simulation |Results

" validation: Comparison & )
_ Fit of Simulation / Reality |

Bad Fit

OK

Model Structure

Validation: Analysis
Parameter / Model

|

A

Good Fit

Experiments with Model
(,Simulation™)

Problem l Solution

Simulation Circle

...but it additionally gives
guidelines how this model is
simulated
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General Information (3) m Mathematical

Simulation

Hypothesis:
— Manager usually know very good about

processes and their causal relationships within
their companies (system).

— The behaviour of a system is mostly
predetermined by its (complex) structure.

— Practically useful models can usually not be
simulated by analytic calculations.
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General Information (4) m Mathematical

Literature:

1961: Industrial Dynamics (Forrester)

1969: Urban Dynamics (Forrester), first use of
System Dynamics apart from economic
businesses.

1970: World Dynamics (Forrester), superwised by
Club of Rome, use of System Dynamics for
development of a so called ,,World Model”.
Similar:

1972: Meadows et al.: The Limits to Growth
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General Information (5) m Mathematical

Relationship: SD & Differential Equations Modelling

« Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development

of DE models.
* Advantages:

— Picturesque

— Optimized to understand dynamics and causal
relationships of the system.

— Finally calculated like a DE model.
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Genel'al |nf0I'matI0n (5) m Mathematical

Relationship: SD & Differential Equations Modelling

« Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development

of DE models.
« Advantages:

— Picturesque

— Optimized to understand dynamics and causal
relationships of the system.

— Fi oo bl :
Perfect starting-point for learning about
Modelling and Simulation
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Simulation

Key to develop SD Models m Mathematical

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)
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Simulation

HOW tO bUlld a SD MOdEl7 m Mathematical

V 1. ldentify system variables and system
boundaries

0 2. Capture links of variables in a
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

* Implement the model in a simulator
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1. System Variables and Boundaries m

Simulation

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation.

b. Start collecting information and data. Start

developing hypothesis about the parts of the
system.

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.
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1. System Variables and Boundaries m Mathematical

Simulation

System boundary

Links /

Input o T \\ Output

> >
\ ﬂ/
\

System variables
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Causality vs Correlation m Mathematical

- : - lati
« Correlation represents past behavior and not
the structure of the system

« Causation represents the causal links of the
structure

Wrong: Right:
lce Cream Murder Ice Cream Murder
Sales *> Rate Sales i +/ Rate
Average

Temperature




Causality vs Correlation m Mathematical

Modelling and
Simulation
- { - lati
« Correlation represents past behavior and not the structure of the
system

« Causation represents the causal links of the structure

Correlation Wrong Causal Lesson?

Implication

Smoking, Lung People suffering from 7?7
Cancer (+) lung cancer are more
likely to start smoking
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Causality vs Correlation m Mathematical

Simulation
- { - lati
« Correlation represents past behavior and not the structure of the

system

« Causation represents the causal links of the structure

Correlation Wrong Causal Lesson?

Implication

Smoking, Lung People suffering from Causality is always directed! Be
Cancer (+) lung cancer are more  careful to take the correct one.
likely to start smoking

Darkness, If it was darker, we 7?
Electricity could reduce our
Consumption (-) energy problems
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Causality vs Correlation m Mathematical

Simulation
- { - lati
« Correlation represents past behavior and not the structure of the

system

« Causation represents the causal links of the structure
Correlation Wrong Causal Lesson?

Implication

Smoking, Lung People suffering from Causality is always directed! Be
Cancer (+) lung cancer are more  careful to take the correct one.
likely to start smoking

Darkness, If it was darker, we Always look for direct
Electricity could reduce our causalities! Don’t foget that
Consumption (-) energy problems people sleep when its dark...
Murder Rate, Ice cream makes ??

Ice Cream Sales people potential
(+) murderes
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Causality vs Correlation m Mathematical

Simulation
- { - lati
« Correlation represents past behavior and not the structure of the

system

« Causation represents the causal links of the structure
Correlation Wrong Causal Lesson?

Implication

Smoking, Lung People suffering from Causality is always directed! Be
Cancer (+) lung cancer are more  careful to take the correct one.
likely to start smoking

Darkness, If it was darker, we Always look for direct
Electricity could reduce our causalities! Don’t foget that
Consumption (-) energy problems people sleep when its dark...
Murder Rate, Ice cream makes Always look for confounding
Ice Cream Sales people potential factors! E.g. the average

(+) murderes Temperature?




Causality vs Correlation

- i - lati
« Correlation represents past behavior and not the structure of the

system

« Causation represents the causal links of the structure

Famous example

(1):

The NEW ENGLAND JOURNAL of MEDICINE

OCCASIONAL NOTES

Chocolate Consumption, Cognitive Function,
and Nobel Laureates
Franz H. Messerli, M.D.

Dietary flavonoids, abundant in plant-based foods,
have been shown to improve cognitive function.
Specifically, a reduction in the risk of dementia,
enhanced performance on some cognitive tests,
and improved cognitive function in elderly patients
with mild impairment have been associated with
a regular intake of flavonoids.™* A subclass of
flavonnids ralled flavannle  whicrh are widelv

cause the population of a country is substantially
higher than its number of Nobel laureates, the
numbers had to be multiplied by 10 million.

Thus, the numbers must be read as the number

of Nobel laureates for every 10 million persons
in a given country.

All Nobel Prizes that were awarded through
Oetoher 10 2001 were included Data an ner

Mathematical
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Nobel Laureates per 10 Million Population

= United Kingdom

359
= Sweden
304
1=0.791
P<0.0001 Beriai
254 o=
Austria = -
=}= Norway
20
raln=
15+
United B N ireland
The Netherlands ™= States
10+ == Fianie
Belgium
g(:ana!al + Finland
54 . Poland I*hAustralia
reece
Portugal _.J_ Italy
® B= _E_ Spain
o [l Japan
China Brazil
T T T T T T
9 5 10

Chocolate Consumption (kg/yr/capita)

B3 switzerland

] Germany
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- i - lati
Correlation represents past behavior and not the structure of the

system

Simulation

Causation represents the causal links of the structure

Famous example (2):

Survival in Academy Award-Winning Actors and Actresses

Donald A. Redelmeler, MD, and Sheldon M. Singh, BSc

Background: Social status Is an important predictor of poor
health. Most studies of this Issue have focused on the lower
echelons of society.

Objective: To determine whether the Increase in status from
winning an acaderny award Is assoclated with long-term mortality
among aclors and actresses.

Design: Refrospective cohort analysis.

Setting: Academy of Mation Picture Arts and Sclences.

Participants: Al actors and actresses ever nominated for an
academy award In a leading or a rting role were identified

curred (primarily from Ischemic heart disease and malignant dis-
eace). Life expectancy was 3.9 years longer for Academy Award
winners than for other, less recognized performers (79.7 vs. 75.8
years; P=0.003). This difference was equal to a 28% relative
reduction in death rates (95% Cl, 10% to 42%). Adjustment for
birth year, sex. and ethnicity ylelded similar results, as did adjust-
ments for birth country, possible name change, age at release of
first film, and total films in career. Additional wins wera associ-
ated with a 22% relative reduction In death rates (Cl, 5% to
35%), whereas films and were
not assoclated with a significant reduction In death rates.

{n=762). For each, another cast member of the same sex who
was In the same film and was bomn in the same era was identified
(n=887).

Measurements: Life expectancy and all-cause mortality rates.

Results: All 1649 performers were analyzed; the median duration
of follow-up time from birth was 66 years, and 772 deaths oc-

ocial starus is a consistent, powerful, and widespread
determinant of death rates. ‘The association between
high starus and low mortality has appeared throughout

tha wndd  hae narcicrad for moea than o canfne and

Conclusion: The of high status with increased lon-
gevily that prevalls In the public also extends to celebrities, con-
tributes to a large survival advantage, and Is partially explained by
factors related to success.

Ann ntern Med. 2001,134:965-062 W ammak oy
For author affilations, current addresses, and contributions, see end of texd.
see editorial comment on pp 1001-1003.

breaks to stardom are often haphazard and heavily de-
pendent on chance. Indeed, some pundits suggest that
being nominated for an Academy Award is due ro talent

wwharane winnine nna e doa ra locl

100 —

80

60 —

40

Survival Rate, %

20—+

Time, y

Analysis is based on log—rank test comparing 235 winners (99 deaths)
with 887 controls (452 deaths). The total numbers of performers avail-
able for analysis were 1122 at 0 years, 1056 at 40 years, 762 at 60 years,
and 240 at 80 years. /> = 0.003 for winners vs. controls.
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2. Causal Loop Diagram m

Simulation

Capture the behavior and links of and within the
system by interlinking system variables that are related
to each other

 Feedback Loops
« System memory (stocks)
« Delays in material and information delays
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2. Causal Loop Diagram m

Simulation

Main components of ClLDs:
« System variables: names of elements
« Link - positive:

Eating ~_ Weight
+

Represented by a plus-sign

Increase in variable Eating results in an increase in
variable Weight
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2. Causal Loop Diagram m

Simulation
Main components of CLDs:
« Link - negative:

Represented by minus-sign.

Increase in variable Diet results in a
decrease in variable Weight
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2. Causal Loop Diagram m

Simulation

Main components of ClLDs:

« Feedback Loops: are closed loops of arrows,
represented by a:

“(+)" (or "(R)"” for reinforcing) or

“(-)” (or “(B)” for balancing) sign in the middle.
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2. Causal Loop Diagram m

Main components of ClLDs:

« Feedback Loops: are closed loops of arrows,
represented by a

“(+)" (or "(R)" for reinforcing) or

“0)" (or “(B)" for balancing) sign in the middle.

Immigration

Births + ) Population D Deaths

\_/*J- Nassg S i
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2. Causal Loop Diagram m

Feedback Loops:
— Reinforcing: A system variable effects itself

(via other system variable(s) of the loop), resulting

in a reinforcing of the original state of the system
variable

Even number of negative links

/ D= C.E\ value A

Ei B
[

time
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2. Causal Loop Diagram m

Feedback Loops:
— Balancing: A system variable effects itself (via

other system variable(s) of the loop), resulting in

a balancing of the original state of the system
variable

Uneven number of negative links

/D"’\C_\ value A
E” B \
Ne_

time
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2. Causal Loop Diagram m

Simulation

Eeedback Loops

= Search to identify closed, causal feedback loops
is one key element of System Dynamics

= The most important causal influences will be

exactly those that are enclosed within feedback
loops
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2. Causal LOOp Dlagl’am m Mathematical

Simulation

Types of behavior due to loops:
= Exponential Growth: arises from positive
(reinforcing) feedback loop.

Example:

/\ Exponential Growth

Population * + Births

N__ "7

Time —
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2. Causal Loop Diagram M Mathematical

Simulation

= S-shaped Growth: arises from a combination of positive
and negative feedback loops (nonlinear interactions)

Important here:

— Carrying capacity: Number of organisms a habitat can
support and it is determined by the resources available in the
environment and the resource requirements of the
population. When the population reaches its carrying
capacity the net increase rate slows down until it is zero and
the population reaches its equilibrium (limit of growth)
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2. Causal LOOp Dlagl’am m Mathematical

Types of behavior due to loops:

= S-shaped Growth: arises from a combination of
positive and negative feedback loops (nonlinear
interactions)

Carrying
Capacity

\ ‘/\ S-shaped Growth
) 4

Lack of Space’ Population+ Births
+

~_F

Time —




Modelling and

Simulation

2. Causal Loop Diagram m Mathematical

Types of behavior due to loops:
= S-shaped Growth: arises from a combination of

positive and negative feedback loops (nonlinear
interactions)

Necessary requirements:

— Negative feedback loops must not | S-shaped Growth
include any significant delays

— Carrying capacity must be fixed

Time —
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Goal Seeking Behavior: arises from negative

(balancing) feedback loop.

Example:

emperature

Setting
D
Corrective action
+ 5 O2P
\Actual +
Temperature
Desired

Temperature

Goal Seeking
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2. Causal LOOp Dlagram m Mathematical

Simulation

Types of behavior due to loops:
Oscillation: arises from negative feedback with
delays.

Example:  Delay

Service d +

Reputation Customer Oscillati
__ S scillation
>
+2ap W
i serwce
Quality =
Service

Standard
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2. Causal Loop Diagram M Mathematical

Simulation

= QOscillation: arises from negative feedback with
delays.

The state of the system is compared to the
desired state of the system and corrective actions
are taken. The goal is constantly overshot, then
corrects / reverses and then undershoots the
system and so on.
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2. Causal Loop Diagram m

Simulation

= QOscillation: arises from negative feedback with
delays.

Special oscillations are:
— Damped oscillation: e.g. pendulum

— Chaotic oscillations
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2. Causal Loop Diagram M Mathematical

Simulation

= QOscillation: arises from negative feedback with
delays.

Special oscillations are:

— Expanding oscillation and limit cycles: If an
oscillatory system is given a nudge off its
equilibrium, its swings grow larger and larger
until they are constrained by various
nonlinearities this oscillation is called limit
cycles. Predator prey populations are cycles.
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2. Causal LOOp Dlagl’am m Mathematical

Simulation

Types of behavior due to loops:
Growth with overshoot and oscillation: is

basically s-shaped growth with additional delay
in the negative feedback loop.

Example:
Growth with Overshoot
Net T S
Increase State of the

Rate R System

f \/ Doty
Fractional T

Net Increase Resource Carrying Time —

Rate 2dequacv Capacity
¥ —IDelay N
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2. Causal Loop Diagram M Mathematical

Types of behavior due to loops:
= Overshoot and collapse: is basically s-shaped
growth but with a not fixed carrying capacity

Example: A population in a forest that grows so
large, that they overbrowse the vegetation, leading
to starvation and a

decline in the population. If there

is no regeneration of the carrying
capacity, the equilibrium of the
system is extinction.

Time -

Overshoot and Collapse
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Dominating |

There are systems which have more than one
feedback loop within them

A particular loop in a system of more than one
loop is most responsible for the overall behavior
of that system

The dominating loop might shift over time

When a feedback loop is within another, one
loop must dominate

Stable conditions will exist when negative loops
dominate positive loops
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Example:

Check-in counter

Check-in counters Security counters

capacity

Departing passengers ‘:l:.‘ Checle-in of Departing passengers
waiting at check-in ~——— passengers +Wa.thng at security control

Departing passengers

arriving at airport

Time of check-in and

Time Ofder% }?usinees controls business
passengers arriving at passengers
airport

+

+ Time of business
passengers after controls

Security counter
capacity

+ Security controls of
passengers

Simulation

Transfer N Fraction of transfer
passengers arrving passengers with passport
control

Passport contral ~ Passport control
counters counter capacity

N4

Passport controls

Passa-'ljgers waiting at
passport control
+

+

Fraction of passengers
with passport control

B Tourist passengers Time of departing tourist
usiness passengers passengers after controle passengers arriving at
after controls 4 + amrport

Fraction of business

Time of tourist
passengers after
controls

P |
+ + + + Time of check-in and
controls tourist passengers

Passengers going
to gate
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3. Stock and Flow Diagram m Mathematical

Problem: Not all system elements are system variables!

Solution: distinguish between
« Sources/Sinks

« Levels/Stocks

 Flows

* Auxiliaries

« Paramters

 Links
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Sources/Sinks:

Source represents systems of levels and

({C;:B rates outside the boundary of the
model

Sink is where flows terminate outside
the system

E.g.. Raw Material (Source for
,construction” Flow), Graveyard (Sink for
,Dying" Flow)
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Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of
people waiting in a queue, Number of
goods waiting to be transported, etc.
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Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow

X in order to change its value.

E.g.: Birth (Changes the value of the
stock ,population®), Eating (Changes the
value of the stock ,amount of food"), etc.



O

Mathematical

Modelling and

Simulation
Auxiliary:

Everything that can directly/analytically be
calculated out of stocks and constants.
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated
by the stocks/constants ,mass” and
,volume*®), Quelength (calculated by stock
,people in queue” and constant ,average
size of one person®), etc.
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Simulation
Parameter /Constant

Everything that is predefined for the
whole simulation - usually it is a
constant but can be a function too.

E.g.: Average Temperature, Number of
Cash Desks (In a supermarket), Birth
Rate, Maximum capacity of a Room, etc.
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Initial value of state

)

o

Source Change of State
/' State \/
Feedback
_e_
Rate of

change
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PopulatiorOB%s
Initial value of

population
_e_

- —
Population
C=—==>{por
Births\/




¥~ N\

LaCace+ Population+

Lack of Space

B

Space
—O—

O3

—~| Population
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Initial value of
population
_e_

_/



Quantification?

Births = 3 * Population + lack_of _Space ?
Births = 10 * Population — lack_of_Space?

Births = 0.2 * Population + l 1 ?

ack_of_Space’

Lack of Space

e

Mathematical
Modelling and
Simulation

lack_of _Space = Space — Population?

lack

= Space — 3 * Population?

OfSpace
Space
lack_of_Space = —EP="__7
Population
Population
lack_of_Space = =2 ?
Space

O

Space
_e_
—

Initial value of

\ population

=

G2
9 X
AN

. —o—
Population| — [

Births\/
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Table Function

. . . . .
¢ Responsible for nonlinar relationships
¢ Uses pairs of numbers

* Interpolation inbetween:
linear, step, spline, approximation

¢ Out of range:
error, repeat, extrapolate
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Delays

The Value of the input will be time-delayed for the
delay time:

Output = Material in Transit / Delaytime

Inflow Outflow

w—yp  Material in —»
Transit

Average
Delaytime
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Ana|.YSIS Of SD MOdelS m Mathematical

* Analytical: Evaluation of equilibrium, behaviour and
stability in an area (ordinary differential equations)
But: For large systems this can be difficult and not
useful for time variant values

*» Base Run:
The Model runs with the predefined set of parameters
(which represent the best information available at this
time).
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Stock and Flow with two flows

G z 4 Stock Z X:')

Inflow ' Outflow

Differential Equation:
Sto.ck (t) = Inflow (t) — Outflow(t)

Integral equation:

t
Stock = [ (Inflow (s) — Outflow(s)) ds + stock(t0)
to
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Simulation

Modelling and
{3 Z 4 Stock g X:}

Inflow ' Outflow

Static Equilibrium:
Inflow and Outflow are O;
State of the system remains unchanged.

Dynamic Equilibrium:
Inflow and Outflow are the same;
State of the system remains unchanged
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Ana|.YSIS Of SD MOdelS m Mathematical

Simulation

¢ Optimization / Calibration:
With specific algorithms some — unknown —
parameter values can be calculated by macthing a
objective function.

“* Parametervariation / Sensitivity Analysis:
Multiple simultion runs are simulated with different
sets of parameter values, which are gained from

s even distributed intervals or

¢ stocastically from a probability function
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« SD-simulators at least offer the most important
elements (Flows, Levels, Auxiliaries, Table-
functions, etc.) to be preimplemented.

« Additionally parametervariation and optimization is
possible with most SD simulators.

« Examples: AnyLogic (does not only support SD),
Vensim, Stella, PowerSim...
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« System-Dynamics is a top-down modelling
approach. Its graphical representation is broadly
standartized.

* Important Elements: causal relationships, causal
loops, stock and flow diagrams

 Itis equivalent to a DE model. Thus results can be
analysed using the same methods.

« Simulators: AnyLogic, Vensim, Stella, PowerSim...
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Thank you for your attention!

Questions?
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Discrete Event Simulation and
Modelling with Event Graphs
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Model Type

Modelling Approach/
Representation Form

Discrete Event
Simulation Model

leads
to

Event Graphs

Il Il IS S S S S S S S .
v
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Modelling Approach/ Model Type

Representation Form

Discrete Event
Simulation Model

v

Event Graphs

Compare:

System Dynamics or o,4s Differential Equation
Lagrange Formalism to : Model

o)
5"9)
o
)
I B S S S S e e




Motivation
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« Simulation of systems that change their states only at so
called ,,events” B




Discrete Event Simulation
Fundamental Concept m

Mathematical
Modelling and
Simulation

Two fundamental components of a discrete event simulation (DES)
model

State Variables

,Observables” or the model. Used to generate the simulation output

Events:

Cause state variables to change and schedule/cancle future events




Discrete Event Simulation
Fundamental Concept

Mathematical
Modelling and
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e Events °

« States piecewise constant C,




Discrete Event Simulation
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Fundamental Concept m Modelling and

Simulation

Events are scheduled using

Event Notices.

Every event notice contains two pieces of information:

« What (type of) event is being scheduled, and

« the (simulated) time at which the event is planned to occur
The

Event List

keeps the event notices in order by ranking them based on the lowest
scheduled time.

The events list is managed by basic
Discrete Event Algorithm
that controls the flow of time in the simulated world of the model




Discrete Event Simulation
Fundamental Concept m
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First Event DES enhance
Entry BR\[eJd{d] Algorithm

»

Event
Notice 1

Create execute

insort

Event List

variables

Event
Notice 3 delete

Fundamental Concept of a DES Model
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How to formalise DES Models

EVENT GRAPHS



Mathematical
Modelling and
Simulation

Event Graphs General m

* Concept introduced by Lee Schruben in 1983
« Sometimes called ,Simulation Graphs”

« Graphical representation of a DES model
which can directly be fed to Event Graphs
simulators, e.g. SIGMA (Compare with System
Dynamics and AnyLogic)

* Very general - for most applications, more
specialised concepts / simulators are used
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Event Graph Formalism m Mathematical

Simulation

The occurrence of an event with type A

— causes state variable x to change its state to y
causes an event with type B

— to be scheduled after a time delay of t,

— providing condition (i) is true, after the state
transitions for Event A have been performed




Event Graph Formalism m Mathematical
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« As the event-list is empty at the beginning
of the simulation, a designated initial
event needs to be given.

« Usually this event is labelled with ,Run”
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Example: Difference Equation m Mathematical

Simulation

« Goal: model the sequence
y(k+1) =ay(k) + D,
. k = Or ""tend' y(O) : Yo
using the Event Graph formalism
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Example: Difference Equation m Mathematical

Simulation

« Goal: model the sequence
y(k+1) =ay(k) + D,
. k = Or ""tend' y(O) : Yo
using the Event Graph formalism

t <tond
1 1
Run
t:=0 y=a-y+b
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Example: Difference Equation m Mathematical

Simulation

« Goal: model the sequence
y(k+1) =ay(k) + D,
. k = O' ""tend' y(O) : Yo
using the Event Graph formalism




Modelling and

Classical Elements m Mathematical

Simulation

N+ +

Arrival Process:

Used to generate , entities” coming
from outside the system boundaries

Usually changes increases a
cumulative state variable by one. This
variable is usually called a queue

Sequence of interarrival times t, that

can
be

— constant, a
— deterministic sequence, or a
— sequence of random variables
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ClaSS|Cal ElementS m Mathematical

Service Process:

 Used to treat , entities”
coming from, e.g. an arrival
process

 |f available (S > 0), takes an
element from the queue

« Sequence of service times tg
that can
be

— constant, a

— deterministic sequence, or
a

S>0

Start
Service

N-—— S++
s—— — sequence of random

variables




Modelling and
Simulation

Multiple Server Queue m Mathematical

« Customers arrive to a service facility according to an
arrival process and are served by one of k servers.

« Customers arriving to find all servers busy wait in a
single queue and are served in order of their arrival.

 Parameters:
t, = Iinterarrival times
t. = service times
k = total number of servers

o State Variables:
Q := # of customers in queue
S = # of available servers
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Multiple Server Queue

« Customers arrive to a service facility according to an arrival process
and are served by one of k servers order of their arrival.

« Parameters:
t, = interarrival times
t, = service times
k = total number of servers

 State Variables:
Q := # of customers in queue
S = # of available servers

Start

Service
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(i)

O

 the inverse operation of the scheduling edge

« whenever event with tyoe A occurs, then if condition (i) is
true, the first occurrence of an event with type B is
removed from the event list

* if event B is not scheduled to occur, then nothing happens.

« If there are multiple occurrences, only the first is removed.




Multiple Server Queue with Failure
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«  Customers arrive to a service facility according to an arrival process and are served by one of k servers
order of their arrival.

«  With certain failure probability the server breaks while serving

. Parameters:
t, = interarrival times
t, = service times
k = total number of servers Q++
py = failure probability
U = sequence of iid U[0,1] random numbers
tp = repair time

. State Variables:
Q := # of customers in queue
S = # of available servers

Start
Service

S++




Simulation

. . Mathematical
Parameterization of Events Modelling and

Scheduling edge with parameter: When A
occurs then, if (i) is true, B is scheduled after
t time units. When B occurs, its parameter k
will be set to the value given by the
expression j (j is calculated when A occurs).

o
D@
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Tandem Server Queue m Mathematical

Simulation

Customers processed by one workstation consisting of a
multiple-server queue.

Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p)..

Parameters:
ts, = Interarrival times at WS i
ts, = service times at WS i
k; = total number of servers at WS i
p = probability to proceed from 1 to 2
U = sequence of iid U(0,1) random numbers

State Variables:
Q; :== # of customers in queue at WS i
S; = # of available servers at WS i




Tandem Server Queue
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« Customers processed by one workstation consisting of a
multiple-server queue.

« Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the

system with probability (1- p)..
ot @ e
Qr 5+

{Q =0, =k} {Q ++} {

Q> 0)
U<p YN

t s,
(S,>0)
Start ¢ 2
Service
2

Qs S} Q1
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Tandem Server Queue m

« Customers processed by one workstation consisting of a
multiple-server queue.

« Upon completion of service at the first workstation, a customer

proceeds with probability p to a second workstation or departs the
system with probability (1- p)..




Multiple Server Queue m Mathematical
Modelling and
Simulation

Case Study:

What happens, when executing a Multiple
Server Queue model with deterministic
service and arrival times?

Event Notices?
Event List?




Event Notices and Parameters
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DISCRETE start DISCRETE start_service

server = 2; queue =0 gueue = queue —1; server = server -1
SCHEDULE arrival .AT. t+0. t service =2.5

END ! of start SCHEDULE end_service .AT. t+t_service

END ! of start_service
DISCRETE arrival

queue = queue + 1; t arrival = 1 DISCRETE end_service

SCHEDULE arrival .AT. t+tarr server = server + 1

IF server .GE. 0 SCHEDULE start_service at t+0.  IF queue .GE. 0 SCHEDULE start_service at t+0.
END ! of arrival END ! of end_service

ts
Start
Service
Q=0 Q++ Q—-— S++
S=k S—-
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time | event |action schedule
0 ST |Q=0; S=2; A at t+0=0
0) A Q=0Q+1=1 Aatt+1=1; SS at t+0=0
0 SS |0Q=0Q-1=0; S=S-1=1 |ES att+2.5=2.5
1 A
2.5 ES

9
I




Mathematical
Event List Multiple Server Queue m Modelling and

Simulation

time | event | action schedule

0) ST |Q=0; S=2; A at t+0

0 A Q=0Q+1=1 Aatt+1=1;: SS at t+0=0

0 SS Q=0Q-1=0; S=S-1=1 |ES att+2.5=2.5

1 A Q=0+1=1 Aatt+1=2: SS at t+0=1

1 SS Q=0Q-1=0; S=S-1=0 |ES att+2.5=3.5
2.5 ES

2 A

3.5 ES @—
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time | event |action schedule

0 ST |Q=0; S=2; A at t+0

0) A Q=0Q+1=1 Aatt+1=1; SS at t+0=0

0 SS |0Q=0Q-1=0; S=S-1=1 |ES att+2.5=2.5

1 A Q=0Q+1=1 Aatt+1=2; SS at t+0=1

1 SS |0Q=0Q-1=0; S=S-1=0 |ES att+2.5=3.5

2 A Q=0Q+1=1 A at t+1=3; (SS condition not

true)

2.5 ES
35 | ES @—

3 A

Q
S
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time | event |action schedule

0 ST |Q=0; S=2; 11t+0

0 A |0Q=0+1=1 "N\ ]
0 SS  |Q=Q-1=0( s s s )
1 A [Q=0+1=13= — TN
1 SS | Q=0Q-1=0; $=5-1=U [ES ar [+Z.':::_\_5.b

2 A Q=0Q+1=1 A at t+1=3; (SS condition not

true)

2.5 ES |S=S+1=1; SS at t+0=2.5

2.5 SS |Q=0Q-1=0; S=S-1=0 |ES att+2.5=5

3 A

3.5 ES

5 ES




Event List Multiple Server Queue
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time | event |action schedule
2.5 ES |S=S+1=1; SS at t+0=2.5
2.5 SS [|0Q=0-1=0; S=S-1=0 |ES att+2.5=5
3 A Q=0+1=1 A at t+1=4; (SS condition not
true)
3.5 ES
5 ES
4 A




Event List Multiple Server Queue
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time | event |action schedule
2.5 ES |S=S+1=1; SS at t+0=2.5
2.5 SS |0Q=0Q-1=0; S=S-1=0 |ES att+2.5=5
3 A Q=0Q+1=1 A at t+1=4; (SS condition not
true)
3.5 ES |[S=S+1=1 SS at t+0=3.5
3.5 SS |0=0Q-1=0; S=S-1=0 |ES att+2.5=6
4 A 1 A~ B
S ES ST . s s ||
ES Q=0

Q++ Q—- S+ +
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time | event |action schedule
3.5 ES |S=S+1=1 SS at t+0=3.5
3.5 SS [|0Q=0Q-1=0; S=S-1=0 |ES att+2.5=6

4 A Q=0Q+1=1; A at t+1=5; (SS condition not

true)
ES
5 A
6 ES
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time | event |action schedule
3.5 ES |S=S+1=1 SS at t+0=3.5
3.5 SS [|0Q=0Q-1=0; S=S-1=0 |ES att+2.5=6
4 A Q=0Q+1=1; A at t+1=5; (SS condition not
true)
5 ES |[S=S+1=1; SS at t+0=5

- simultaneous events — ordering problems
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time | event |action schedule
3.5 ES |S=S+1=1 SS at t+0=3.5
3.5 SS |Q=0Q-1=0;S=S-1=0 |ES att+2.5=6
4 A Q=0Q+1=1; A at t+1=5; (SS condition not
true)
5 ES |S=S+1=1; SS at t+0=5
5 SS |0Q=0Q-1=0;S=S-1=0 |ESatt+2.5=7.5
5 A Q=0Q+1=1; A at t+1=6; (SS condition not
true)
7.5 ES
6 A
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time | event |action schedule
3.5 ES |S=S+1=1 SS at t+0=3.5
3.5 SS [|0Q=0Q-1=0; S=S-1=0 |ES att+2.5=6

4 A Q=0Q+1=1; A at t+1=5; (SS condition not

true)

5 ES |S=S+1=1; SS at t+0=5

5 A Q=0Q+1=2; A at t+1=6; SS at t+0=5

5 SS |0=0Q-1=1;S=S-1=0 |ES att+2.5=7.5

7.5 ES

6 A

5 SS




Mathematical
Event List Multiple Server Queue m Modelling and

Simulation

time | event |action schedule
3.5 ES |[S=S+1=1 SS at t+0=3.5
3.5 SS |0Q=0Q-1=0; S=S-1=0 |ES att+2.5=6

4 A Q=0Q+1=1; A at t+1=5; (SS condition not

true)

5 ES |S=S+1=1; SS at t+0=5

5 A Q=0Q+1=2; A at t+1=6; SS at t+0=5

5 SS |Q=0Q-1=1;S=S-1=0 |ESatt+2.5=7.5

5 SS |[Q=0Q-1=0; S=S-1=-1 |ES att+2.5=7.5

6 A
7.5 ES




] Mathematical
Simultaneous Events Modelling and

Simulation

 Simultaneous events occur when more than one event is schedule
to occur the exactly the same time.

* In some cases the order of execution of the events is irrelevant, but
In other cases certain permutations of the order of occurrence
Impact the outcome dramatically, often leading to invalid state
trajectories and inadmissible values of state variables.

« Event Graph methodology provides the capability of prioritizing
scheduling edges, so that simultaneous occurrences of the
scheduled event always occur before other scheduled events.

« Although these edge priorities are typically not indicated on the
graph itself, all software implementations of Event Graph
methodology support edge prioritization.
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4.0

o correct sequence of simultaneous
events
h
dD 2 4 3] g 10 dD Z 4 6 3 10
T i

t_arrival =1, t_service=2.5, max_server=2
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4

|

QUEUE

1.2

3.0

events

0.8

0.0

2

4 5] ad 10
i

t_arrival =1, t_service=2.5,

Q

o~

SERVER

a2

4

0.8
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wrong sequence of simultaneous

Q

-

'D

max_server = 2

2

4
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ANALYSIS OF QUEUING MODELS



Terminology m Mathematical
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 Abbreviation of Queues:

Arrival Time Service Time m

Determinisitic D DeterminisiticD One 1
Markovian M Markovian M Multiple m
General G General G

= Possible combinations:
D/D/1, M/D/m, G/D/m, M/M/m, ...
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e Deterministic”: t is Constant

« ,Markovian”: Distribution of t is memoryless.
l.e. Exponentially distributed t ~ E(4)
= times become a Markov-process

 ,General” : Distribution of t is arbitrary
(positive)
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Analysis of Queues m Mathematical
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« Deterministic Queues (D/D/1, D/D/m):

servicetime

> arrivaltime
servers

= unstable

servicetime

< arrivaltime
servers

= stable
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e Stochastic Queues (M/M/1,G/M/m,...):

E (servicetime)

> E(arrivaltime)
servers

= unstable

E (servicetime)

< E(arrivaltime)
servers

= stable
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* Notation
— Y, - time elapsed between (k-1)th and k-th arrival

E(Y;) = % ... average interarrival time
(A Is the average arrival rate)

— Z; - k-th customer service time

E(Z,) = % ... average service time
(u is the average service rate)

— W, - k-th customer waiting time
— X(t) - average queue length
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Analysis of Queues

e Customer system time
S, = Wy + Z,, the time k-th customer spends in the system

E(W,) = W ... average waiting time

E(S;) =T ... average system time, T = W +i

« Little's law
— N ... average number of customers in the system

N = AT
— special cases

(t) = N, = AW ... average number of customers in the queue
s = — ... average no. of customers in service

=| P
= >
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Results M/M/1 queues:

« Average waiting time in the queue

W= 1 1 p A
-1 -pu " Tu
« Average length of the queue
2
S~ o P
X(t)_Nq—AW—l_p
« Average system time of customers
1 1 1

T=W+-—=——=
w u—21 (1-ppu
« Average number of customers in the system

N =aT=—P—

1-p
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Results M/G/1 queues:

« Exponential distribution of interarrival times

» Service times are mutually independent and
distributed arbitrarily with parameters

E(Zy) =i in var(Z,) = 0%, we define also p =%

* Average queue length
2

— = p
X(t)=N, = (1 + u?c?)
T 21 -p) 3
« Average number of customers in the system
2
N=N,+p= P P (1 — u?oc?)

1-p 2(1-p)
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OTHER SIMULATION ENVIRONMENTS
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Other Simulation Environments m Mathematical

Simulation

* Most DES models are based on entities being
processed in a sysrem

 Therefore they use very similar process
structures

« Event Graph description sometimes
unnecessary general and unintuitive

unintuitive
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Other Simulation Environments m Mathematical

Simulation

« DES Simulators for simulation of processes
usually use a more intuitive description

DES Modeling in
AnyLogic

source service sink

l ressource i
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Other Simulation Environments m Mathematical

Simulation

« DES Simulators for simulation of processes
usually use a more intuitive description

DES Modeling in
SimEvents

‘ ' Entity JFIFO < : ><

Entity Generator Entity Queue Entity Server Entity Terminator

\
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EVENT GRAPHS BEYOND ENTITIES
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« DES / Event Graphs not only interesting for

gueuing systems.
A
(=

t=20 t=t+h
X = Xq x=x+hf(t,x)
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« DES / Event Graphs not only interesting for
gueuing systems.

Explicit Euler Method for
approximation of x = f(t, x)

h
@ @
t=0 t=t+h

X = X x =x+ hf(t, x)
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« DES / Event Graphs not only interesting for
gueuing systems.

Case Study 1: Collision of Spheres




Beyond Queues
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 DES / Event Graphs not only interesting for
gueuing systems.

PTG

-

x=[0,2,4,6]
v=[1,0,0,0]
dt=[1,inf,inf]

X'=xtdt, v
V'=c0|lisi0n(v)\

dty=-0¢-% ) /(virviy) (;\“«.x____

i Q‘[b . T

x'=x+dt; v
v'=collision(v)
dti=(x-%.1)/(vr Vi)

°

X'=xtdt; v
v'=collision(v)
dt=(x-%.1)/(vrvi4)
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Discrete Event and Multi-Method
Simulation with Anylogic
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Modelling Method vs Model Mathematical
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Modelling Approach/ : Model Type
Representation Form [
I
leads | i - :
Event Graphs X . Discrete Event Simulation
| Model
I
I
Compare: | . | |
System Dvhamics leads Differential Equation
! ! to 1 Model
I




Modelling Method vs Model
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Modelling Approach/
Representation Form

v

Event Graphs
SimEvents GUI
Anylogic GUI

leads

v

—+
o
I IS IS I S S S .
v

Compare:
leads

System Dynamics —/—1

Lagrange Formalism — T
Modelica/Dymola GUI —

Model Type

Discrete Event Simulation
Model

Differential Equation
Model
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Modelling Approach/
Representation Form

v

Event Graphs
SimEvents GUI
Anylogic GUI

leads

v

—+
o
I IS IS I S S S .
v

Compare:
leads

System Dynamics —/—1

Lagrange Formalism — T
Modelica/Dymola GUI —

Model Type

Discrete Event Simulation
Model

Differential Equation
Model




Getting started...
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https://www.anylogic.com/downloads/

or
USB Stick

Personal Learning University Professional
. Edition Researcher for companies and government
for beginners and students for public research in universities organizations

FREE VERSION DOWNLOAD DOWNLOAD

ASKFOR AQUOTE ASK FOR AQUOTE

DOWNLOAD

free free 60-day trial free 60-day trial

rd Fd rd



https://www.anylogic.com/downloads/

What is AnylLogic?
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AnyLogic: the multi-method simy

ation tool

Example 1:
- bl 0%.Q- Potential
8 - ’I Sales
@ v Ly ‘l:]w (o
»
P Dynami I Example 2:
ynamic ple
systems LOgIStIC
Cofractian Model
Agent Based I
swrcraftBehaviour "
MissionCompleted Destroyed Discrete Evée il
(® TrageAtwAmp sanceProt e H%.—
~ @ Gavons 1
7 ™ (@ BCuPasentdron )
.\\\ enthra s oW aind em : = e
L @4,/ (B onDuposed 3 i .:’:- alg =

saTrageANeAmT Lane |

T

AnyLogic allows you to model in different methods, each with its own symbology

Cd
g M?‘“ © 2009 XJ Technologies www xjtek.com
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AnyLogic Personal Learning Edition [PERSOMAL LEARMIMNG USE OMNLY]
File Edit View Draw Model Tools Help
Br-el@id | DRimO-ym| i g0 |||l EBE i S &login -
2 Projects Sﬂl [ P‘alette| = B || &l Main &3 l = B8 ||X Properties Sﬂ]
v [A] Model2 * || & Main - Agent Type
3 ﬂ Main
» 3 Simulation: Main MNarne: |Mair1 | [lignore
&% Run Configuration: Main
Database b Agent actions
> [A] Mixed Method Model AB and SD* b Agent in flowcharts
b Movement
~ Space and network
Mo agent populations live in this agent type
Select the agents you want to place in the ervironment:
Space type: @ Continuous () Discrete () GIS
Space dirnensions:
icth: 588
Height: 588
Z-Height: 2]
Layout type: User-defined Apply on startup
Metwork type: User-defined Apply on startup
Enable steps
~ Advanced Java
Imports section:
v
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« AnyLogic Cloud: run models online from a web browser

on any device, including phones and tablets, and share
the models with other users.

« https://cloud.anylogic.com/

« Export models to the cloud



https://cloud.anylogic.com/
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EXAMPLE: PREDATOR-PREY MODEL IN
ANYLOGIC
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General Idea:

The model describes the development of two populations.
Population size depends on births and deaths.

Births depend on the population size.

Predator births also depends on the prey.

The predator population diminishes the prey population.
The predator death rate is independent from prey.
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Model Equations:

prey = (birthprey — findprey * predator) * prey
predator = (feedyoung * prey — preddeathrate) * predator




Predator-Prey Model Mathematical
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Lets build the model...




Predator-Prey Model

AnyLogic Personal Learning Edition [PERSONAL LEARNING USE ONLY]
File Edit View Draw Model Tools Help

EHr2EHBIYD| 4 E B K

O-8| i a[25% ||| B s e || #HEEo-

© & login -
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% ProJe:ts[@ Palette 23]

B Simuation | & Main | &) Main 2| @ Main |

| Process Modeling Library

Lo, newwayge s
T4, Polygonal Node
Attractor

999 Pallet Rack

€]

~ Blocks

@) Source

) sink

© Delay

0 Queue

<> Select Qutput
<& Select Qutput5
@ Hold

22 Match

3] split

[/ Combine

30 Assembler
B MoveTo

i Resource Pool

Ta Seize

>/p#>E

ELALIE:

5

Release

EEREE

DEDFSE LMY @0 7.5 4

Service
Resource Send To
Resource Task Start
Resource Task End
Downtime
Schedule

Enter

Exit

Batch

Unbatch

Dropoff

Pickup

+{ Restricted Area Start
T Restricted Area End

&+ Time Measure Start

+& Time Measure End
[ Resource Attach

& Resource Detach
==l Rack System

97 7% Rack Store

.';. connections

[T Properties %

© Main - Agent Type
Name  Main [lgnore

» preview

(B-feedyoung

e _——— (% preddeathrate
T Iy /,/ @
redatorbirth p@m \ edatordeath
L v
] X L =
™
\ AN

rey N\ \
\ ~(® findprey
X \>\|:!| ¥ > Q

£31

50 100

— Dataset Title — Dataset Title 1

» Agent actions

» Agent in flowcharts

» Dimensions and movement
» Space and network

» Advanced Java

» Advanced

» Description
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MULTI METHOD MODELLING



Basics on

. . Mathematical
Multi-Method Modelling Modelling and
Simulation

Definition

If a system can be decomposed into subsystems and a model is applied to
such a subsystem, this is called a submodel.

A multi-method model is a model that consists of at least two submodels,
where at least two different modelling techniques are used. These
submodels exchange information in some way. This process of information
exchange is called combining.




Different Types of Multi Method Models Mathematical
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~ System ~ System 7
AgéTht- = [ System Agent- ‘ System
based ~ Dynamics based | | Dy(vamics

| INTEGRATED | INTERFACED |

|
" Output p : Output
% il €& =l =) |l €

_Systemm

Agent- System
Based (or SD) "Dynamics (or AB)

SEQUENTIAL
Output '

=) [l €=
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Example: SIRS Epidemic

Research Question:
Investigate the utilization of health-care facilities (e.g. hospitals) in case of

the outbreak of an epidemic

Susceptible person

infectious loss of
contact mmumty
Infectious Immune
o \ / PERon
diagnosis treatment

Quarantined
person




Example: SIRS Epidemic Mathematical
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Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of
the outbreak of an epidemic

Modelling Problem:

Modelling a disease requires either a nonlinear macroscopic model or a
microscopic model with contacts

)

Modelling utilization of processes is best modelled with servers and
qgueues.




Example: SIRS Epidemic Mathematical
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Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of
the outbreak of an epidemic

Modelling Problem:

Modelling a dise copic model or a

S\'(st_e}n Dynahics

)

Modelling[ ' }ervers and

' Discréte Event'SimuIéf'io'n
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Let’‘s build the model....
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EXAMPLE: AIRPORT MODEL IN ANYLOGIC



Anylogic GUI: Blocks for DES Models Mathematical
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Source

®— Initializes the event , Arrival of

Entity/Entities”

Parameters:

-) Arrival Rate & Interarrival time:
When do Entities arrive?

-) Entities per Arrival: How much?
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Sink

Initializes event ,Remove
Entity/Entities”

Passive without parameters
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3 Queue

P Initializes event ,Waiting

Line”

Parameters:

-) Capacity
-) Timeout

-) Preempted abort
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Anylogic GUI: Blocks for DES Models m Mathematical
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Seize

Initializes event ,get resources”

Parameters:

-) Number of resources
y | -) Includes a queue
-) Timeout
-) Preempted abort

Stays attached until Release




Anylogic GUI: Blocks for DES Models
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Resource Pool

Container of resources of
same kind

Parameters:

-) Capacity (absolute or
schedule)

-) Is used by Seize, Release
and Service
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Anylogic GUI: Blocks for DES Models m Mathematical

o —0O—o Release
Vv
O Initializes event , Release
Resource”

Parameters:

-) Capacity

-) Coupled to a Resource
Pool
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Delay
Initializes event ,Wait”
Parameters:
85
@ -) Waitingtime
o) -) Capacity




Anylogic GUI: Blocks for DES Models Mathematical
Modelling and
Simulation

PT Server
® ®
©= @— © Initializes event , Processing“
A

© Parameters:

-) Consists of Seize, Delay,
Release

-) Capacity

-) Timeout and preempted
abort
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Anylogic GUI: Blocks for DES Models m Mathematical
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" Split and Combine Initialize
4 —o events ,Copy“and ,Join”

@ —O
Parameters:

-) Number of copies

-) Different classes of copies
possible

-) Does not forward the
CLOCK
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SelectOutput
0—O—0' Initializes event , Decide”
__®
i r | Parameters:
__of f; -) On condition
. -) On probability
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Anylogic GUI: Blocks for DES Models m Mathematical

@_ _ Assembler

A Initializes event ,,construction”

Parameters:

-) Capacity of inputs
-) Delay
-) Can use resources

-) Different classes possible
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Anylogic GUI: Blocks for DES Models m Mathematical
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Conveyor
o-Di-eo Initializes event , conveyor”

Parameters:

-) Length
-) Space between entities

-) Speed




Anylogic GUI: Blocks for DES Models

batch
unbatch

o-TNG-o -

enter exit
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match
C=: -C=
@ — _I_r
o—1mH--
O @)
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Example: Airport

Research Question:

How many check-in counters, security control and counters for passport
control do we need on an airport with given flight schedule?

i

&= | Automatisierte Passkontrolle |

Y
0 Wi A8+ e-Passport Control
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Example: Airport

Research Question:

How many check-in counters, security control and counters for passport
control do we need on an airport with given flight schedule?
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Introduction to Cellular Automata
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BASIC CONCEPTS
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Cellular Automata

* Modelling using ,,cellular
automata“, short CA, is a
microscopic simulation
method

e Cellular automata can be
imagined as a coloured
grid observed dynamically

Although this is a very simplified image of a CA,
keep it in mind to understand the formal details of
this concept




Mathematical

Components of a CA
Modelling and
Simulation

e Cells O < > ¢
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Components of a CA

e Cells O < > ¢

Notations: cell, entity, node
Cells are passive: no internal dynamic, only container

for some information
Each cell has some state.




Components of a CA m Mathematical
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e Cells O < > ¢

Simulation
e States a | [s1a] [es] | 1 -

* State-space R z* {1,2,3} [ I I

= Every Cell has a state

= There is always some space S that contains all
possible states. It is usually called state-space.




Components of a CA m Mathematical

Modelling and
e Cells O < > ¢

Simulation
e States a | [s1a] [es] | 1 -

* State-space R z* {1,2,3} |

Every cell has a state from a
common state-space
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e Cells O < > ¢

Simulation
e States a | [s1a] [es] | 1 i

e State-space R z* {1,2,3} LI

Every cell has a state from a
common state-space
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Components of a CA

Cells O < > ¢

States a | [51a] [esn| | 1 -

* State-space R 7Z* {1,2,3}
 Arrangement cees

(Cell-space)

All cells are arranged on some lattice structure: the
»cell-space” —in the simplest case, a rectangular grid.

There is some index mapping that maps some subset
of [ € Z% onto each cell




Simulation

Components of a CA m Mathematical
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Cells O < > ¢

e States a | |s14] [osn| [ 1 i
* State-space R 7Z* {1,2,3}
* Arrangement cees
(Cell-space)
1 <«




Simulation

Components of a CA m Mathematical

Modelling and
Cells O < > ¢

e States a | [s14| Jess]| | 1 i
* State-space R 7Z* {1,2,3}
* Arrangement cees

(Cell-space)
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Components of a CA

Cells O < > ¢

States A oo feso| {2 | I
State-space R 7Z* {1,2,3}

* Arrangement
(Cell-space)

(1,1)

Sometimes indexing is not
so trivial...

(34)
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Cells O < > ¢

Simulation
States A oo feso| {2 | I
State-space R 7Z* {1,2,3}

* Arrangement
(Cell-space)

(1,1)

It often is, but does not necessarily have to be a
natural attribute of the cell-space...
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e Cells O < > ¢

Simulation
e States a | [s1a] [es] | 1 -

* State-space R 7Z* {1,2,3}

= Possible characteristics of the index set:
* regular
* finite or infinite

e connected
*  multi-dimensional
= |nterpretation of the index set: discretisation of a space or spatial arrangement
of entities




Mathematical

Components of a CA
Modelling and
Simulation

e Cells O < > ¢

* States A oo feso| {2 | I
* State-space R 7Z* {1,2,3}

* Arrangement
(Cell-space)

* Neighbourhood

The neighborhood of a cell z is an ordered set of

n other cells (z4, ..., Z,).
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e Cells O < > ¢

Simulation

e States a | [s14| Jess]| | 1 i
* State-space Rz {1,2,3} [
* Arrangement cees

(Cell-space)

* Neighbourhood

Some examples:




Neighbourhood
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* The neighbourhood mapping is relative to the cell’s

position (= index)

)

(m,n)

(k, D)

* Calculation of neighbouring cel

s by stencil: Index

translations yield the positions (index) of n
neighboring cells: i = (i + t_l), A E{)
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* Possible characteristics of neighbourhoods:

= |ocal: the neighbourhood consists of cells of
neighboring points on the grid

= symmetric: the neighborhood of cell A contains cell B
if and only if the neighborhood of cell B contains cell A
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* Classic, popular neighborhoods

Moore Von-Neumann Neighbourhood by distance:
neighborhood neighborhood i =i <d}
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* Von Neumann/Moore Neighbourhood of higher
order

Von-Neumann Von-Neumann Von-Neumann
neighborhood neighborhood neighborhood
1st order 2nd order 3'd order
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* The index set is limited = either incomplete
neighborhoods for cells near the borders

(21,25,0,24 .., Zy)....

...or other compensation idea

Periodic Boundary Conditions (Torus)
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e Cells
* States
* State-space

* Arrangement
(Cell-space)

* Neighbourhood
 Update Rule

Some rule, that simultaneously updates all states of all cells of
the CA.

Maps all states of a cell’s neighbourhood to a new state for the
cell.
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e Cells
* States
* State-space

* Arrangement
(Cell-space)

* Neighbourhood
 Update Rule

“ Y
state of state of the new state of

Stochastic CAs have

stochastic updates!

the cell (ordered) neighbors the cell
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Neighbourhood = Von Neumann

= Example:
f(s,51,5,,83,54) = Z s (mod 4)
Old state of the CA New state of the CA
11211102111
2131112 |13|1}1
012111210} 2}1
312111111}|5]|1
0O]1121012]12]60
21011111113 }|1
212]101213]11]2
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= Example:

Old state of the CA

Neighbourhood = Von Neumann

f(s,51,5,,83,54) = Z s (mod 4)

New state of the CA

0

1

1

1

f(sﬁ Sl’ SZFS3I 54) =
=1+1+2+1+0(mod4) =

1

=5(mod4) =1

_i_

NINITO|IWJIO|IN]EF

N|OIFRL,ININTW
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Neighbourhood = Von Neumann

= Example:
f(s,51,5,,83,54) = Z s (mod 4)
Old state of the CA New state of the CA
1121]1
213 (1 =1 +q(i 521+SZ3 SJ:'; 4()m:alzt) _
0Ol2]1 =10 (mod 4) = 2
31211 1
Ol1]2
2|0 |1 N 3~ - - === === oo --t--f--t--1->{ 2
21210




Update Rule

= Example:

Old state of the CA

11211|0)2]1
21311213

0|12]11]12]0]2
31211|1|1]5
O|1]12]0]|2]2
210111 11]3
21210121311

Neighbourhood = Von Neumann

f(s,51,5,,83,54) = Z s (mod 4)

f(S; Sll SZ; Q); S4-) =
=14+14+1+1(mod4) =

=4 (mod4) =0

Mathematical
Modelling and
Simulation

New state of the CA
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= Updates happen for all cells simultaneously.

— Neighborhoods are all computed from the same
system state

— Update order of cells is irrelevant
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Components of a CA

Simulation

e Cells
* States
* State-space

* Arrangement
(Cell-space)

* Neighbourhood
 Update Rule
* [terations

Iteratively apply the update rule on the complete CA

finally leads to a simulation model
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* Define discrete, equidistant time points (all time
steps between time points are of the same length):

to, t1,etn
" Every update of states brings the model to the next
time point
» Cellular Automaton (CA)
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= Tasks for one iterations

— Compute the neighbors of all cells

— Determine states of all cells, and states of all
neighbours of all cells

— Compute state updates for all cells and store them
— Apply the updated states for all cells

time ¢, time t; time ¢,
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Properties of CA models m

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

They are, hence, not only
a very powerful, but also
a very dangerous
modelling approach with
respect to validity.

Time is plotted vertically
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Properties of CA models

Simulation

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

Stephen Wolfram

(A New Kind of Science, 2002)
stated that CAs may have one
of the four types of
behavour:

fixed, cyclic, complex, chaotic

Chris Langton developed
the schematic to the right.
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Example:

CONWAY’S GAME OF LIFE
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Conway‘s Game of Life m Mathematical

Simulation

= Cells on a 2-dimensional, rectangular or infinite
lattice: I = (1,2, ...a) X (1,2, ...,b) oron I = Z2.

= Set of states: § = (alive ,dead )
"= Moore neighborhood

Index translations:

(@) ). CH. (. ). Gz
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Conway‘s Game of Life m Mathematical

Simulation

= Update rules:

. 5 — An alive cell with fewer than two or

more than three alive neighbors
dies (“under-population” or
“overcrowding”)

N . — A dead cell with exactly three alive
neighbors becomes alive
(“reproduction”)

— Cells keep their state in any other

H-B case
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time t=0 time t=1
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" Designed by John Horton Conway, 1970

» Why “Game of Life”?
— Teaching purposes
— Academic competitions
— Fundamental/methodological research
— Game - figures

Probably worst example for a Cellular Automata
simulation model,...

...but probably the best example to show the
concepts of CAs.
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Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Beehive Boat
1]
[ ] ] ]
1 E B
HE B H B
1] H B
1 -
Block
Loaf

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of Life
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Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Pulsar (period 3)

Toad (period 2)

Blinker (period 2) Beacon (period 2)

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of Life
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Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Gliders (moving

objects)

Lightweight spaceship (LWSS)

Dﬁ% “snng

Glider

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of Life
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Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

As it seemed as if any starting configuration of the Gol
resulted in a static or oscillating end-configuration, Conway

offered a price of 50S for a pattern that resulted in an
infinitely growing population.

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of Life
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Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Bill Gosper‘s answer:

Gosper Glider Gun

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of Life
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Example

NAGEL SCHRECKENBERG MODEL



Application Example: Traffic
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S|mU|at|On Modelling and
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Nagel-Schreckenberg-Model

e discretisation of a road or motorway into cells of approximately 4m
* possible states:
— s = 0:novehicle
— s > 0:speed of vehicle
e update rules (implicitly defined!):
— accelerate: IFv < v_max AND next vehicle v 4+ 1 cells away THEN
v(t+1) = v() + 1
— brake: IF next vehicle j cells away AND j < v THEN
v(t+1) =j-1
— randomisation: v(t + 1) = v(t) - 1 with a certain probability
— movement: s(t+ 1) = s(t) + v(t)




Mathematical
Modelling and
Simulation

Application Example: Traffic Simulation

space (road)
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Fig.l. — Simulated traffic at a (low) density of 0.03 cars per site. Each new line shows the traffic lane
after one further complete velocity-update and just before the car motion. Empty sites are represented
by a dot, sites which are occupied by a car are represented by the integer number of its velocity. At
low densities, we see undisturbed motion.
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Fig.2. — Same picture as figure 1, but at a higher density of 0.1 cars per site. Note the backward
motion of the traffic jam.
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space (road)

WV

time

Fig.3. — Space-time-lines (trajectories) for cars from Aerial Photography (after [16]). Each line
represents the movement of one vehicle in the space-time-domain.
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DYNAMIC MAPS
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* map shows relation between sizes
* The dots symbolises cancer patients




Dynamic Cartography
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(a) (b) (c)

Figure 2: Visualization of lung cancer cases among males in the state of New York 1993-1997.
Each dot represents ten cases, randomly placed within the zip-code area of occurrence. (a) The
original map. (b) A cartogram using a coarse-grained population density with o = 0.3°. (¢) A
cartogram using a much finer-grained population density (o = 0.04°). (Data from the New York
State Department of Health.)
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 Amount of cancer patients spread equally to squares
in each region (e.g. staats)

e Diffusion from places with high density to low

e Diffusion continues until the density is equal
distributed

e Regions with higher density grow, others shrink




Dynamic Cartography
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Neumann model

Moore model
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Dynamic Cartography - Boundaries m Mathematical

Neumann-Model

Moore-Model
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Abb 5.1. originale Osterreichkarte
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Dynamic Cartography - Population m Mathematical
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Dynamic Cartography - Tourism

1000 1000

1200 1200

1600 1600

1800 1800

2000 2000

500 1000 1600 2000 2600 3000 3600 4000 500 1000 1500 2000 2500 3000 500 4000

Tourismus mit Neumann-Nachbarschaft Tourismus mit Moore-Nachbarschaft

1500 2000 2500

Tourismus mit "Wahrscheinlichkeitsschalter”
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1500 2000 2500 1500 2000 2500

Haarwildjagd mit Neumann-Nachbarschaft Haarwildjagd mit Moore-Nachbarschaft

1500 2000 2500

Haarwildjagd mit "Wahrscheinlichkeitsschalter”
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LATTICE GAS CELLULAR AUTOMATA
(LGCA)
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Lattice Gas Cellular Automata m

= Lattice Gas Cellular Automata (LGCA)
= Extension of the CA concept
" |ntention: Simulate fluids and gases

" |[nvented by Hardy, Pomeau and de Pazzis (HPP
automaton on square lattice), 1973

=" |mproved by Frisch, Hasslacher and Pomeau (FHP
automaton on hexagonal grid), 1986
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 |deas

= Cells do not have states but instead can contain
particles

= A particle can only proceed to a cell in the
neighborhood

" |nstead of state updates, particles move to other cells
= Particles represent the fluid or the gas
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* HPP

= square grid, Von-Neumann neighborhood, max. 4

particles per cell so that max. 1 particle goes to each
neighbor

= several issues when it comes to real interpretations
(comparison with real fluids, validation)
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Lattice Gas Cellular Automata m Mathematical

* FHP
" hexagonal grid
" neighborhood = surrounding cells

" max. 6 particles per cell, each going into a different
direction =2 consistent definition

= Corresponds to the Navier-Stokes-Equations = valid
representation of fluid dynamics




FHP Model
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neighbourhood particles and directions
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= Particle movements consist of two phases
— Rotation of cells for special configurations
— Movements of particles into their direction

= Developed by Wolf-Gladrow (2000)
= Different variations (FHP-I, FHP-II, FHP-III)
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 Rotations

" |n the most simple case of FHP-I only for two
situations

" Provide a randomness
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* Movements into designated directions

JAVAN
VAVAVAVZTAN

Movement

B

N

2/
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 Simulations & Visualizations
e HPP

 http://en.wikipedia.org/wiki/File:Gas velocity.gif

* FHP

* http://www.youtube.com/watch?v=HIuQpDFOceg
 http://www.youtube.com/watch?v=00W6H7BGZ94



http://en.wikipedia.org/wiki/File:Gas_velocity.gif
http://www.youtube.com/watch?v=HluQpDFOceg
http://www.youtube.com/watch?v=00W6H7BGZ94

Remark: Implementation of a

hexagonal grid m

* Implementation

Mathematical
Modelling and
Simulation

= hexagonally arranged grid = assign to a square lattice

= conditional neighborhoods

—O 4

C2 C3 2
Cé c5 C6
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Remark: Implementation of a
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EPIDEMIC SIMULATION
WITH CA AND LGCA
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* Simulate the spread of an epidemics

* Susceptible (S) people become infected by infectous
(1) and become resistant/recovered (R) after some
time.

e Resistant persons cannot be infected again.

O 0 O
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CA Implementation of SIR epidemics:

e Every cell in a rectangular (hexagonal..) lattice represents
a person/group of persons/household/...

* Infecious cells recover after some time (with some
probability).

* Infectious cells may spread the disease to their
neighbours (e.g. Moore neighbourhood)

o © @ o

90000
©000e
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LGCA Implementation of SIR epidemics:

e Every cell in a rectangular (hexagonal..) lattice contains a
number of persons (e.g. 4)

* Infecious persons recover after some time (with some
probability).

* Infectious persons may spread the disease to all other
persons in the cell
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LGCA Implementation of SIR epidemics:
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Epidemic simulation with HPP-LGCA m
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HISTORY OF
CELLULAR AUTOMATA
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* 1925: Ising Modell

— ferromagnetism, discrete model
e 1950: Von Neumann, Ulam

— term “cellular automaton”

— self reproductive, Von-Neumanns theory on logic
automata
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e 1950-1970: Zuse, u.a.
— parallel algorithms
— discrete processes (e.g. PDEs)
 1970s: Hardy, Pomeau, de Pazzis
— Lattice Gas Cellular Automata

e 1979: Conway's Game of Life
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History of Cellular Automata m

e 1980+: different applications

e 2002: Wolfram

— complete classifications of 1-dimensional cellular
automata




History of Cellular Automata
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Stephen Wolfram, ,A new Kind of Science”
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" 3 spatially extended decentralized system made up
of a number of individual components [...] local
interaction [...] depending on the states of its local
neighbors [...] parallel processing [Ganguly]

= regular grid of cells, each in one of a finite number of
states [...] neighbourhood [..] new generation is
created according to some fixed rule [Wikipedia]
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= regular arrangements of single cells [...] each cell
holds a finite number of discrete states [...] updated
simultaneously [...] the rules for the evolution of a
cell depend only on a local neighborhood [Gladrow]
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5. Conclusions

CONCLUSIONS
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e Regular lattice, same kind of neighbourhoods
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* Discrete time, equidistant time steps

+-+-+-+--’_"v
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e Spatial representation, locality
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Applications for Cellular
Automata
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 map shows relation between sizes
 The dots symbolises cancer patients
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(a) (b) (c)

,‘ﬁ""“"
s .\"‘»'r:_ 5
57 R BEN:

Figure 2: Visualization of lung cancer cases among males in the state of New York 1993-1997.
Each dot represents ten cases, randomly placed within the zip-code area of occurrence. (a) The
original map. (b) A cartogram using a coarse-grained population density with o = 0.3°. (¢) A
cartogram using a much finer-grained population density (o = 0.04°). (Data from the New York
State Department of Health.)
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« Amount of cancer patients spread equally to
squares in each region (e.g. staats)

« Diffusion from places with high density to low

« Diffusion continues until the density is equal
distributed

« Regions with higher density grow, others
shrink
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Neumann model

Moore model

Density depending model
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Dynamic Cartography - Boundaries m Mathematical

Neumann-Model

Moore-Model
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Abb 5.1. originale Osterreichkarte
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Dynamic Cartography - Tourism
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1500 2000 2500 1500 2000 2500

Haarwildjagd mit Neumann-Nachbarschaft Haarwildjagd mit Moore-Nachbarschaft

1500 2000 2500

Haarwildjagd mit "Wahrscheinlichkeitsschalter”
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Nagel-Schreckenberg-Model

« discretisation of a road or motorway into cells of
approximately 4m

e possible states:
— s = 0: no vehicle
— s > 0:speed of vehicle
« update rules (implicitly defined!):

— accelerate: IF v < v_max AND next vehicle v + 1 cells away
THENv(t+1) = v(t) + 1

— brake: IF next vehicle j cells away AND j < v THEN

v(t+1) =j-1
— randomisation: v(t + 1) = v(t) - 1 with a certain probability
— movement: s(t+ 1) = s(t) + v(t)
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Fig.l. — Simulated traffic at a (low) density of 0.03 cars per site. Each new line shows the traffic lane
after one further complete velocity-update and just before the car motion. Empty sites are represented
by a dot, sites which are occupied by a car are represented by the integer number of its velocity. At
low densities, we see undisturbed motion.
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Fig.2. — Same picture as figure 1, but at a higher density of 0.1 cars per site. Note the backward
motion of the traffic jam.
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Fig.3. — Space-time-lines (trajectories) for cars from Aerial Photography (after [16]). Each line
represents the movement of one vehicle in the space-time-domain.
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Agent-Based Modelling
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Historical Background m

« Agent-based modelling is a comparably young
modelling technique.

« Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

« Thomas Schelling’s Model of Segregation (1971)
IS broadly denoted as the first agent-based model

Model segregation behaviour between individuals
with different races in US in the 1970s



http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/
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« Agent-based modelling is a comparably young
modelling technique.

« Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

« Thomas Schelling’s Model of Segregation (1971)
IS broadly denoted as the first agent-based model
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Historical Background m

« Agent-based modelling is a comparably young
modelling technique.

« Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

« Thomas Schelling’s Model of Segregation (1971)
IS broadly denoted as the first agent-based model
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CA Model

Each cell is assigned a colour
(= a person if colour is not white)
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< agent

Agent Based
Model (ABM)

Each agent (= person) is
assigned a colour
(blue or red) and a cell
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A Small but Powerful Difference... m
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In principle both representations make sense for this
application. Yet Schelling used the second concept to

describe the model for its benefits.

CA Model

ABM

for Cin Cellspace:

if Cis not white:
N(C) = neighbourhood of C

do update rules with C w.r. to N(C)
Update Cellspace

for A in AgentlList:

get cell and color of A

find neighboured agents N(A)

do some actions with A w.r. to N(A)
Update AgentList

Pseudocode representation of a time step in Schelling’s model.
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A Small but Powerful Difference...

In principle both representations make sense for this
application. Yet Schelling used the second concept to

describe the model for its benefits. It is easier to explain the
model as it is a more

natural description!

It could be some

We do not have to ,grayscales”in between if
use a dicrete time- we want to

step! \ AB M

We could distinguish
~ between male and female
agents (persons)

for A in AgentList:

ﬁell and color of A
neighboured agents N(A) )
m We could include

We donothaveto | 7] dosome actionswith Aw.r.to "~ more realistic

use a cell-space Update Agf‘List distributions
7 \ We could add some

We could introduce Immigrants
death of agents
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Why Agent?




Agent Mathematical
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Latin: ,agere” (to act)
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What is an Agent? (1) m Mathematical

Simulation

« Agent — |at. agere (act)
* There is no unique definition. The word is very
broadly used.

[Agent-based modelling is...]
,Rather a general concept”
(Winter Simulation Conference 2005 & 2006)
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What is an Agent? (2) m Mathematical

Simulation

= With respect to Winter Simulation Conference (2005 &
2006) an agent has to...

... be uniquely identifiable

... cohabitate an environment with other agents,
and has to be able to communicate with them.
... be able to act targeted.

... be autonomous and independent.

... be able to change its behaviour.
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What is an Agent? (2) m Mathematical

= With respect to Winter Simulation Conference (2005 &
2006) an agent has to...

... be uniquely identifiable

... cohabitate an environment with other agents,
and has to be able to communicate with them.
... be able to act targeted.

... be autonomous and independent.

... be able to change its behaviour.

Optional properties (Wintersimulation Conference 2015)
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Agent
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Act Targeted

—@

Agent

Target
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Act Targeted

Agent

Target
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Cohabitate an environment
with other agents
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Uniquely Identifiable
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Uniquely Identifiable




Mathematical
Modelling and

Simulation

Can interact and
communicate
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Can change its behaviour
iIndividually.
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Can change its behaviour
iIndividually.




Modelling and

ShOrt SU mmary m Mathematical

Simulation

« Agent-Based modelling is a bottom up modelling
approach using a big number of individual system
components (agents).

 The components act independently (following given
rules)

« As it requires a lot of processing resources ABM is a
very young science with high potential.
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Properties of Agent-Based Models m

Simulation

a. Representation of ,emergent phenomena“

b. Flexibility
(Bonabeau, 2002)

c. Natural description of the system
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a. Representation of ,,emergent phenomena“




Representation of ,Emergent

@ Mathematical
Phenomena Modelling and
Simulation

Simple rules for individual agents

!

Complex dynamics of the whole system

group dynamics / swarm intelligence



Representation of ,Emergent
Phenomena®
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At R,

Simple rules

it
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Representation of ,Emergent
Phenomena®
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Can lead to complex
behaviour
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Example: Fish or bird flocks

Simulation

https://www.youtube.com/watch?v=0Q0GCSBh3kmM



https://www.youtube.com/watch?v=QOGCSBh3kmM

BOldS FIOCk MOdG' MMathematical

Modelling and

Simulation
Each agent tends towards
o9 OV the centre of its neighbours
K 2/

Dy

Keep a distance that is \/ Oﬁ
neither too far nor too small "

J‘ Swim in the same direction

e |
@“Oﬁ as your neighbours

Wilensky, U. (1998). NetLogo Flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.



http://netlogoweb.org/launch
http://ccl.northwestern.edu/netlogo/models/Flocking

Mathematical
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Properties of Agent-Based Models m

Simulation

b. Flexibility
(Bonabeau, 2002)
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« Change of details is very easy compared to other
(especially macroscopic) modelling approaches.

 Different parameterisation of single agents does not
require changes within the system structure.

« Change or addition of (meta) rules for single agents
does not influence the system structure as well (as
long as they remain compatible with the system).
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Example: Emergency exit strategy mmmmam

Simulation

Example: Emergency exit strategy

Agent-Based Macroscopic
Model approach

eaﬁy 659
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Example: Emergency exit strategy

Macroscopic

) approach
W X% :
&
‘\\% }\ (Navier Stokes

'\ PDE Based Model)
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Example: Emergency exit strategy mmmmam

Simulation

Agent-Based Macroscopic
Model y approach

N
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Example: Emergency exit strategy m

Simulation

Agent-Based
Model

é@éy
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Example: Emergency exit strategy mmmemam

Simulation

Agent-Based Macroscopic
Model mm approacha’t
” e
UM@G]H@] A“';,il’l
EasY P°
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Example: Emergency exit strategy mmmemamal

Simulation

-----
ananan

aaaaaaaa

-----

Agent-Based
Model

g #9”
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Properties of Agent-Based Models m

c. Natural description of the system




Natural description of the System mmi‘;’;“n“‘;‘:ﬁ:

Simulation

Components of the system look like in

reality

Parameters can be seen like data or

properties of individuals in rea

No mathematical background

ity

Knowledge Is

required in order to understand the

modelling approach
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Natural description of the System mmthemaﬁcel

r’fProperties:_\

Female,
41 years,
1.72 m,
71kg,
Non Smoker,

Simulation

//— Communi- \

cating with:

4 : 3\ Colleague to the left,
Target: Colleague to the right,
S_UFVIVe Lecturer,

until Lunch
\

N J

c

N

urrent PositiorD
Wiedner

Hauptstral3e 8-10

Ground Floor )

AN )
fé—urrent Stat;::\
Learning,
Healthy,
Agent Hungry,
Tired




Example: GEPOC (Generic —_——
Population Concept) L9 vaceting ana

''ARAN Simulation

« Population model of Austria

« Simulation of Austria‘s population from 1999 to make prognosis until
2050

49.0 1

Each agent has a
certain coordinate,
dies, emigrates,
immigrates and
w0, reproduces

48.5 1

47.01

10 11 12 13 14 15 16 17




Example: GEPOC (Generic
Population Concept)
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« Population model of Austria

« Simulation of Austria‘s population from 1999 to make prognosis until
2050

Each agent has a VALI DATON

certain coordinate, N
dies, emigrates, _a\r.'f;gf;a,ex?;}«\‘f

immigrates and
«o{ reproduces

48.5 1

47.01

10 11 12 13 14 15 16 17




Example: GEPOC (Generic
Population Concept)
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Age Pyramid 2015
ABM 30d vs. Statistics Austria Age Pyramid 2050
ABM 30d vs. Statistics Austria

Female

Male Fomalo

00k

Persons between  and t-1

Ok a0k S0k A0k 10k S0k 50k 70k
persons

Population Comparison - ABM vs. SD vs. Stat Austria

Zoom to 2003-2015

P

unber of Births per Year Number of Deaths per Year

85 Mio

—— AB-Model by 365 days
—— AB-Model by 30 days

—— AB-Maodel by 365 days
— AB-Maodel by 30 days
D-Model

=== Statistics Austria Data

20086101 07124

20030101 2002-12-31 D006-12-31 2005-12-30 2010-12-30 2012-12-20 2014-12:20

Project for two years.

Parametrisation and Validation data for time <2016 from Statistics
Austria

Parametrisation and Validation for time >=2016 matched with
Statistics Austria Prognosis tool




Example: GEPOC Flu
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Simulation of 2014 Flu
Contact driven disease spread

Each agent has
certain number of
contacts each time-
step

movie.htmi



../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html

Mathematical
Modelling and
Simulation

Example: GEPOC Flu

« Simulation of 2014 Flu
« Contact driven disease spread

VALIDATION?
Each agent has AP Tt T
certain number of -
contacts each time-

step

movie.htmi



../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html

Modelling and

Simulation

Example GEPOC F|U MMathematical

.. % w HOW ABOUT
% 7 VALIDATION?

THIS model is absolute rubbish and has hardly
anything to do with reality!
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Beware of wrong ideas! m

« Natural desripion of the
system makes the model
easier to communicate.

« Therefore it becomes more
credible than more abstract
approaches

BUT
CREDIBLE # VALID
PICTURESQUE= VALID




Interpretation of Agent-Based

Simulation

Mathematical
Model Results m Modelling and

\

Basically two classes of
agent-based models can

ABMs for guantitative
be observed iInvestigation
RN e Usually interested in
ABMs for qualitative \\ temporal behaviour
| investigation \ of aggregate
« Usually interested in \ numbers

\ * Usually used for

(temporal behaviour) of _
\  some kind of

patterns \ |
« Usually used for | resource planning
foundamental scientific \

ion?
research Research Question
\




Interpretation of Agent-Based
Model Results
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\

Basically two classes of
agent-based models can

ABMs for guantitative

be observed investigation
RN » Rather simple agent
ABMs for gualitative \\ . Z‘tle:ai“é)nts
| investigation \ Alot of data
- (On purpose) very \ involved for model

abstract \ parametrisation and
\ validation

 Usually very complex
) \.
model behaviour Usually less famous

« Hardly any parameters
identified with real data




Interpretation of Agent-Based
Model Results : Examples
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/\\
\ A

BMs for quantitative
ABMs for aualitatwe\\ investigation
Investigation -

K4y 5 tids:E0

Schelling’s Segregation Model




Interpretation of Agent-Based
Model Results : Examples
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WRONG
INTERPRETATION

,,Schelling‘s model
predicts: In a few years
only immigrants in Wien
Hietzing!*




Interpretation of Agent-Based

Model Results : Examples

Mathematical
Modelling and
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CORRECT

INTERPRETATION |

> ,,If we do not take care on

¥ 4 & ticks: 60

our migration policy human
homophobia might lead to
spatially visible ghettoism
as seen above In Austria as
well!“




Interpretation of Agent-Based
Model Results : Examples
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WRONG
INTERPRETATION

,,GEPOC predicts:
In two years there
will be a 50 year
old immigrant in
Leibnitz*

Vg S Q
3 VeSS
dors "'a &
, g o RS BB
Sl S
L UL

s

>

&
ST
P!
"»’W’s%sx?;gﬁlf
D AT SA g S T
g oo g

Hi guys, i'm

In general: Never pick only one Mike

agent from an ABM!
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Summary: Agent-Based Models m Mathemaical
Modelling and

Simulation

Agent-based models are good in...

... analysis and discovery of complex group dynamic
behaviour. This must not necessarily be a good thing
as emergent behaviour may occur in models even If it
IS not correct.

... communitcating models to non-experts.

The modelling appoach is easy to understand,
picturesque and no mathematical background is
necessary.




Summary: Agent-Based Models Mathematical
Modelling and
Simulation

Agent-based models are good in...

« ... analysis and discovery of complex group dynamic behaviour.

... communitcating models to non-experts.
Agent-based modelling is problematic ...

* ... regards misinterpretation. If it looks like reality it
must not necessarily be a valid model for it.

* ... regards the validation process. Validation of ABMs
Is a difficult task due to complex model behaviour.

* ... regards computer ressources. ABMs require high
performance CPUs and a lot of RAM.
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Questions?
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Discrete Modelling
Difference Equations

Part 1
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Difference Equation m Mathematical

Simulation

« equations involving differences of inputs and
outputs

« three points of views
— sequence of number
— discrete dynamical system
— iterated function

Difference equation - is a sequence of numbers that
generated recursively using a rule to relate each number in the
(output) sequence to previous (output) numbers and input

numbers in the sequence.
wik) -2 -1 0 0f & 03 & 8

&
System

Wik
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Difference Equations m Mathematical

* Fibonacci Sequence :

{1,1,2,3,5,8,13,21,34} e y@fijmwm
y(k +2) = y(k +1) + y(k) T i

w2k WG

0)=y(1)=1,k=0,1,..
y(0) =y(1) 11112 (3|58 13|21

« Growth model yilh w1 w2y v vidr yidy W v

* Dynamical System with unit step input

y() = 2y(k — 1) + S u(k)

0,k =-1,-2,-3,..
u(k) = {1,k =0,123, ..

Lok R R D T T

-------- Y

Joo-3 -1 4 05

S Y0k =5 (1 -2

%
wik




Difference Equations Mathematical
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 lterated map f (k)
y(k+2) = f(y(k)),y(0) = yo,k =0,1,2,3, ...

orbit {yo, Fo), F(F o)), f (F(F D)), )

dependent on y,
« Example: y(k+1) = f(y(k)) = y(k)?,y(0) = y5,k = 0,1,2,3 ...

y(0) =1,= orbit {1,1,1,1, ... }
y(0) = -1=orbit{-1,1,1,1, ...}
y(0) = 2 = orbit {2,4,16,256,65536, ...}

1
y(0) = > = orbit {0.5,0.25,0.0625,0.00390625, ... }




Difference Equations

Mathematical
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« Example y(k+ 1) = f(y(k)) = y(k)%,y(0) = yo,k = 0,1,2,3
1
y(0) = > = orbit {0.5,0.25,0.0625,0.00390625, ...}

(%]

SO )

=
—
n

ple+1)
=
o ©
= on

Fytn =y’

[l
I I

-
1

0.06, 0.00 | ! i
0 0.2 0.4 Yo 06

y(k)

Cobweb Function:

(¥(0),0) - (¥(0),y(1)) -
- (y(D,y(D) - (y(1),y(2)) -
- (¥(2),y(2) - (y(2),y(3)) -
- (¥(3),y3) - (v(3),y(4®)) -

oscillates” between
y=f(x)andy=x
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Difference Equations m Mathematical

Equlibria - Fixed Points

y(k +2) = f(y(k)),y(0) = yo,k = 0,1,2,3,.
Equilibriumy™: 3" = f(y") & y(k + 1) = f(y(1)) = y(k)
Attractive/stable: yy, y1, v, y3, ....converge to y*
Repelling/unstable: yy, y1, V5, y3, .... diverge from y*

Graphic Test for stability / instability:

Cobweb-function stable/attractive:
((0),0) = (y(0),y(1)) - (y(l) y(l)) - (y(1),y(2))
—>(y(2),y(2))—>(y (2),y(3)) =» - > (¥ %,y %)

Cobweb-function stable/attractive:
((0),0) = (y(0),y(1)) - (y(l) y)) - (y(D),y(2))
- (¥(2),y(2)) - (y (2),y(3)) - - diverge
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Difference Equations m Mathematical

y y(k+1) y(k+1) =y(k) 4 7
y(k+1) = 53’(") t5

Cobweb Diagram
« Graphical technique to

cy(k+1) = fy(k)

y:(3) -------------------------------------- investigate iterated

y(2) [ 5 functions

y() : . Iteration is performed
graphically

/ ! » Consists of

— lterated Function f(y)
- — 1.Mediane y(k + 1) = y(k)
* e - — Cobweb path

y(0) y(1) y(2).. y(k)




CObWGb FU nCtlonS m Mathematical
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y(k+1)=-0.6y(k) + 8 y(k+1)=-35y(k) +17.5
P yk+1) y(k +1) = y(k) 1 yk+1) y(k +1) = y(k)
\ﬂyﬁ’f?) fy(k))
& EI‘_\." [ i ir ¥
y(0) y(k) y(0) \ y (k)
Inward spirals lead to Outward spirals from

attracting fixed points repelling fixed points




Cobweb Functions

« Example
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y(k +1) = f(y(k)) = y(k)?, y(0) = yo,k = 0,1,2,3 ...
= Equilibria y* = f(y*) = y** =2 y* €{0,1}

M =
w

=
on

JOE)

=
—
n

y{+1)

o

o <
o O

=
()
1

i
1 [

Sl = pky*

0

..........

0.25, 0.06

..............

$0.50, 0,25

Cobweb Function:

(¥(0),0) - (y(0),y(1)) -
- (y(1),y(1) - (y(1),y(2)) -
- (¥(2),y(2) - (¥(2),y(3)) -

- (y(3),y(3)) - (¥(3),y(4d)) -
.. ~ (0,0)

attracts y* =0




Linear Affine Difference Equations
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y(k+1) = f(y(k)) =ay(k) + b,y(0) =y, k =0,1,2, ...

« Examples in Finance

— Actual balance y(n)
- after n compounding periods
- with annual interest |
- compounded m times a year
- and constant amount b added at the
end of every compounding period:

y(n+1)—(1+ I)y(n)+b
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Linear Affine Difference Equations m Mathematical

yk+1)= f(y(k)) =ay(k) +b,y(0) =y,,k=0,1,2,..
« Solution
y(1) =ay(0)+b=ay,+b
y(2) =ay(1)+ b =a(ay,+b) +b =a?*y,+ab+b
y(3) = ay(2) + b = a(a’yy+ab +b) + b
= a3y, + (@*+a+1)b

k-1
y(k) =a*yo+ (1 +a+a?+--+a*1)b=daky, + b z al
i=0
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Linear Affine Difference Equations m Mathematical
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ylk+1) = f(y(k)) =ay(k) + b,y(0) =y,,k =0,1,2, ...

« Solution
k—1

y(k) =a*yo+ (1 +a+a?+ -+ a"1)b=aky, + bz a'
i=0

k-1a' geometric series fora # 1

k-1
. 1—ak
- at =
, 1—a
1=0

andfora=1- Ylal =Y 1=k

e Hence ’ .

k
y(k)=<ay0+b1_ ,a* 1

L y0+kb, a=1




Linear Affine Difference Equations
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ylk+1) = f(y(k)) =ay(k) + b,y(0) =y,,k =0,1,2, ...

« Solution
( ok
y(k)=<aky0+b1_a,a#:1 4
L Yo + bk, a=1
Example:
(k+1)—4 (k)+7 :
_ _ 2 y(2)
y(0) =225 =7 o)
() = 22 I
y T 40k T % 10-32n—4

b y(k+1)

y(k +1) = y(k)

y(k+1) = fy(k))

y(0) y(1) y(2) .. y(k)
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Linear Affine Difference Equations m Mathematical

y(k+1) = f(y(k) = ay(k) + b,y(0) = yo,k =0,1,2, ...
« Equilibrium / Fixed Point
* y=f) ey =ay +b ,
* ’ 1
y - a+
— Attractive/stable: y,, y1,v5, 3, ... converge to y*
— Repelling/unstable: y,, y1, v, y3, ....diverge from y*

« Solution with Equilibrium

1—a* b b
y(k) = a*y, + b = a” (3’0 - >+

1—a 1—a
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Linear Affine Difference Equations m Mathematical

y(k+1) = f(y(k)) = ay(k) + b,y(0) = yo,k =0,1,2, ...

« Solution

1—ak

l-a . b yk+1) y(k + 1) = y(k)

a“Go=y)+yy =r——a#*l

« Example \f(y(k))

y(k+1) =—-0.6y(k) 4
« _ b 8 ¥
-4 _1—a_1+0.6_5 4 Eiilﬁ-

c oy = (-2 @-5)+5=

y(k) = afyo + b

(_1)k+1 3k+1
5k

y(0) y(k)




Linear Affine Difference Equations

« Solution

y(k+1) = f(y(k)) = ay(k) + b,y(0) = yo,k =0,1,2, ...

—
I
Q

b

a“Go=y)+yy =r——a#*l

« Example

¥ b

y(k+1)=-25y(k) +1

17.5

. = = =
y 1—a 1+2.5

y y(k)=(

5

2

) (-9)+s-
(_1)k+15k—1
2k

1

Cy(k+1)

fy (k)

Mathematical
Modelling and
Simulation

y(k+1) =y(k)

1

¥

y(0)

\ Y(k;




Linear Affine Difference Equations

Mathematical
Modelling and

Simulation

y(k+1) = f(y(k)) = ay(k) + b,y(0) = yo,k =0,1,2, ...

Solution
(K) = a¥yp + b =
y(k) =a*yo+b—o——=
k * * * b
a*(o—y )ty y =g —_a*l
Example
= AN
yle+1) =5y(k)
b _ y
y —1_a—6.3 y
k14
y(k) =(-3) (5-63)+63=
22k—234
5

b y(k+ 1) y(k +1) = y(k)

y(k+1) = f(y(k))

y(0) y(1) y(2) .. y(k)
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Linear Affine Difference Equations m Mathematical
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yk+1) = f(y(k)) =ay(k)+ b,y(0) = y,,k=0,1,2, ...

Solution

1—ak

y(k) = a*yg +b——r=

,a+1
a

a“(yo =y ) +y"y" =12

« Equilibrium - Fixed Point
one (or no) fixed point

y'=——,a%#1
y*=31/0,aa= 1,b=0

no equilibrium fora=1,b # 0

« Stability:
stable if f |a| < 1, y* attracting
unstable if f |a| = 1, y* repelling
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Linear Affine Difference Equations m Mathematical

ylk+1) = f(y(k)) =ay(k) + b,y(0) =y, k =0,1,2, ...

« Solution

1—ak
_ .k _
y(k) =a“yo + b -
k * * ok b
a“o—y)+yLy =7-g4%%1
« Classification of Solutions
Typ of solution depends on a,b and y,
1. a>1 ,
Main 2. a=1 Sub- L yo=13
classification J 0<a<l classification 2y, > ——
4 —-1<a<0 1a
5 a=-1 3 Yo <1
6. a<-—1
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a>1y,=

a >1,y0>y
a>1y,<y*
a=1 b=0
a=1 b>0
a=1 b<0

O<a<ly,=y*
0<a<l,y,>y*
0<a<ily,<y*
-1<a<0,y,=y*
-1<a<0,y,>y*
-1<a<0,y,<y*

a=-1,y,=b/2
a=-1,y,>b/2
a=-1,y,<b/2
a<-ly,=y*

a<-l,y,>y*
a <-1,y,<y*

Mathematical
Modelling and
Simulation

Constant
Exponentially increasing without bound
Exponentially decreasing without bound

Constant Linear

Linearly increasing without bound Afflne

Linearly decreasing without bound ]

Constant Difference

Exponentially decreasing to a bound E Uations

Exponentially increasing to a bound q

L — — y(k +1) = ay(k) + b
illati it : it

Osc! a !ng w! ecreas!ng amp! ude y(0) = y,

Oscillating with decreasing amplitude b

Constant Yy =1_4'¢ * 1

Oscillating with constant amplitude
Oscillating with constant amplitude
Constant

Oscillating with increasing amplitude
Oscillating with increasing amplitude



Linear Affine Difference Equations - A
Classification of Solutions m Modelling and

Simulation

y(k+1)=ay(k)+b,y(0) =yyy" = ail

m Solution Type | Solution Sketch

a>1y,=y*
a=1 b=0
O<a<ly,=y*
-1<a<0,y,=y*

vk

1 Constant

bfa—a)r__-.
» a=-1,y,=0b/2
a<-1,y,=y*
Linearly
increasing E _
2 Without a=1b>0
bound Yo
k




Linear Affine Difference Equations - A
Classification of Solutions m Modelling and

Simulation

y(k+1) =ay(k) +b,y(0) = yo,y" =1_a*1

m Solution Type | Solution Sketch

Fa

Linearly
decreasing X
without
bound

=1, b<0O

Exponentially
increasing
without
bound &

vk

a>1y,>y*




Linear Affine Difference Equations - A
Classification of Solutions m Modelling and

Simulation

y(k+1) =ay(k) +b,y(0) = yo,y" =1_a*1

m Solution Type | Solution Sketch

Fa

Exponentially
decreasing |
without
bound

a>1y,<y*

Bl -
Exponentially
6 increasing O<a<l y,<y*
to a bound ¥y

vk




Linear Affine Difference Equations -

Simulation

Mathematical
Classification of Solutions m Modelling and

ail

y(k+1)=ay(k)+b,y(0) =yyy" = =1=

m Solution Type | Solution Sketch

Fa

Exponentially y
7 decreasing 4 b - O<a<ly,>y*
to a bound

vk

Oscillating . _ S
8 with constant a - 1,y,>b/2
amplitude nl a=-1 Yo < b/2




Linear Affine Difference Equations -

Classification of Solutions

y(k+1) =ay(k) +b,y(0) = yo,y

m Solution Type | Solution Sketch

Oscillating
with

increasing
amplitude

Oscillating
with
decreasing
amplitude

_1

bil-a)

—

'l

k

Fa

il -d)

Mathematical
Modelling and
Simulation

ail

a <-1,y,>y*
a <-1,y,<y*

-1<a<0,y,>y*
-1<a<0,y,<y*



Modelling and

Simulation

Applications to finance m Mathematical

« Actual balance y(n) after n compounding
periods with annual interest |, compounded

m times a year and constant amount b added
at the end of every compounding period:

I
y(k+1) = (1+-) y(k) + b
Solution:

=0 = (14 2) (- 2) 4 22

1 1
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Applications to economics m

* Supply and Demand

— S(n), D(n), P(n) ... supply, demand, price in the year n
— Set of assumptions:

e S(k+1)=sP(k)+aa>0 ssensitivity of producers to price
e D(k+1)=—-dP(k+1)+b dsensitivity of consumers to price
« S(k+1)=D(k+1) via adjustment of price/bargaining

first order affine dynamical
> —dP(k+1)+b=sP(k)+a SYystem

—>P(n+1)=_2p(n)+(b_a)’P*=b—a

d d+s
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— Set of assumptions:

e S(k+1)=sP(k)+aa>0 ssensitivity of producers to price
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Applications to economics m Mathematical

* Supply and Demand
— S(n), D(n), P(n) ... supply, demand, price in the year n

¢ P(+1) =P +b%a first order affine dynamical

system
« Fixed Point: p* =222
s+d
e General Solution:
k
P(k) =c (_E) tp Cobweb theorem of economics
stable for
S
-1<—-—=<1

d
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Difference Equations with MATLAB

Case Study: Logistic Equation




Modelling and
Simulation

Repetition: Difference Equation mmthemamal

* Problems defined by
Xne1 = F(N, X0, X1, e, Xn_g)
xXg =k
are called difference-equations.
« Solution of these equations is given by a
sequence of, probably vector-valued,
numbers x,, with a certain initial value k.




Repetition: Connection between Difference

Simulation

. . Mathematical
E. and Differential E. m Modelling and

* Xn+1 = f(n» Xnr» Xn—1, ---»xn—d) =
Xpt1 — Xn = g(M, X, Xn_1, -y Xn_q)

Solutions of differential
Solutions of difference equations are gained by the

equations are gained by the sum of all infinitesmial
sum of all differences starting differencials starting at a
at a specific value! specific value! In this case,

the sum is called integral!




Repetition: Connection between Difference
. . Mathematica
E. and Differential E. m Mog:alling:anld

Simulation

A solution of a difference
equation is a sequence. We A solution of a differential

receive a value for each equation is a ,,very infinite”
interation step! sequence”. We receive a
{0,1,2, ...,n} value for each timepoint
This is usually called explicit [0, ton gl
representation of the Those kind of ,,sequences”
sequence in contrast to a are usually called functions!
recursive one.




Repetition: Connection between Difference

E. and Differential E.

We differ between linear
and nonlinear difference
equations. E.g.:
Linear: x,,,1 = 4x, + 2
Nonlinear: x,,,; = x2 + x,,

Mathematical
Modelling and
Simulation

We differ between linear
and nonlinear differentiale
equations. E.g.:
Linear: x' = 3x + 2
Nonlinear: x’' = x?




Repetition: Connection between Difference

E. and Differential E.

We can perform a z-
Transformation

Xn+1 — Xn = 3X, + 2

(2) = =

a(z) = ——

1 5
A

Mathematical
Modelling and
Simulation

We can perform a Laplace-
Transformation

x'=3x+2

2
t(s) = 1

=3
S




Repetition: Connection between Difference
. . Mathematica
E. and Differential E. m Mog:alling:anld

Simulation

Finding an analytic solution
can be performed with
analytical methods. If no

Finding a explicit solution is
usually very tricky!
Sometimes comparisons with
geometric sequences can
lead to sucess.

solutions can be found this
way a numerical
approximation method
needs to be used usually
leading to difference
equations.

Anyway values can be
calculated directly through
the recursive formula.




Repetition: Comparison Logistic Difference
Equation and Logistic Differential Equation

Mathematical
Modelling and
Simulation

« Logistic differential equation is given by
x'"=ax(b—x)
 The corresponding logistic-difference
equation is given by
Xn+1 = Xp + axp(b — xp)




Repetition: Comparison Logistic Difference
Equation and Logistic Differential Equation

Mathematical
Modelling and
Simulation

lagistic function

H(t)
—— =X

Solutions of the
logistic
differential
equation are

population

steady, and
behave similar for
all parameters.




Repetition: Comparison Logistic Difference
Equation and Logistic Differential Equation

Mathematical
Modelling and

Simulation

logistic equation

Solutions of the
logistic difference
equation are
unsteady and

=
o
T

seem to differ
extremely for
different
parameters

population

o o o
0a e m
T T T

=
s
T

=
—




Repetition: Comparison Logistic Difference
Equation and Logistic Differential Equation

Mathematical
Modelling and
Simulation

Solutions of the
logistic difference
equation are
unsteady and

seem to differ
extremely for
different
parameters

population

1.4

—
(]
T

—
T

=
oo
T

=
(&3]
T

logistic equation

10




COI‘\C[USIOI‘] Mathematical
Modelling and
Simulation

difference equations are a
lot more than just discrete

versions of differential
equations!
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Logistic Equation and the Border to Chaos m Mathematical

 What is an accumulation point?

Although a sequence (i.e. a
solution of a difference
equation) might look chaotic on
the first place...

t=1 2 3 4 20
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Logistic Equation and the Border to Chaos m Mathematical

 What is an accumulation point?

... one might observe a
~convergence” to a periodic sub-
sequence when observed longer

\

t =101,102,103 .... 120
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Logistic Equation and the Border to Chaos m Mathematical

 What is an accumulation point?

... one might observe a
~convergence” to a periodic sub-

2

= sequence when observed longer
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t =101,102,103 .... 120




Modelling and

Experiments with MATLAB/Simulink m Mathematical

Simulation

Xn+1 = pxn(l — xn)




Experiments with MATLAB/Simulink

Mathematical
Modelling and

Simulation

How many accumulation points??

Vier0vaIT2021



Bifurcation

Mathematical
Modelling and

Simulation

Steady state values of p,

"Fenod Three Imphes Chaos™

(r = 2.50)
v

p,, comsargas to a limit

p,, oscillates batween values

Ppa= P, (1-P,)
Starting value p = 02

Value of r —»




Case Study: ,Baby Planner”

. Mathematical
Problem Definition m Modellingland

Simulation

* A couple (person) saved some money
planning to have a child
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* A couple (person) saved some money
planning to have a child

 Net income of couple after the birth is fixed
1700€/month already added financial
benefits related to the child. They receive the
money at the end of the month.
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* A couple (person) saved some money
planning to have a child

 Net income of couple after the birth is fixed
1700€/month already added financial
benefits related to the child. They receive the
money at the end of the month.

* Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they
have to pay after the second week of each
month




Case Study: ,Baby Planner”

. el Mathematical
Problem Definition Modelling and
Simulation

A couple (person) saved some money planning
to have a child

* Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at
the end of the month.

* Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have
to pay after the second week of each month

« Costs per week after birth are approximated with
150€.




Case Study: ,Baby Planner”
. el Mathematical
Problem Definition m Modelling and
Simulation

* A couple (Ferson) saved some money planning to
have a child

 Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at the
end of the month.

« Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have to
pay after the second week of each month

« Costs per week after birth are approximated with
150€.

* Income of the couple is saved with interest rate of
0.1%/month.




Mathematical

Research Question:
Modelling and
Simulation

Does the money last for

18 years?




Difference Equation Model mmathemamal

Modelling and
Simulation

« We observe that the type of the recursion
depends on the division of the index by 4

* Xpy1 =X, — 150, if n=1(4) orn = 3(4)
* Xpiq =X, — 150 — 1150, if n = 2(4)

¢ Xni1 = (1,—150) - (1 +—=0) + 1700 , if n = 0(4)
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Implementation in Simulink




Modelling and
Simulation

Adaption of the Model mmathemam

« Unfortunately the anount of money spent
each week is not known perfectly.

« We introduce a random variable making the
simulation stochastic. This raises new
guestions:

Can | expect that the money will last for 18 years?

How confident is this assumption?
Variance? Mean? Quantiles?




Monte Carlo Simulation

The Monte Carlo Integral

o * +* *

f(X) .

E 3

* +

L *¢§ —t * + * 0 -—
¢v + u - [ . - * N *

o de te .
r * * v * * M
S * * & *

Asset prices

140

Monte Carlo paths

Mathematical
Modelling and

Simulation

80
Time Steps

160
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Refugee Crisis 2015 1.9.2015 - 30.10.2015

CDTransit
C_Application

for Asylum o _

Modelling & Simulation ?
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Refugee Crisis 2015 1.9.2015 - 30.10.2015

C—DTransit
C_Application

erasm o Spatial Interaction Model
« Social Gravity Model

» Migration Model

Modelling & Simulation ?

Mathematical

)
I l Modelling and

ICBTI 2016, Durres Migration Analysis by Modelling and Simulation IBA'l Simulation




Spatial Interaction Model

« Spatial interaction = transmission/movement
over space resulting of decision making
process

« Decision making process realised by relation
of influencing factors

« Applications: flow of traffic, commuters, \
migrants, goods or messages,...

« Interactions between regions/populations

« Regions/populations represented trough a
directed graph

Mathematical
ICBTI 2016, Durres Migration Analysis by Modelling and Simulation Nodelling and

Simulation




Spatial Interaction Model

. Regions/populations represented trough a
directed graph

« Approach for describing any kind of interaction
[; ; between regions or populations V; and V;

|i,j:f(Ri’Aj’Ci,i) \

R; Repulsion attributes in V;

Aj Attraction attributes in V;

Ci,j separation attributes between V; and V;

I S i) 7

ICBTI 2016, Durres Migration Analysis by Modelling and Simulation M o o gana




Gravity Model

« Specific form of Spatial Interaction Model

« Social physics: analogies between social behaviour
and physics

« Relation of interaction based on law of gravity

o Long history in social sciences:
1924 Ernest Young: movement of farm migration

= M Migration [;j = f(Ri'AJ" Ci:f)
M= k? FIntensity of attraction Q\,/
D Distance O

Kk proportional constant

Mathematical
ICBTI 2016, Durres Migration Analysis by Modelling and Simulation Nodelling and

Simulation




Gravity Model: Development

1941 John Steward: concept of demographic gravitation

P; P. P;, P; population masses (attributes)
=6 o’ G constant, d Distance

Lii=f(R,4;,C;) 7

1950 John Steward: refined formulation to include
heterogeneity of population masses

W Prw, P,
I, =G 7

I ]

W, , W, weights of population masses

Mathematical
ICBTI 2016, Durres Migration Analysis by Modelling and Simulation Nodelling and

Simulation




Gravity Model: Model Equations

The class of gravity models for spatial interaction
behaviour follows the form

]i,j — f(Ri,Aj, Ci,j) ?
I; j =R(@)-AQ) - F(i,]) O

|, eR interaction between v; and v;
R:r ' - R function of repulsive attributes in v,
A:r ™ - R function of attractive attributes in V,

F:r - R function of separation attributes between v; and v,

(F usually non increasing)
M Mathematical
Modelling and
Simulation

ICBTI 2016, Durres Migration Analysis by Modelling and Simulation




Migration Model: Dynamic Equations
 Migrantsinv, attimet M,(t)

+ Interaction  I; ;(t) = R(r;(t)) - A(a;(t)) - F(c; ; (1))
+ Migrants fromv, to v, M, ;(t)=1, (t} M,(t)

- Migrants in v, at time t+1 M;(t + 1) = M;(t) + M; ;(t)

Mathematical
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Migration Model: Difference Equation
 Migrantsinv, attimet M,(t)

+ Interaction  I; ;(t) = R(r;(t)) - A(a;(t)) - F(c; ; (1))
+ Migrants fromv, to v, M, ;(t)=1, ;(t} M(t)

- Migrants in v, at time t+1 M;(t + 1) = M;(t) + M; ;(t)

M;(t+ 1) = M;(¢t) + 1; ;(t) - M;(t)

Mathematical
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Migration Model: Difference Equation
 Migrantsinv, attimet M,(t)

+ Interaction  I; ;(t) = R(r;(t)) - A(a;(t)) - F(c; ; (1))
+ Migrants fromv, to v, M, ;(t)=1, ;(t} M(t)

- Migrants in v, at time t+1 M;(t + 1) = M;(t) + M; ;(t)

M;(t+1) = M;(t) +1; ;(t) - M;(t)
N (oY
R(r;(¥)) = Z _1(Wr)n (1 (0)n "\I;“\/// ) 1
e /i) Fej®) =5x i
A(a} (t)) — Zzzl(wfl)m - (a] (t))m 1.%/:'* k=1(WC)k (Cl,] (t))k

Mathematical
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Migration Model: Attributes

Attractive attributes

« Gross domestic Product (GPD)
. Fragile State Index (FSI)

« Migrants in the country

. Attractive attributes of accessible
counties

« Not exceeded capacity
« Asylum recognition rate

« Asylum recognition quote in
Europe

I; j(t) = R(r;(t)) - A(a;(t)) - F(c; (1))
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Migration Model: Attributes

Attractive attributes

« Gross domestic Product (GPD)
. Fragile State Index (FSI)

« Migrants in the country

. Attractive attributes of accessible
counties

« Not exceeded capacity
« Asylum recognition rate

« Asylum recognition quote in
Europe

Repulsive attributes

Gross domestic product (GPD)
Fragile State Index (FSI)
Exceeded capacity

Asylum recognition rate

Asylum recognition quote in
Europe

Border security actions

I; j(t) = R(ri(t)) - A(a; (1)) - F( )



Migration Model: Attributes & Parameters

Attractive attributes Repulsive attributes

« Gross domestic Product (GPD) « Gross domestic product (GPD)
« Fragile State Index (FSI) « Fragile State Index (FSI)

« Migrants in the country . Exceeded capacity

. Attractive attributes of accessible
counties

Asylum recognition rate

« Asylum recognition quote in Europe
. Not exceeded capacity

« Asylum recognition rate _ :
. Border security actions

« Asylum recognition quote in Europe
I; j(t) = R(r;(£)) - A(a;(t)) - F( )

N
ROUE) = ), (W) (i(®)n . Parameters

A B |
A=), Wan @O PO =g




Refugee Crisis 2015

« Data: Number of asylum applications, partly Transit
« Country of origin: Syria
« Time period: 01.09-31.10.2015

e e
’ pd
S ITALY
153,800
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Graph of migration movement

| vertices | regions

vy Syria

U Iraq

U3 Jordan

V4 Egypt

Us Lebanon

Vg Turkey

VU7 Greece

Ug Republic of Macedonia

Vg Serbia

V10 Hungary

V11 Croatia

V19 Slovenia

V13 Slovakia, Czech Republic, Rumania,
Bulgaria, Poland, Lithuania, Estonia,
Latvia

V14 Austria

V15 Germa.ny

V1g UK, Netherlands, Belgium, France

v17 Norway, Finland, Sweden, Denmark

V1g Italy, Spain, Portugal

V19 Albania, Bosnia and Herzegovina,
Montenegro




Weighting of attractive attributes:
potential destination countries

aslylum recognition quote

M
GPD A(a;(t)) = Zm=1(wa)m (@ ()m

aslylum recognition rate

FSI

capacity

migrants in the country

attracrtive forces of accessible countries
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Weighting of the repulsive attributes:
potential destination countries

asylum recogintion quote

capacity asylum recogintion rate

FSI N
ROUE) = ), (W) (i(®)n

GPD

—l Mathematical
I Modelling and
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Weighting of the attractive
attributes: country of origin

capacity

migrants in the country

FSI

GPD

attracrtive forces of accessible countries

Mathematical
ICBTI 2016, Durres Migration Analysis by Modelling and Simulation Nedelling:and

Simulation




Migration Model: Parameter Identification

Attractive attributes Repulsive attributes

« Gross domestic Product (GPD) « Gross domestic product (GPD)
. Fragile State Index (FSI) . Fragile State Index (FSI)

« Migrants in the country . Exceeded capacity

. Attractive attributes of accessible counties Asylum recognition rate
. Not exceeded capacity « Asylum recognition quote in Europe
« Asylum recognition rate

« Asylum recognition quote in Europe Border security actions

Data: Migration /Day in each region

RO =Y ) @Oy . Parameters

n=

5 4l
M@ =) W @O F@O) = gr—sm e

m= k=1



Migration Model: Parameter Identification

Attractive attributes Repulsive attributes
Gross domestic Product (GPD) « Gross domestic product (GPD)
Fragile State Index (FSI) . Fragile State Index (FSI)
Migrants in the country . Exceeded capacity
Attractive attributes of accessible counties « Asylum recognition rate
Not exceeded capacity « Asylum recognition quote in Europe

Asylum recognition rate

Asylum recognition quote in Europe . Border security actions

Data: Migration /Day in each region

No satisfying ldentification

R( (0) =2:=1(Wr)n-(ri(t))n . Parameters

5 4l
M@ =) W @O F@O) = gr—sm e

k=1




Migration Model: Parameter Identification

Attractive attributes Repulsive attributes

« Gross domestic Product (GPD) « Gross domestic product (GPD)
Fragile State Index (FSI) . Fragile State Index (FSI)
Migrants in the country . Exceeded capacity

. Attractive attributes of accessible counties « Asylum recognition rate
Not exceeded capacity « Asylum recognition quote in Europe

« Asylum recognition rate

« Asylum recognition quote in Europe . Border security actions

Data: Migration /Day in each region

No satisfying Identification — only neighbour attraction

R(r:(t)) = Zn_ (W, )5 (D) o Parameters

_______ R .
Aty (0 = Do W @@, @) = s

-
-y -
~~- b —
bl




Migration Model: Parameter Identification

Attractive attributes Repulsive attributes
Gross domestic Product (GPD) « Gross domestic product (GPD)
Fragile State Index (FSI) . Fragile State Index (FSI)
Migrants in the country . Exceeded capacity
. Attractive attributes of accessible counties « Asylum recognition rate
Not exceeded capacity « Asylum recognition quote in Europe

« Asylum recognition rate

« Asylum recognition quote in Europe . Border security actions

Data: Migration /Day in each region
Transit Regions with extended Attraction Attributes

R(r () = ZN_l(W,,)n i (©)- . Parameters
—————— &8 - 1
\’A(aj (1)) = Zmz Wa)m - (aj (t)m = F(Ci,f (t) = }}§=1(Wc)k . (Ci,j )y

-y
—
—y —
— —
e am am —— o -



Migration Model: Transit Regions

Transit Region ()
— repulsion R(r(t))= p

— attraction given

- not only by neighbours,

|
.
0-’

- but also by following regions () 0 -
A(j.t)= max (A(a,(t) max Flc,,(t)) oA

U=j, .., In V=] - ]a

Mathematical
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Refugee Crisis 2015 1.9.2015 - 30.10.2015

CDTransit
C_Application

for Asylum

Modelllng + |ldentification -> Simulation
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Simulation Results Refugee Crisis: 2015

vertices | regions

() Syria
. 10° comparison V2 Iraq
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Simulation Results Refugee Crisis 2015:
Route Change

« 15.09.2015:
alternative route
over Croatia

« 15.10.2015:
alternative route
over Slovenia
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Analysis:relative error
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Model Characterisation

« Macro theoretic model

« Qualitative simulation of migration movement
« Behaviour of populations not individuals

« Model Equations treat static patterns

« Probabilistic model description
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Forecast Scenario June 2016

. Time period: June 2016

« Extension of the
graph of movement:
central Mediterranean route

. Balkan route “closed”
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Forecast Scenario June 2016: Visualisation

Irene Hafner (dwh), Stefan Emrich (dwh), Filip Krasinianski (orf)



Forecast Scenario June 2016:
Simulation Results vs Data (post)
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Forecast Scenario June 2016: Error
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Discussion and outlook

» Qualitative description of migration movement of
population groups

« Comparative scenarios can describe all phenomena
. Validity dependent on attributes and weighting
 Include more attribute

» Investigate weighting over longer time period

« Foundation of analysis of influencing factors
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Discussion and outlook

» Qualitative description of migration movement of
population groups

« Comparative scenarios can describe all phenomena
. Validity dependent on attributes and weighting
 Include more attribute

» Investigate weighting over longer time period

« Foundation of analysis of influencing factors

» Qualitative Forecast — What if ......

Mathematical
ICBTI 2016, Durres Migration Analysis by Modelling and Simulation o o gana




What If Brenner Closed - Visualisation
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What If Region Closed - Visualisation
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Thank you for your attention

Models are in any case a simplification of reality,
- but they should help in better understanding of complex dynamics
as migration movement,
- and the intention of this model is to improve the situation of refugees
under appropriate prerequisites.
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