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Simulation

Model Uncertainty:

• Previous knowledge cannot be 
used directly 

• Impossible to model all influence 
factors

• ...

Does the paper plane fly further 
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...  
dependent on their wing span...“

I need to know it in 
advance

No 
arrow-type

Mathematical paper plane 
model

𝑒 =
𝑢2

2
+
𝑝

𝜌
+ 𝑔𝑧

In 2% of all cases... 
probably
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Simulation

Simulation 
• Experiments in virtual laboratory
• Experiments in the computer
• The third pillar of science beside theory and 

experiment

Problem Modell Simulator 

Experimental 
Environment

Scientific Research 
problem

Abstraction of
Reality
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Theory

Simulation

Experiment

Problem Solution

Simulation 
• Experiments in virtual laboratory
• Experiments in the computer
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Solution finding
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What is Computer Simulation ?

Simulation is the process of designing a model of a 

real system and conducting experiments with this 

model for the purpose either of understanding the 

behavior of the system and its underlying causes or 

of evaluating various designs of an artificial system or 

strategies for the operation of the system.

Definition  (Shannon, 1975)
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What is Computer Simulation ?

Simulation is a (virtual) copy of a real system with its dynamic processes in a 

(virtual) model (computer model) and (virtual) experiments with experiments

with this model, which allow interpretations for the real system.

In a practical sense, simulation is i) preparing, ii) performing, and iii) 

evaluating experiments with a simulation model.

Simulation allows to study time-dependent behaviour of complex dynamical

systems in a simulation model.

Definition 2 (VDI-Richtlinie 3633)

8



Dynamical Systems

A system is a set of interacting or interdependent components

forming an integrated whole

A dynamic system is a set of 

dynamically interacting or 
interdependent components forming 
an integrated whole
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Dynamical Systems

A dynamic system is a set of dynamically

interacting or interdependent 
components forming an integrated whole

• Dynamical systems change their behaviour dependent on acting
input signals, disturbances, and initial values

.

• The behaviour of a dynamical system is not direct proportional 
to input and disturbance change, it changes its behaviour on 
basis of its own dynamic and on inputs.
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Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances, 
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Elements of a Dynamical System

• States x(t)
• Inputs u(t)
• Disturbances w(t)  = Inputs
• Outputs y(t)
• Fixed Parameters, Intial Conditions
• Time dependent Parameters (Inputs)

Dynamic System 
(States)

Initial Conditions

Disturbances

Inputs Outputs
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Dynamical Systems
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and initial values

.

• The behaviour of a dynamical system is not direct
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changes its behaviour on basis of its own dynamic
and on inputs.
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Dynamical Systems

Potential 

Customers

PC

Benefit

BF

Dynamic System 
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static formula

dynamic model

),),(),(()( ParttBFtPCFunctiontBF =

Calculation

Simulation
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Dynamical Systems

Potential 

Custome

rs

PC

Benefit

BF

Dynamic 
System 
(States)

Initial Conditions

Disturbances

Inputs Outputs
Dynamic mathematical model

Simulation

),),(),(()( parttBFtPCFunctiontBF =

A dynamical system
may consist of a set of
components, which
themselves are
dynamical subsystems
and which influence
each other

System input

Subsystem

Feedbacks

System output

Interconnection
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Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
Parameter Determination 

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Model

Problem
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What is a Model?

Modelling

Model Analysis

Numeric/Programmin

g

Basic Simulation

Validation: 

Comparison &

Fit of Simulation / 

Reality

Experiments  with

Model 

(„Simulation“)

Identification:

Parameter 

Determination 

Validation: Analysis

Parameter / Model

Model 

Structure

NOT OK

Model 

Structure

OK

Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Mod

el

Problem

21

1. Mapping - A model is a 
representation of a natural 
or an artificial object.

2. Reduction - A model is 
usually simplified and does 
not have all attributes of the 
original object.

3. Pragmatism - A model is 
always created for a certain 
purpose, a certain subject 
and a certain time-span.

(Stachoviak 1973)
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Modelling by Abstraction

Two Steps of Abstraction

• Structural Abstraction – Qualitative Knowledge
Identification of system borders and states

• Phenomenological Abstraction – Quantitative 
Knowledge
quantisation of states, identification of physical, 
economic, biologic, … interactions in and with
subsystems

24



Modelling vs Model

Modelling Approach Model Type

• Ordinary Differential 
Equations (ODEs)

• Partial Differential 
Equations (PDEs)

• Differential Algebraic 
Equations (DAEs)

• Difference Equations 
(DEs)

• Cellular Automata (CAs)
• Agent-based 

Systems/Models (ABMs)
• Discrete Event Systems 

(DES) 

• System Dynamics (SD)
• Transfer Functions (TF)
• Compartment Modelling
• Math. Formula
• Lagrange Formalism
• Port-based physical 

Modelling
• Difference Equation 

Modelling
• Cellular Automata 

Modelling
• Agent-based Modelling
• Event Graphs
• Process Flow
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Landmap of Modelling Methods

Definition (Shannon 1975)

„Simulation is the process of designing a 
model of a real system and conducting 
experiments with this model for the purpose 
either of understanding the behavior of the 
system and its underlying causes or of 
evaluating various designs of an artificial 
system or strategies for the operation of the 
system.“

The variety of different 

Modelling approaches can be

seen like a structured landmap.
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Landmap of Modelling Methods –

Dynamic Models

Definition (Shannon 1975)

„Simulation is the process of designing a 
model of a real system and conducting 
experiments with this model for the purpose 
either of understanding the behavior of the 
system and its underlying causes or of 
evaluating various designs of an artificial 
system or strategies for the operation of the 
system.“
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Dynamic Models – Time 

Discrete/Continuous

Neglecting quantum-mechanics (space as well as) 

time can be seen to be a continuous number.

▪ A model is called time-continuous if the
output value of the model can be calculated
at any time (≈ 𝑡 ∈ ℝ).

▪ In the opposite a model is called time-
discrete if values are only calculated at a 
finite number of predefined timesteps (≈ 𝑡 ∈
ℕ).

29



Dynamic Models – Time 

Discrete/Continuous

• Usually time-continuous models are preferred 
to time-discrete models, but the simulation 
process is usually more difficult.

• Yet, there are processes in real world for
which time continous models are not 
necessary or even dont make sense. 

• Very often, time-continuous models cannot 
be simulated continously. So they need to be 
reformalised in a time-discrete manner – this 
process is called discretisation.

30



Landmap of Modelling Methods – Time 

Discrete / Continous

Definition (Shannon 1975)

„Simulation is the process of designing a 
model of a real system and conducting 
experiments with this model for the purpose 
either of understanding the behavior of the 
system and its underlying causes or of 
evaluating various designs of an artificial 
system or strategies for the operation of the 
system.“
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Dynamic Models – Value 

Discrete/Continuous

Similar to time-discrete/continuous, also output
values can be determined discrete or
continuously.

▪ Value-discrete:
- Number of passengers on a plane
- Number of cars searching for a parking spot.

▪ Value-continuous:
- Voltage/Current in an Electrical Circuit
- Angular Velocity of a Pendulum

32



Dynamic Models – Value 

Discrete/Continuous

▪ Although simulation output is expected to be
continuous/discrete, it is not necessarily
modelled in a continuous/discrete way.

E.g.: 
Population of a country is a discrete number…
… yet it can be modelled by a continous
model

It requires a correct result interpretation!

33



Examples –Discrete/Continuous

time

v
a
lu

e

Electricity Consumption

time

v
a
lu

e

Monthly Budget

time

v
a
lu

e

People in check-in hall

time

v
a
lu

e

Number of passengers 

each flight
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Landmap of Modelling Methods –

Discrete / Continous
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Model Procedures

System

Theoretical Modelling

Deductive Analysis

Modelling by Laws and Rules

White Box Modelling

Experimental Modelling

Inductive Analysis

Modelling by using models

with observed behaviour

Black Box Modelling

Mathematical Model 

Ohms Law

Newton‘s Law

Supply/Demand Law
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Application vs. Modelling Approach

•

Electrotechni
que

• Mechanics

• Environment

• Medicine

• Economy

• Sociology

• Laws

• Laws and Observations

• Laws and Observations

• Observations and Characterisation

• Observations and Characterisation

White Box Modeling

Black Box Modeling
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Model Reduction

•

Electrotechni
que

• Mechanics

• Environment

• Medicine

• Economy

• Sociology

• Laws

• Laws and Observations

• Laws and Observations

• Observations and Characterisation

• Observations and Characterisation

From Deduction to Induction

Deductive models may contain too many parameters –
problems with identification
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Landmap of Modelling Methods –

Discrete / Continous
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Stochastic/Deterministic

• If the output of the simulation of a model is
uniquely defined by input parameters, initial
conditions and model parameters the model
is called deterministic.

• Otherwise it is called stochastic.

Results:
14.2
14.2
14.2
14.2

...

Results:
14.3
14.6
13.9
14.2

...

deterministic stochastic
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Stochastic/Deterministic

Stochastic models are necessary…

▪ … if random effects are included in the system.
→ coin toss, rolling a dice, …

▪ … if emelents of the system are too complex to
be described by deterministic rules.

→ human behaviour, problems at system borders,…
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Landmap of Modelling Methods –

Discrete / Continous
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Microscopic/Macroscopic Models

• If systems consist of a big set of similar
subsystems...

... the question arises whether a micro- meso-
or macroscopic model should be used.

individual

subsidiary

car

wooden
fibre
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Microscopic/Macroscopic Models

• Microscopic models treat each subsystem as
an individual model. Finally they are linked in 
order to model the whole system.

individual

individual

individual

individual

individual

individual

individual

individual

individual individual
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Microscopic/Macroscopic Models

• Macroscopic models treat the whole system, 
neglecting the fact, that it consists of
subsystems. 

Population
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Landmap of Modelling Methods –

Microscopic/Macroscopic
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Approaches for Soft Sciences

Simulation

(Troitzsch) 
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Approaches for Soft Sciences

Simulation

(Troitzsch) Aggregated Distributed
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Modelling
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Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality
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(„Simulation“)
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Parameter Determination 

Validation: Analysis
Parameter / Model
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Model Structure
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Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Model

Problem
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SIMULATION CIRCLE

Testcase: Predator-Prey
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What is System Dynamics

Forrester, 1961

System Dynamics is a field that resulted from the pioneering 

efforts of Jay W. Forrester to apply the engineering principles of 

feedback and control to social systems. 

System Dynamics generates qualitative models based on 

causalities. 

By appropriate parameterisation, the qualitative models can be 

transformed into “quantitative” computer models to simulate the 

investigated system
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World Models

Systems Dynamics and DYNAMO received widespread

interest mainly because they were used to build large 

world models such as

• WORLD2 (World Dynamics, Forrester1971); 

• WORLD3 (The Dynamics of Growth in a Finite World, 

[Meadows]); 

• and WORLD3 revisited (Beyond the Limits). 

78



World Models
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Key to develop SD Models

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)

cause effect



How to build a SD Model?

1. Identify system variables and system 
boundaries

2. Capture links of variables in a 
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

-----------------------------------------------------------

• Implement the model in a simulator



1. System Variables and Boundaries

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation. 

b. Start collecting information and data. Start 
developing hypothesis about the parts of the
system. 

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.



1. System Variables and Boundaries

System 
boundary

System variables

Links



2. Causal Loop Diagram

Capture the behavior and links of and within the 
system by interlinking system variables that are related 
to each other

Behavior of system due to:

• Feedback Loops

• System memory (stocks)

• Delays in material and information delays



2. Causal Loop Diagram

Main components of CLDs:

• System variables: names of elements

• Link - positive:

Represented by a plus-sign

Increase in variable Eating results in an increase in 
variable Weight

Eating Weight

+



2. Causal Loop Diagram

Main components of CLDs:

• Link – negative:

Represented by minus-sign.

Increase in variable Diet results in a 
decrease in variable Weight

Diet Weight

-



2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows, 
represented by a:
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.



2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows, 
represented by a 
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.



2. Causal Loop Diagram

Feedback Loops

▪ Search to identify closed, causal feedback loops 
is one key element of System Dynamics

▪ The most important causal influences will be 
exactly those that are enclosed within feedback 
loops



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Exponential Growth: arises from positive 
(reinforcing) feedback loop. 

Example:

Population Births



2. Causal Loop Diagram

Causation vs. Correlation

• Correlation represents past behavior and not 
the structure of the system 

• Causation represents the causal links of the 
structure

Ice Creme 
Sales

Murder
Rate

+
Ice Creme 

Sales
Murder

Rate+

Avgerage
Temperature

Wrong: Right:

+



2. Causal Loop Diagram

At least one negative feedback loop is
necessary to receive a stable system

PopulationLack of Space



3. Stock and Flow Diagram

Problem: Not all system elements are system variables!

Solution: distinguish between 

• Sources/Sinks

• Levels/Stocks 

• Flows

• Auxiliaries

• Paramters

• Links



SFM – Sources/Sinks

Sources/Sinks:
Source represents systems of levels and
rates outside the boundary of the
model
Sink is where flows terminate outside 
the system

E.g.: Raw Material (Source for 

„Construction“ Flow), Graveyard (Sink for 

„Dying“ Flow)



SFM - Stocks

Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of

people waiting in a queue, Number of

goods waiting to be transported, etc.



SFM – Flow

Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow
in order to change its value.

E.g.: Birth (Changes the value of the 

stock „population“), Eating (Changes the 

value of the stock „amount of food“), etc.



SFM – Auxiliary

Auxiliary:
Everything that can directly/analytically be
calculated out of stocks and constants. 
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated 

by the stocks/constants „mass“ and 

„volume“), Quelength (calculated by stock 

„people in queue“ and constant „average 

size of one person“), etc.



SFM – System/Input Parameters

Parameter /Constant
Everything that is predefined for the
whole simulation – usually it is a 
constant but can be a function too.

E.g.: Average Temperature, Number of 

Cash Desks (In a supermarket), Birth 

Rate, Maximum capacity of a Room, etc.



Graphical Representation

Source Change of 

State
State

Initial value of state

Rate of 

change

Feedback



From CLD to SFM (1)

Population Births

Births

Population



From CLD to SFM (2)

Population BirthsLack of Space

Births

Population

Lack of Space

Space



Modelling

Predator – Prey System

Dynamics: Predator eats Prey
Predator / Prey births, deaths

Environment: isolated

Measurement:  Predator Population

5 Years = 60 months, quarterly

Problem:  When is a reasonable time to use 
chemical pesticides to reduce number of 
predators?

Model

Problem
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Predator – Prey System

Modelling

Model

Problem
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Predator – Prey System

Modelling

Model

Problem

Separation –

Isolated environment

Choice -

2 variables = 2 states

𝑌 𝑡 … Prey

𝑋 𝑡 … Predators
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Modelling

Modelling

Model

Problem
Separation –

Isolated environment

Choice -

2 variables = 2 states

Causality –

Predator – Prey – Model
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Modelling

Modelling

Model

Problem
Separation –

Isolated environment

Choice -

2 variables = 2 states

Causality –

Predator – Prey – Model

Y(t) .. Prey Population

X(t) .. Predator Population
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Modelling

Modelling

Model

Problem
Causality –

Predator – Prey – Model

Y(t) .. Prey Population

X(t) .. Predator Population

System Dynamics –

Population Interaction
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Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey, 
X(t) .. Predator

System Dynamics - Population interaction

If #Prey
increases 

Then #Predators 
increases

If #Predator 
increases 

Then #Preys 
decreases 
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Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey, 
X(t) .. Predator

System Dynamics - Population interaction

If #Prey
increases 

Then #Predators 
increases

If #Predator 
increases 

Then #Preys 
decreases 

+

+

+

-
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Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey, 
X(t) .. Predator

System Dynamics - Population interaction

+

- Causal

Loop 

Diagram
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Modelling

Modelling

Model

Problem

System Dynamics - Population interaction

+

-

Causal

Loop 

Diagram

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-
+

+

-

+

+
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Modelling

Modelling

Model

Problem

System Dynamics - Population interaction

+

-

Causal

Loop 

Diagram

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+
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Causality –

Predator – Prey – Model

x(t) .. Prey

y(t) .. Predator

Logistic Growth  -

Population rate = Growth rate + food 
rate

Modelling

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

Modelling

Model

Problem
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ሶ𝑥 = 𝑎𝑥 − 𝑏𝑥𝑦
ሶ𝑦 = −𝑑𝑦 + 𝑒𝑥𝑦



Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
Parameter Determination 

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Model

Problem
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Model Analysis

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+
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+
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+

+

Causal

Loop 

Diagram

Stock 

and

Flow 

Diagram

Model Analysis
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Model Analysis
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Model Analysis
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Implementation

Model Analysis
Numeric/Programming

Simulator

Model
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Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
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Basic Simulation

Simulation  Results

Simulator

Implementation
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Basic Simulation

Simulation  Results

Simulator

Implementation

Parameters:

Population development over time:

yxdcy

xybax
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Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
Parameter Determination 

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Model

Problem

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

121



Validation

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Data
Bad Fit

Good Fit
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Data & Simulation Results

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Bad Fit

Good Fit

Search for

convenient

parameters
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Data & Simulation Results

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Bad Fit

Good Fit

Search for

convenient
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No

Damping 

in Model
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Simulation Circle: Predator - Prey

Modelling
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Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Bad Fit

Good Fit

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-
+

+

-

+

+Model Extension:

• Both the predator and the 

prey compete for food and 

shelter in the forest.

• Competition sets in and the 

population of each species tends 

to control itself via a negative 

effect, that is the population 

decreases with a rate directly 

proportional to the present 

population of that species.
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Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results
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Good Fit

Model Extension:

• Both the predator and the 

prey compete for food and 

shelter in the forest.

• Competition sets in and the 

population of each species tends 

to control itself via a negative 

effect, that is the population 

decreases with a rate directly 

proportional to the present 

population of that species.
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Model Modification

Validation: Comparison &
Fit of Simulation / Reality
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Model Modification

Validation: Comparison &
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Simulation  Results

Bad Fit

Good Fit

Prey

Pop

Prey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Prey

Comp

Pred

Comp

+

+

Causal

Loop 

Diagram

Stock 

and

Flow 

Diagram

129



Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Bad Fit

Good Fit

Stock 

and

Flow 

Diagram
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Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation  Results

Bad Fit

Good Fit

Parameters:
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Simulation Circle: Predator - Prey
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Results Interpretation / Analysis

• Determination of long time behavior / 
stationary solutions (equilibria)Experiments  with Model 

(„Simulation“)

Good Fit

Problem      Solution
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Results Interpretation / Analysis

• Determination of long time behavior / 
stationary solutions (equilibria)Experiments  with Model 

(„Simulation“)

Good Fit

Problem      Solution
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Use of Pesticide

Modification of Predator-prey model with intraspecific 
competition

• Assume, that at a specific time poison is released 
into the system, e.g. some of predators are 
removed 
from the population by hunting.

• The growth rate a of prey is changed to:

where K is growth rate change.

• This change occurs at the specific time point.

• The new growth rate a depends on the difference 
between populations at this specific time point and 
stays constant after that.

Experiments  with Model 
(„Simulation“)

Good Fit

Problem      Solution
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Use of Pesticide

Experiments  with Model 
(„Simulation“)

Good Fit

Problem      Solution

newoldnewoldc ffddt →→ ,:

Adequate

time instant 
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ሶ𝑥 = 𝑎𝑥 − 𝑏𝑥𝑦 − 𝑒𝑥2

ሶ𝑦 = −𝑐𝑦 + 𝑑𝑥𝑦 − 𝑓𝑦2



Modification of Predator-prey model 

with intraspecific competition

Population development over time:

Experiments  with Model 
(„Simulation“)

Good Fit

Problem      Solution

Parameters:  
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Modification of Predator-prey model 

with intraspecific competition

Population development over time:

Experiments  with Model 
(„Simulation“)

Good Fit

Problem      Solution

Parameters:  

140



Modification of Predator-prey model 

with intraspecific competition

Experiments  with Model 
(„Simulation“)

Good Fit

Problem      Solution

Modelling

Model

Problem

Dynamics: Prey – Predators

Environment: isolated

Measurement:  natural enemies

5 Years = 60 months

quarterly

Problem:  When is a reasonable time 
to use chemical pesticides?

Assignment: short time, 
changes the growth of preys, 
damping parameter

Approach:  optimal time point 
𝑡𝑐 is dependent on the 
population difference

Result:  The assignment is not 
conducive
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The DON‘Ts of Mathematical Modelling

(S. W. Golomb, Simulation 14 (1970), 197-198)

• DON‘T believe that the model is the reality

• DON‘T extrapolate beyond the region of fit

• DON‘T distort reality to fit the model

• DON‘T retain a discredited model

• DON‘T fall in love with your model
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Introduction to System Dynamics



Overview

• Introduction

• General Information

• How to Build a System Dynamics Model

– System Variables and Boundaries

– Causal Loop Diagrams

– Stock-and-Flow Diagrams

• Helpful Tools

• Analysis

• Simulators

• Conclusion

• Further Steps



General Information (1)

• System Dynamics (short SD) is a modelling and 
simulation method developed by Jay W. Forrester.

• He adapted methods formerly used for system 
analysis of technological systems to social systems 
(MIT Sloan School of Management, 1956).

• Thus he was criticising mathematical models 
developed for management sciences.

• SD has roots on control theory and nonlinear 
dynamics

• SD is very intuitive, supported by graphics



General Information (2)

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
Parameter Determination 

Validation: Analysis
Parameter / Model

Model Structure 

NOT OK

Model Structure 

OK

Bad Fit

Good Fit

Problem      Solution

Simulation  Results

Simulator

Model

Problem

S
im
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o
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cl
e

System Dynamics is a method

to develop a conceptual/formal 

model…



General Information (2)

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments  with Model 
(„Simulation“)

Identification:
Parameter Determination 

Validation: Analysis
Parameter / Model

Model Structure 

NOT OK
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OK

Bad Fit

Good Fit

Problem      Solution
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Simulator
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…but it additionally gives

guidelines how this model is

simulated



General Information (3)

Hypothesis:

– Manager usually know very good about 
processes and their causal relationships within 
their companies (system).

– The behaviour of a system is mostly 
predetermined by its (complex) structure.

– Practically useful models can usually not be 
simulated by analytic calculations.



General Information (4) 

Literature:

• 1961: Industrial Dynamics (Forrester)

• 1969: Urban Dynamics (Forrester), first use of 
System Dynamics apart from economic 
businesses.

• 1970: World Dynamics (Forrester), superwised by 
Club of Rome, use of System Dynamics for 
development of a so called „World Model“. 
Similar:

• 1972: Meadows et al.: The Limits to Growth



General Information (5)

• Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development
of DE models. 

• Advantages:

– Picturesque

– Optimized to understand dynamics and causal
relationships of the system.

– Finally calculated like a DE model.

Relationship: SD & Differential Equations Modelling



General Information (5)

• Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development
of DE models. 

• Advantages:

– Picturesque

– Optimized to understand dynamics and causal
relationships of the system.

– Finally calculated like a DE model.
Perfect starting-point for learning about

Modelling and Simulation 

Relationship: SD & Differential Equations Modelling



Key to develop SD Models

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)

cause effect



How to build a SD Model?

1. Identify system variables and system 
boundaries

2. Capture links of variables in a 
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

-----------------------------------------------------------

• Implement the model in a simulator



1. System Variables and Boundaries

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation. 

b. Start collecting information and data. Start 
developing hypothesis about the parts of the
system. 

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.



1. System Variables and Boundaries

System boundary

System variables

Links



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not 
the structure of the system 

• Causation represents the causal links of the 
structure

Ice Cream 

Sales

Murder

Rate
+

Ice Cream 

Sales
Murder

Rate+

Average 

Temperature

Wrong: Right:

+



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the 
system 

• Causation represents the causal links of the structure

Correlation Wrong Causal 
Implication

Lesson?

Smoking, Lung 
Cancer (+)

People suffering from 
lung cancer are more 
likely to start smoking

??



Causality vs Correlation
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• Correlation represents past behavior and not the structure of the 
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• Causation represents the causal links of the structure

Correlation Wrong Causal 
Implication

Lesson?

Smoking, Lung 
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People suffering from 
lung cancer are more 
likely to start smoking

Causality is always directed! Be 
careful to take the correct one.

Darkness, 
Electricity 
Consumption (-)

If it was darker, we 
could reduce our 
energy problems

??



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the 
system 

• Causation represents the causal links of the structure

Correlation Wrong Causal 
Implication

Lesson?

Smoking, Lung 
Cancer (+)

People suffering from 
lung cancer are more 
likely to start smoking

Causality is always directed! Be 
careful to take the correct one.

Darkness, 
Electricity 
Consumption (-)

If it was darker, we 
could reduce our 
energy problems

Always look for direct 
causalities! Don‘t foget that 
people sleep when its dark...

Murder Rate, 
Ice Cream Sales 
(+)

Ice cream makes 
people potential 
murderes

??



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the 
system 

• Causation represents the causal links of the structure

Correlation Wrong Causal 
Implication

Lesson?

Smoking, Lung 
Cancer (+)

People suffering from 
lung cancer are more 
likely to start smoking

Causality is always directed! Be 
careful to take the correct one.

Darkness, 
Electricity 
Consumption (-)

If it was darker, we 
could reduce our 
energy problems

Always look for direct 
causalities! Don‘t foget that 
people sleep when its dark...

Murder Rate, 
Ice Cream Sales 
(+)

Ice cream makes 
people potential 
murderes

Always look for confounding 
factors! E.g. the average 
Temperature?



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the 
system 

• Causation represents the causal links of the structure

Famous example (1):



Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the 
system 

• Causation represents the causal links of the structure

Famous example (2):



2. Causal Loop Diagram

Capture the behavior and links of and within the 
system by interlinking system variables that are related 
to each other

Behavior of system due to:

• Feedback Loops

• System memory (stocks)

• Delays in material and information delays



2. Causal Loop Diagram

Main components of CLDs:

• System variables: names of elements

• Link - positive:

Represented by a plus-sign

Increase in variable Eating results in an increase in 
variable Weight

Eating Weight

+



2. Causal Loop Diagram

Main components of CLDs:

• Link – negative:

Represented by minus-sign.

Increase in variable Diet results in a 
decrease in variable Weight

Diet Weight

-



2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows, 
represented by a:
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.



2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows, 
represented by a 
“(+)” (or ”(R)” for reinforcing) or
“()” (or “(B)” for balancing) sign in the middle.



2. Causal Loop Diagram

Feedback Loops:

– Reinforcing: A system variable effects itself 
(via other system variable(s) of the loop), resulting 
in a reinforcing of the original state of the system 
variable  
Even number of negative links

A

B

CD

E

F

A

time

value



2. Causal Loop Diagram

Feedback Loops:

– Balancing: A system variable effects itself (via 
other system variable(s) of the loop), resulting in 
a balancing of the original state of the system 
variable 
Uneven number of negative links

A

B

CD

E

F

A

time

value



2. Causal Loop Diagram

Feedback Loops

▪ Search to identify closed, causal feedback loops 
is one key element of System Dynamics

▪ The most important causal influences will be 
exactly those that are enclosed within feedback 
loops



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Exponential Growth: arises from positive 
(reinforcing) feedback loop. 

Example:

Population Births



2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of positive 
and negative feedback loops (nonlinear interactions)

Important here:

− Carrying capacity: Number of organisms a habitat can 
support and it is determined by the resources available in the 
environment and the resource requirements of the 
population. When the population reaches its carrying 
capacity the net increase rate slows down until it is zero and 
the population reaches its equilibrium (limit of growth)



2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of 
positive and negative feedback loops (nonlinear 
interactions)

PopulationLack of Space

Carrying 

Capacity

Births



2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of 
positive and negative feedback loops (nonlinear 
interactions)

Necessary requirements:

− Negative feedback loops must not 
include any significant delays

− Carrying capacity must be fixed



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Goal Seeking Behavior: arises from negative 
(balancing) feedback loop. 

Example: 

Corrective action



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with 
delays.

Example:



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with 
delays.

The state of the system is compared to the 
desired state of the system and corrective actions 
are taken. The goal is constantly overshot, then 
corrects / reverses and then undershoots the 
system and so on.



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with 
delays.

Special oscillations are:

− Damped oscillation: e.g. pendulum

− Chaotic oscillations



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with 
delays.

Special oscillations are:

− Expanding oscillation and limit cycles: If an 
oscillatory system is given a nudge off its 
equilibrium, its swings grow larger and larger 
until they are constrained by various 
nonlinearities this oscillation is called limit 
cycles. Predator prey populations are cycles.



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Growth with overshoot and oscillation: is 
basically s-shaped growth with additional delay 
in the negative feedback loop.

Example:



2. Causal Loop Diagram

Types of behavior due to loops:

▪ Overshoot and collapse: is basically s-shaped 
growth but with a not fixed carrying capacity

Example: A population in a forest that grows so 
large, that they overbrowse the vegetation, leading 
to starvation and a 
decline in the population. If there
is no regeneration of the carrying 
capacity, the equilibrium of the 
system is extinction.



2. Causal Loop Diagram

Dominating Loop

▪ There are systems which have more than one
feedback loop within them

▪ A particular loop in a system of more than one
loop is most responsible for the overall behavior
of that system

▪ The dominating loop might shift over time

▪ When a feedback loop is within another, one
loop must dominate

▪ Stable conditions will exist when negative loops
dominate positive loops



2. Causal Loop Diagram

+

-

+

-

-

+

-

+

+

-

-

+
+

+

+

+

+-

+

+ +

+

+ -
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+

+

+
+

+
+

++
+ ++

Example:



3. Stock and Flow Diagram

Problem: Not all system elements are system variables!

Solution: distinguish between 

• Sources/Sinks

• Levels/Stocks 

• Flows

• Auxiliaries

• Paramters

• Links



SFM – Sources/Sinks

Sources/Sinks:
Source represents systems of levels and
rates outside the boundary of the
model
Sink is where flows terminate outside 
the system

E.g.: Raw Material (Source for 

„Construction“ Flow), Graveyard (Sink for 

„Dying“ Flow)



SFM - Stocks

Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of

people waiting in a queue, Number of

goods waiting to be transported, etc.



SFM – Flow

Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow
in order to change its value.

E.g.: Birth (Changes the value of the 

stock „population“), Eating (Changes the 

value of the stock „amount of food“), etc.



SFM – Auxiliary

Auxiliary:
Everything that can directly/analytically be
calculated out of stocks and constants. 
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated 

by the stocks/constants „mass“ and 

„volume“), Quelength (calculated by stock 

„people in queue“ and constant „average 

size of one person“), etc.



SFM – System/Input Parameters

Parameter /Constant
Everything that is predefined for the
whole simulation – usually it is a 
constant but can be a function too.

E.g.: Average Temperature, Number of 

Cash Desks (In a supermarket), Birth 

Rate, Maximum capacity of a Room, etc.



Graphical Representation

Source Change of 

State
State

Initial value of state

Rate of 

change

Feedback



From CLD to SFM (1)

Population Births

Births

Population

Initial value of 

population



From CLD to SFM (2)

Population BirthsLack of Space

Births

Population

Lack of Space

Space
Initial value of 

population



Quantification?

Births

Population

Lack of Space

Space

𝐵𝑖𝑟𝑡ℎ𝑠 = 3 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 ?
𝐵𝑖𝑟𝑡ℎ𝑠 = 10 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒?

𝐵𝑖𝑟𝑡ℎ𝑠 = 0.2 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +
1

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒
?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 − 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?
𝑙𝑎𝑐𝑘𝑜𝑓𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 − 3 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 =
𝑆𝑝𝑎𝑐𝑒

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑝𝑎𝑐𝑒
?

Initial value of 

population

?



Table Function

❖Responsible for nonlinar relationships

❖Uses pairs of numbers 

❖ Interpolation inbetween: 

linear, step, spline, approximation

❖Out of range: 

error, repeat, extrapolate

Helpful SD Tools



Delays

The Value of the input will be time-delayed for the

delay time:

Output = Material in Transit / Delaytime

Material in 

Transit

Inflow Outflow

Average 

Delaytime

Helpful SD Tools



System Dynamics - Analysemöglichkeiten

❖Analytical: Evaluation of equilibrium, behaviour and 

stability in an area (ordinary differential equations)

But: For large systems this can be difficult and not 

useful for time variant values

❖Base Run: 

The Model runs with the predefined set of parameters 

(which represent the best information available at this 

time).

Analysis of SD Models



Stock and Flow with two flows

Differential Equation:

Integral equation:

Simple Structure



Static Equilibrium: 

Inflow and Outflow are 0; 

State of the system remains unchanged.

Dynamic Equilibrium: 

Inflow and Outflow are the same;

State of the system remains unchanged

System Dynamics – Equilibrium

Equilibrium



❖Optimization / Calibration: 

With specific algorithms some – unknown –

parameter values can be calculated by macthing a 

objective function.

❖Parametervariation / Sensitivity Analysis: 

Multiple simultion runs are simulated with different 

sets of parameter values, which are gained from

❖ even distributed intervals or 

❖ stocastically from a probability function

Analysis of SD Models



Simulators

• SD-simulators at least offer the most important 
elements (Flows, Levels, Auxiliaries, Table-
functions, etc.) to be preimplemented.

• Additionally parametervariation and optimization is 
possible with most SD simulators.

• Examples: AnyLogic (does not only support SD), 
Vensim, Stella, PowerSim…



Conclusion

• System-Dynamics is a top-down modelling 
approach. Its graphical representation is broadly 
standartized. 

• Important Elements: causal relationships, causal 
loops, stock and flow diagrams

• It is equivalent to a DE model. Thus results  can be 
analysed using the same methods.

• Simulators: AnyLogic, Vensim, Stella, PowerSim…



Thank you for your attention!

Questions?



Discrete Event Simulation and 

Modelling with Event Graphs



General

Modelling Approach/
Representation Form

Model Type

Event Graphs
leads

to

Discrete Event 
Simulation Model



General

Modelling Approach/
Representation Form

Model Type

Event Graphs
leads

to

Lagrange Formalism
Differential Equation

Model
leads

to

Compare:

Discrete Event 
Simulation Model

System Dynamics or



Motivation

• Simulation of systems that change their states only at so 
called „events“

• (Simulation of systems that can be approximated as such)



Discrete Event Simulation

Fundamental Concept

Two fundamental components of a discrete event simulation (DES) 

model 

State Variables

„Observables“ or the model. Used to generate the simulation output

Events:

Cause state variables to change and schedule/cancle future events 



• Events

• States piecewise constant

cn-1

c4

tn-1t1 t2    ..... tnt0 T

c1

c2

c3

c0

Ttn-1t1 t2    ..... tnt0

Discrete Event Simulation

Fundamental Concept



Events are scheduled using

Event Notices.

Every event notice contains two pieces of information: 

• What (type of) event is being scheduled, and 

• the (simulated) time at which the event is planned to occur

The 

Event List

keeps the event notices in order by ranking them based on the lowest 
scheduled time. 

The events list is managed by basic 

Discrete Event Algorithm

that controls the flow of time in the simulated world of the model

Discrete Event Simulation

Fundamental Concept



Event List

Discrete Event Simulation

Fundamental Concept

Event

First 
Entry

Event 
Notice

DES 
Algorithm

time
enhanceuse

State 
variables

update

execute
Event 

Notice 1

Event 
Notice 2

create
new

Event 
Notice 3 delete

insort

Fundamental Concept of a DES Model



EVENT GRAPHS

How to formalise DES Models



Event Graphs General

• Concept introduced by Lee Schruben in 1983

• Sometimes called „Simulation Graphs“

• Graphical representation of a DES model 
which can directly be fed to Event Graphs 
simulators, e.g. SIGMA (Compare with System 
Dynamics and AnyLogic)

• Very general – for most applications, more 
specialised concepts / simulators are used



The occurrence of an event with type A 

− causes state variable 𝑥 to change its state to 𝑦

causes an event with type  B 

− to be scheduled after a time delay of t, 

− providing condition (i) is true, after the state 
transitions for Event A have been performed

Event Graph Formalism

B

(i)

t
A

𝑥 ≔ 𝑦



• As the event-list is empty at the beginning 
of the simulation, a designated initial 
event needs to be given.

• Usually this event is labelled with „Run“

Event Graph Formalism

Run B

(i)

t
A

𝑥 ≔ 𝑦𝑥 ≔ 𝑐0



• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Example: Difference Equation



• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Run

𝑡: = 0
𝑦 ≔ 𝑦0

Example: Difference Equation

U

𝑦 ≔ 𝑎 ∙ 𝑦 + 𝑏

1

𝑡 < 𝑡𝑒𝑛𝑑

1



• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Run

𝑡: = 0
𝑦 ≔ 𝑦0

Example: Difference Equation

U

𝑦 ≔ 𝑎 ∙ 𝑦 + 𝑏

1

𝑡 < 𝑡𝑒𝑛𝑑



Arrival Process:

• Used to generate „entities“ coming 
from outside the system boundaries

• Usually changes increases a 
cumulative state variable by one. This 
variable is usually called a queue

• Sequence of interarrival times 𝑡𝐴 that 
can 
be 

− constant, a

− deterministic sequence, or a

− sequence of random variables

Classical Elements

Arrival

𝑡𝐴

𝑁 ++



Service Process:
• Used to treat „entities“ 

coming from, e.g. an arrival 
process

• If available (𝑆 > 0), takes an 
element from the queue

• Sequence of service times 𝑡𝑆
that can 
be 
− constant, a
− deterministic sequence, or 

a
− sequence of random 

variables

Classical Elements

Start 
Service

𝑡𝑆 End 
Service

𝑁 −−
𝑆 − −

𝑆 + +

𝑆 > 0



Multiple Server Queue

• Customers arrive to a service facility according to an 
arrival process and are served by one of k servers. 

• Customers arriving to find all servers busy wait in a 
single queue and are served in order of their arrival.

• Parameters: 
𝑡𝐴 = interarrival times 
𝑡𝑠 = service times
𝑘 = total number of servers

• State Variables: 
𝑄 ≔ # of customers in queue 
𝑆 = # of available servers



Multiple Server Queue

• Customers arrive to a service facility according to an arrival process 
and are served by one of k servers order of their arrival.

• Parameters: 
𝑡𝐴 = interarrival times 
𝑡𝑠 = service times
𝑘 = total number of servers

• State Variables: 
𝑄 ≔ # of customers in queue 
𝑆 = # of available servers

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start 
Service

End 
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆



• the inverse operation of the scheduling edge

• whenever event with tyoe A occurs, then if condition (i) is 

true, the first occurrence of an event with type B is 

removed from the event list

• if event B is not scheduled to occur, then nothing happens. 

• if there are multiple occurrences, only the first is removed. 

Cancelling Edge

A B

(i)



Multiple Server Queue with Failure

• Customers arrive to a service facility according to an arrival process and are served by one of k servers 
order of their arrival.

• With certain failure probability the server breaks while serving

• Parameters: 
𝑡𝐴 = interarrival times 
𝑡𝑠 = service times
𝑘 = total number of servers
𝑝𝑓 = failure probability
𝑈 = sequence of iid U[0,1] random numbers
𝑡𝑅 = repair time

• State Variables: 
𝑄 ≔ # of customers in queue 
𝑆 = # of available servers

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start 
Service

End 
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

Failure

𝑈 < 𝑝𝑓

𝑄 + +

𝑡𝑆

Fixed

𝑄 > 0 𝑆 + +



Scheduling edge with parameter: When A
occurs then, if (i) is true, B is scheduled after
t time units. When B occurs, its parameter k
will be set to the value given by the
expression j (j is calculated when A occurs).

Parameterization of Events

A B(k)

(i)

t
j

A B(k)

(i)

t
j



Tandem Server Queue

• Customers processed by one workstation consisting of a 
multiple-server queue. 

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p).. 

• Parameters: 
𝑡𝐴𝑖 = interarrival times at WS 𝑖
𝑡𝑠𝑖 = service times at WS 𝑖
𝑘𝑖 = total number of servers at WS 𝑖
𝑝 = probability to proceed from 1 to 2
𝑈 = sequence of iid U(0,1) random numbers

• State Variables: 
𝑄𝑖 ≔ # of customers in queue at WS 𝑖
𝑆𝑖 = # of available servers at WS 𝑖



Tandem Server Queue

• Customers processed by one workstation consisting of a 
multiple-server queue. 

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p).. 

Arrival

{Q ++}

Run Start

Service
End

Service

{Q  = 0, S  = k}

t
At

A

t
S

(S  > 0)

{Q --, S --}
{S ++}

(Q > 0)

Arrival

{Q ++}

Start

Service
End

Service

t
S

(S  > 0)

{Q --, S --}{S ++}

(Q  > 0)

(U < p)

2
22

11
1

2

2

22

2

2

2

1

1

1

1

111
11 



Tandem Server Queue

• Customers processed by one workstation consisting of a 
multiple-server queue. 

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p).. 

𝑈 < 𝑝, 𝑖 ≤ 2,



Multiple Server Queue

Case Study:

• What happens, when executing a Multiple 
Server Queue model with deterministic 
service and arrival times?

• Event Notices?

• Event List?

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start 
Service

End 
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆



DISCRETE start  

server = 2;  queue = 0

SCHEDULE arrival .AT. t+0.

END ! of start

DISCRETE arrival

queue = queue + 1;  t_arrival = 1

SCHEDULE arrival .AT. t+tarr

IF server .GE. 0 SCHEDULE start_service at t+0.

END ! of arrival

Event Notices and Parameters

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start 
Service

End 
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

DISCRETE start_service

queue  = queue – 1;  server = server -1

t_service = 2.5

SCHEDULE end_service .AT. t+t_service

END ! of start_service

DISCRETE end_service

server = server + 1

IF queue .GE. 0 SCHEDULE start_service at t+0. 

END ! of end_service



time event action schedule

0 ST Q=0; S=2; A at t+0=0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A

2.5 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2.5 ES

2 A

3.5 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



Event List  Multiple Server Queue

time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2 A Q=Q+1=1 A at t+1=3;  (SS condition not 

true)

2.5 ES

3.5 ES

3 A

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2 A Q=Q+1=1 A at t+1=3;  (SS condition not 

true)

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A

3.5 ES

5 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A Q=Q+1=1 A at t+1=4; (SS condition not 

true)

3.5 ES

5 ES

4 A

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A Q=Q+1=1 A at t+1=4; (SS condition not 

true)

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A

5 ES

6 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not 

true)

5 ES

5 A

6 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not 

true)

5 ES S=S+1=1; SS at t+0=5

5 SS simultaneous events – ordering problems

5 A

6 ES

Event List  Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5



time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not 

true)

5 ES S=S+1=1; SS at t+0=5

5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=7.5

5 A Q=Q+1=1; A at t+1=6; (SS condition not 

true)

6 ES

7.5 ES

6 A

Which one should occur first?
Does it matter?

Event List  Multiple Server Queue



time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not 

true)

5 ES S=S+1=1; SS at t+0=5

5 A Q=Q+1=2; A at t+1=6; SS at t+0=5

5 SS Q=Q-1=1; S=S-1=0 ES at t+2.5=7.5

6 ES

7.5 ES

6 A

5 SS

Event List  Multiple Server Queue

Which one should occur first?
Does it matter?



time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not 

true)

5 ES S=S+1=1; SS at t+0=5

5 A Q=Q+1=2; A at t+1=6; SS at t+0=5

5 SS Q=Q-1=1; S=S-1=0 ES at t+2.5=7.5

5 SS Q=Q-1=0; S=S-1=-1 ES at t+2.5=7.5

6 ES

6 A

7.5 ES

WRONG ORDER,
WRONG RESULTS

Event List  Multiple Server Queue



Simultaneous Events

• Simultaneous events occur when more than one event is schedule
to occur the exactly the same time.

• In some cases the order of execution of the events is irrelevant, but
in other cases certain permutations of the order of occurrence
impact the outcome dramatically, often leading to invalid state
trajectories and inadmissible values of state variables.

• Event Graph methodology provides the capability of prioritizing
scheduling edges, so that simultaneous occurrences of the
scheduled event always occur before other scheduled events.

• Although these edge priorities are typically not indicated on the
graph itself, all software implementations of Event Graph
methodology support edge prioritization.



Simulation Multiple Server Queue

t_arrival = 1,   t_service = 2.5,   max_server = 2

correct sequence of simultaneous 
events



Simulation Multiple Server Queue

t_arrival = 1,   t_service = 2.5,   max_server = 2

wrong sequence of simultaneous 
events



ANALYSIS OF QUEUING MODELS



Terminology

• Abbreviation of Queues:

Arrival Time Service Time Servers

Determinisitic D Determinisitic D One 1

Markovian M Markovian M Multiple m

General G General G

⇒ Possible combinations: 
D/D/1, M/D/m, G/D/m, M/M/m, ...



Terminology

• „Deterministic“: 𝑡 is Constant 

• „Markovian“: Distribution of 𝑡 is memoryless. 
I.e. Exponentially distributed 𝑡 ∼ 𝐸 𝜆
⇒ times become a Markov-process

• „General“ : Distribution of 𝑡 is arbitrary 
(positive)



Analysis of Queues

• Deterministic Queues (D/D/1, D/D/m):

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
> 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒

⇒ 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
≤ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒

⇒ 𝑠𝑡𝑎𝑏𝑙𝑒



Analysis of Queues

• Stochastic Queues (M/M/1,G/M/m,...):

𝐸(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒)

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
≥ 𝐸(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒)

⇒ 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝐸(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒)

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
< 𝐸(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒)

⇒ 𝑠𝑡𝑎𝑏𝑙𝑒



Analysis of Queues

• Notation
– 𝑌𝑘 – time elapsed between (k-1)th and k-th arrival  

– 𝑍𝑘 – k-th customer service time

– 𝑊𝑘 – k-th customer waiting time 

– 𝑋(𝑡) – average queue length

𝐸 𝑌𝑘 =
1

𝜆
… average interarrival time 

(𝜆 is the average arrival rate)

𝐸 𝑍𝑘 =
1

𝜇
… average service time

(𝜇 is the average service rate)



Analysis of Queues

• Customer system time
𝑆𝑘 = 𝑊𝑘 + 𝑍𝑘, the time k-th customer spends in the system

𝐸 𝑊𝑘 = 𝑊 … average waiting time 

𝐸 𝑆𝑘 = 𝑇 … average system time, 𝑇 = 𝑊 +
1

𝜇

• Little‘s law

– ഥ𝑁 … average number of customers in the system

ഥ𝑁 = 𝜆𝑇

– special cases

𝑋 𝑡 = ഥ𝑁𝑞 = 𝜆𝑊 … average number of customers in the queue

ഥ𝑁𝑠 =
𝜆

𝜇
… average no. of customers in service



Analysis of Queues

• Average waiting time in the queue

𝑊 =
1

𝜇 − 𝜆
−
1

𝜇
=

𝜌

1 − 𝜌 𝜇
, 𝜌 =

𝜆

𝜇

• Average length of the queue

𝑋 𝑡 = ഥ𝑁𝑞 = 𝜆𝑊 =
𝜌2

1 − 𝜌

• Average system time of customers

𝑇 = 𝑊 +
1

𝜇
=

1

𝜇 − 𝜆
=

1

1 − 𝜌 𝜇

• Average number of customers in the system

ഥ𝑁 = 𝜆𝑇 =
𝜌

1 − 𝜌

Results M/M/1 queues:



Analysis of Queues

• Exponential distribution of interarrival times 

• Service times are mutually independent and 
distributed arbitrarily with parameters

𝐸 𝑍𝑘 =
1

𝜇
in  𝑣𝑎𝑟 𝑍𝑘 = 𝜎2,   we define also   𝜌 =

𝜆

𝜇

• Average queue length

𝑋 𝑡 = ഥ𝑁𝑞 =
𝜌2

2 1 − 𝜌
1 + 𝜇2𝜎2

• Average number of customers in the system

ഥ𝑁 = ഥ𝑁𝑞 + 𝜌 =
𝜌

1 − 𝜌
−

𝜌2

2 1 − 𝜌
1 − 𝜇2𝜎2

Results M/G/1 queues:



OTHER SIMULATION ENVIRONMENTS



Other Simulation Environments

• Most DES models are based on entities being 
processed in a sysrem

• Therefore they use very similar process 
structures

• Event Graph description sometimes 
unnecessary general and unintuitive

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

unintuitive



Other Simulation Environments

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

• DES Simulators for simulation of processes 
usually use a more intuitive description 

DES Modeling in 
AnyLogic



Other Simulation Environments

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

• DES Simulators for simulation of processes 
usually use a more intuitive description 

DES Modeling in 
SimEvents

FIFO

Entity Queue
Entity Server

1

Entity Terminator

Entity

Entity Generator



EVENT GRAPHS BEYOND ENTITIES



Beyond Queues

• DES / Event Graphs not only interesting for 
queuing systems.

Init step

𝑡 = 0
𝑥 = 𝑥0

𝑡 = 𝑡 + ℎ
𝑥 = 𝑥 + ℎ𝑓(𝑡, 𝑥)

ℎ



Beyond Queues

• DES / Event Graphs not only interesting for 
queuing systems.

Init step

𝑡 = 0
𝑥 = 𝑥0

𝑡 = 𝑡 + ℎ
𝑥 = 𝑥 + ℎ𝑓(𝑡, 𝑥)

ℎ

Explicit Euler Method for 
approximation of ሶ𝒙 = 𝒇(𝒕, 𝒙)



Beyond Queues

• DES / Event Graphs not only interesting for 
queuing systems.

Case Study 1:   Collision of Spheres



Beyond Queues

• DES / Event Graphs not only interesting for 
queuing systems.



Discrete Event and Multi-Method 
Simulation with Anylogic



Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Event Graphs Discrete Event Simulation
Model

leads
to

System Dynamics
Differential Equation

Model
leads

to

Compare:



Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Discrete Event Simulation
Model

leads
to

Event Graphs
SimEvents GUI

Anylogic GUI

System Dynamics
Lagrange Formalism

Modelica/Dymola GUI

Differential Equation
Model

leads
to

Compare:



Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Discrete Event Simulation
Model

leads
to

Event Graphs
SimEvents GUI

Anylogic GUI

System Dynamics
Lagrange Formalism

Modelica/Dymola GUI

Differential Equation
Model

leads
to

Compare:



Getting started…

https://www.anylogic.com/downloads/

or

USB Stick

https://www.anylogic.com/downloads/


What is AnyLogic?

Example 1:
Potential 

Sales

Example 2:
Logistic 
Model



Basics



Basics

• AnyLogic Cloud: run models online from a web browser 

on any device, including phones and tablets, and share 

the models with other users.

• https://cloud.anylogic.com/

• Export models to the cloud

https://cloud.anylogic.com/


EXAMPLE: PREDATOR-PREY MODEL IN 
ANYLOGIC



Predator-Prey Model

General Idea:

The model describes the development of two populations. 

Population size depends on births and deaths.

Births depend on the population size.

Predator births also depends on the prey.

The predator population diminishes the prey population.

The predator death rate is independent from prey.



Predator-Prey Model

Model Equations:

ሶ𝑝𝑟𝑒𝑦 = 𝑏𝑖𝑟𝑡ℎ𝑝𝑟𝑒𝑦 − 𝑓𝑖𝑛𝑑𝑝𝑟𝑒𝑦 ∗ 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 ∗ 𝑝𝑟𝑒𝑦
ሶ𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 = 𝑓𝑒𝑒𝑑𝑦𝑜𝑢𝑛𝑔 ∗ 𝑝𝑟𝑒𝑦 − 𝑝𝑟𝑒𝑑𝑑𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 ∗ 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟



Predator-Prey Model

Lets build the model…



Predator-Prey Model



MULTI METHOD MODELLING



Basics on 
Multi-Method Modelling

Definition

If a system can be decomposed into subsystems and a model is applied to 
such a subsystem, this is called a submodel.

A multi-method model is a model that consists of at least two submodels, 
where at least two different modelling techniques are used. These 
submodels exchange information in some way. This process of information 
exchange is called combining.



Different Types of Multi Method Models



Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of 
the outbreak of an epidemic

Susceptible person

Infectious
person

infectious
contact

diagnosis

Quarantined
person

Immune
person

treatment

loss of 
immunity



Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of 
the outbreak of an epidemic

Modelling Problem:

Modelling a disease requires either a nonlinear macroscopic model or a 
microscopic model with contacts

⇕

Modelling utilization of processes is best modelled with servers and 
queues.



Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of 
the outbreak of an epidemic

Modelling Problem:

Modelling a disease requires either a nonlinear macroscopic model or a 
microscopic model with contacts

⇕

Modelling utilization of processes is best modelled with servers and 
queues.

System Dynamics

Discrete Event Simulation



Example: SIRS Epidemic

Let‘s build the model….



EXAMPLE: AIRPORT MODEL IN ANYLOGIC



Source

Initializes the event „Arrival of
Entity/Entities“

Parameters:

-) Arrival Rate & Interarrival time: 
When do Entities arrive?

-) Entities per Arrival: How much?

Anylogic GUI: Blocks for DES Models



Sink

Initializes event „Remove 
Entity/Entities“

Passive without parameters

Anylogic GUI: Blocks for DES Models



Queue

Initializes event „Waiting 
Line“

Parameters:

-) Capacity

-) Timeout

-) Preempted abort

Anylogic GUI: Blocks for DES Models



Seize

Initializes event „get resources“

Parameters:

-) Number of resources

-) Includes a queue

-) Timeout

-) Preempted abort

Stays attached until Release

Anylogic GUI: Blocks for DES Models



Resource Pool

Container of resources of
same kind

Parameters:

-) Capacity (absolute or
schedule)

-) Is used by Seize, Release
and Service

Anylogic GUI: Blocks for DES Models



Release

Initializes event „Release 
Resource“

Parameters:

-) Capacity

-) Coupled to a Resource
Pool

Anylogic GUI: Blocks for DES Models



Delay

Initializes event „Wait“

Parameters:

-) Waitingtime

-) Capacity

Anylogic GUI: Blocks for DES Models



Server

Initializes event „Processing“

Parameters:

-) Consists of Seize, Delay, 
Release

-) Capacity

-) Timeout and preempted
abort

Anylogic GUI: Blocks for DES Models



Split and Combine Initialize 
events „Copy“ and „Join“

Parameters:

-) Number of copies

-) Different classes of copies
possible

-) Does not forward the
CLOCK

Anylogic GUI: Blocks for DES Models



SelectOutput

Initializes event „Decide“

Parameters:

-) On condition

-) On probability

Anylogic GUI: Blocks for DES Models



Assembler

Initializes event „construction“

Parameters:

-) Capacity of inputs

-) Delay

-) Can use resources

-) Different classes possible

Anylogic GUI: Blocks for DES Models



Conveyor

Initializes event „conveyor“

Parameters:

-) Length

-) Space between entities

-) Speed

Anylogic GUI: Blocks for DES Models



Anylogic GUI: Blocks for DES Models



Example: Airport

Research Question:

How many check-in counters, security control and counters for passport 
control do we need on an airport with given flight schedule?



Example: Airport

Research Question:

How many check-in counters, security control and counters for passport 
control do we need on an airport with given flight schedule?



Introduction to Cellular Automata



BASIC CONCEPTS



Cellular Automata

• Modelling using „cellular
automata“, short CA, is a 
microscopic simulation
method

• Cellular automata can be
imagined as a coloured
grid observed dynamically

Although this is a very simplified image of a CA, 
keep it in mind to understand the formal details of

this concept



Components of a CA

• Cells



Components of a CA

• Cells

▪ Notations: cell, entity, node
▪ Cells are passive: no internal dynamic, only container 

for some information
▪ Each cell has some state.



Components of a CA

• Cells

• States

• State-space

▪ Every Cell has a state
▪ There is always some space 𝕊 that contains all 

possible states. It is usually called state-space.

A 3.14 (3,6,1) 1



Components of a CA

• Cells

• States

• State-space

A 3.14 (3,6,1) 1

Every cell has a state from a 

common state-space



Components of a CA

• Cells

• States

• State-space

A 3.14 (3,6,1) 1

Every cell has a state from a 

common state-space



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

▪ All cells are arranged on some lattice structure: the
„cell-space“ – in the simplest case, a rectangular grid.

▪ There is some index mapping that maps some subset 
of I ⊂ ℤ𝑑 onto each cell



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

1

3
2

4



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

(3,4)



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

(3,4)

Sometimes indexing is not 
so trivial…



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

It often is, but does not necessarily have to be a 
natural attribute of the cell-space…



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

▪ Possible characteristics of the index set:
• regular
• finite or infinite
• connected
• multi-dimensional

▪ Interpretation of the index set: discretisation of a space or spatial arrangement 
of entities



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

A 3.14 (3,6,1) 1

The neighborhood of a cell z is an ordered set of 
n other cells (𝑧1, … , 𝑧𝑛).

1

2
3

4

5



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

A 3.14 (3,6,1) 1

Some examples:



Neighbourhood

• The neighbourhood mapping is relative to the cell’s 
position (= index)

• Calculation of neighbouring cells by stencil: Index 
translations yield the positions (index) of n
neighboring cells: 𝑖 ↦ 𝑖 + 𝑡1, … 𝑖 + 𝑡𝑛

(𝑖, 𝑗) (𝑚, 𝑛)

(𝑘, 𝑙)



Neighbourhood

• Possible characteristics of neighbourhoods:

▪ local: the neighbourhood consists of cells of
neighboring points on the grid

▪ symmetric: the neighborhood of cell A contains cell B 
if and only if the neighborhood of cell B contains cell A



Neighbourhood

• Classic, popular neighborhoods

Moore

neighborhood
Von-Neumann

neighborhood

𝑑

Neighbourhood by distance:

𝑖 → {𝑗 : 𝑖 − 𝑗 < 𝑑}



Neighbourhood

• Von Neumann/Moore Neighbourhood of higher 
order

Von-Neumann

neighborhood 

1st order

Von-Neumann

neighborhood 

2nd order

Von-Neumann

neighborhood 

3rd order



Neighbourhood

• The index set is limited → either incomplete
neighborhoods for cells near the borders
𝑧1, 𝑧2, ∅, 𝑧4… , 𝑧𝑛 ….

…or other compensation ideas.

Periodic Boundary Conditions (Torus)



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

A 3.14 (3,6,1) 1

Some rule, that simultaneously updates all states of all cells of 
the CA. 
Maps all states of a cell’s neighbourhood to a new state for the 
cell.



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

A 3.14 (3,6,1) 1

𝑓 𝑠, 𝑠1, … , 𝑠𝑛 = 𝑠𝑛𝑒𝑤

state of

the cell

state of the

(ordered) neighbors

new state of

the cell

Stochastic CAs have
stochastic updates!



Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA



Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =
= 1 + 1 + 2 + 1 + 0 𝑚𝑜𝑑4 =
= 5 𝑚𝑜𝑑 4 = 1



Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

2

𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =
= 1 + 1 + 2 + 3 + 3 𝑚𝑜𝑑4 =
= 10 𝑚𝑜𝑑 4 = 2



Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

2

0

𝑓 𝑠, 𝑠1, 𝑠2, ∅, 𝑠4 =
= 1 + 1 + 1 + 1 𝑚𝑜𝑑4 =
= 4 𝑚𝑜𝑑 4 = 0

The update function needs to
be capable to deal with

incomplete neighbourhoods as
well



Updates

▪ Updates happen for all cells simultaneously.

– Neighborhoods are all computed from the same 
system state

– Update order of cells is irrelevant

Why?



Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

• Iterations

A 3.14 (3,6,1) 1

Iteratively apply the update rule on the complete CA 
finally leads to a simulation model



Iterations

▪ Define discrete, equidistant time points (all time 
steps between time points are of the same length): 
𝑡0, 𝑡1,…,𝑡𝑛

▪ Every update of states brings the model to the next 
time point

➢ Cellular Automaton (CA)



Iterations

▪ Tasks for one iterations

– Compute the neighbors of all cells

– Determine states of all cells, and states of all 
neighbours of all cells

– Compute state updates for all cells and store them

– Apply the updated states for all cells

time 𝑡0 time 𝑡1 …           time 𝑡𝑛

…



Properties of CA models

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

They are, hence, not only
a very powerful, but also
a very dangerous
modelling approach with
respect to validity.

1D deterministic CA!
Time is plotted vertically



Properties of CA models

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

Stephen Wolfram
(A New Kind of Science, 2002)
stated that CAs may have one
of the four types of
behavour:

fixed, cyclic, complex, chaotic

Chris Langton developed
the schematic to the right. 



CONWAY’S GAME OF LIFE
Example:



Conway‘s Game of Life

▪ Cells on a 2-dimensional, rectangular or infinite 
lattice: 𝐼 = (1,2, … 𝑎) × (1,2, … , 𝑏) or on 𝐼 = ℤ2.

▪ Set of states: 𝕊 = (𝑎𝑙𝑖𝑣𝑒 , 𝑑𝑒𝑎𝑑 )

▪ Moore neighborhood

Index translations: 
1
0
, 1
1
, 0
1
, −1

1
, −1

0
, −1
−1

, 0
−1

, 1
−1



Conway‘s Game of Life

▪ Update rules:

– An alive cell with fewer than two or 
more than three alive neighbors 
dies (“under-population” or 
“overcrowding”)

– A dead cell with exactly three alive 
neighbors becomes alive 
(“reproduction”)

– Cells keep their state in any other 
case

→

→

→

→



Conway‘s Game of Life

time t=0 time t=1



Conway‘s Game of Life

▪ Designed by John Horton Conway, 1970

▪ Why “Game of Life”?

– Teaching purposes

– Academic competitions

– Fundamental/methodological research

– Game→ figures

Probably worst example for a Cellular Automata
simulation model,…

…but probably the best example to show the
concepts of CAs. 



Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Static figures

Loaf
Block

Beehive Boat



Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Oscillators

Pulsar (period 3)

Blinker (period 2)

Toad (period 2)

Beacon (period 2)



Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Gliders (moving
objects)

Lightweight spaceship (LWSS)

Glider



Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

As it seemed as if any starting configuration of the GoL
resulted in a static or oscillating end-configuration, Conway 

offered a price of 50$ for a pattern that resulted in an 
infinitely growing population.



Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Bill Gosper‘s answer:

Gosper Glider Gun



NAGEL SCHRECKENBERG MODEL
Example



Nagel-Schreckenberg-Model

• discretisation of a road or motorway into cells of approximately 4m
• possible states:

– 𝑠 = 0: no vehicle
– 𝑠 > 0: speed of vehicle

• update rules (implicitly defined!):
– accelerate: IF 𝑣 < 𝑣_max AND next vehicle 𝑣 + 1 cells away THEN 
𝑣(𝑡 + 1) = 𝑣(𝑡) + 1

– brake: IF next vehicle 𝑗 cells away AND 𝑗 < 𝑣 THEN
𝑣(𝑡 + 1) = 𝑗 – 1

– randomisation: 𝑣(𝑡 + 1) = 𝑣(𝑡) – 1 with a certain probability
– movement: 𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝑣(𝑡)

Application Example: Traffic 
Simulation



Application Example: Traffic Simulation



Application Example: Traffic Simulation



Application Example: Traffic Simulation



DYNAMIC MAPS
Example



• map shows relation between sizes

• The dots symbolises cancer patients

Dynamic Cartography



Dynamic Cartography



• Amount of cancer patients spread equally to squares 
in each region (e.g. staats) 

• Diffusion from places with high density to low

• Diffusion continues until the density is equal 
distributed

• Regions with higher density grow, others shrink

Dynamic Cartography
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Neumann-Model

Moore-Model

Dynamic Cartography - Boundaries



Dynamic Cartography - Results



1 2

3

Dynamic Cartography - Population



1 2

3

Dynamic Cartography - Tourism



1 2

3

Dynamic Cartography – Hunting
game



LATTICE GAS CELLULAR AUTOMATA
(LGCA)

Example



Lattice Gas Cellular Automata

▪ Lattice Gas Cellular Automata (LGCA)

▪ Extension of the CA concept

▪ Intention: Simulate fluids and gases

▪ Invented by Hardy, Pomeau and de Pazzis (HPP 
automaton on square lattice), 1973 

▪ Improved by Frisch, Hasslacher and Pomeau (FHP 
automaton on hexagonal grid), 1986



Lattice Gas Cellular Automata

• Ideas

▪ Cells do not have states but instead can contain 
particles

▪ A particle can only proceed to a cell in the 
neighborhood

▪ Instead of state updates, particles move to other cells

▪ Particles represent the fluid or the gas



Lattice Gas Cellular Automata

• HPP

▪ square grid, Von-Neumann neighborhood, max. 4 
particles per cell so that max. 1 particle goes to each 
neighbor

▪ several issues when it comes to real interpretations 
(comparison with real fluids, validation)



Lattice Gas Cellular Automata

• FHP

▪ hexagonal grid

▪ neighborhood = surrounding cells

▪ max. 6 particles per cell, each going into a different
direction→ consistent definition

▪ Corresponds to the Navier-Stokes-Equations → valid
representation of fluid dynamics



FHP Model

neighbourhood particles and directions



FHP Model

▪ Particle movements consist of two phases

– Rotation of cells for special configurations

– Movements of particles into their direction

▪ Developed by Wolf-Gladrow (2000)

▪ Different variations (FHP-I, FHP-II, FHP-III)



FHP Model

• Rotations

▪ In the most simple case of FHP-I only for two
situations

▪ Provide a randomness



FHP Model

• Movements into designated directions



LGCAs

• Simulations & Visualizations

• HPP
• http://en.wikipedia.org/wiki/File:Gas_velocity.gif

• FHP
• http://www.youtube.com/watch?v=HluQpDFOceg

• http://www.youtube.com/watch?v=00W6H7BGZ94

http://en.wikipedia.org/wiki/File:Gas_velocity.gif
http://www.youtube.com/watch?v=HluQpDFOceg
http://www.youtube.com/watch?v=00W6H7BGZ94


Remark: Implementation of a 
hexagonal grid

• Implementation

▪ hexagonally arranged grid → assign to a square lattice

▪ conditional neighborhoods



Remark: Implementation of a 
hexagonal grid



Remark: Implementation of a 
hexagonal grid



EPIDEMIC SIMULATION
WITH CA AND LGCA

Example



SIR concept

• Simulate the spread of an epidemics

• Susceptible (S) people become infected by infectous
(I) and become resistant/recovered (R) after some
time.

• Resistant persons cannot be infected again.

S I R



CA Implementation

CA Implementation of SIR epidemics:

• Every cell in a rectangular (hexagonal..) lattice represents
a person/group of persons/household/…

• Infecious cells recover after some time (with some
probability).

• Infectious cells may spread the disease to their
neighbours (e.g. Moore neighbourhood)



LGCA Implementation

LGCA Implementation of SIR epidemics:

• Every cell in a rectangular (hexagonal..) lattice contains a 
number of persons (e.g. 4)

• Infecious persons recover after some time (with some
probability).

• Infectious persons may spread the disease to all other
persons in the cell



LGCA Implementation

LGCA Implementation of SIR epidemics:

Infection

- Phase

Movement

-Phase

Infection

- Phase



Epidemic simulation with CA



Epidemic simulation with HPP-LGCA



HISTORY OF
CELLULAR AUTOMATA



History of Cellular Automata

• 1925: Ising Modell

– ferromagnetism, discrete model

• 1950: Von Neumann, Ulam

– term “cellular automaton”

– self reproductive, Von-Neumanns theory on logic 
automata



• 1950-1970: Zuse, u.a.

– parallel algorithms

– discrete processes (e.g. PDEs)

• 1970s: Hardy, Pomeau, de Pazzis

– Lattice Gas Cellular Automata

• 1979: Conway's Game of Life



History of Cellular Automata

• 1980+: different applications

• 2002: Wolfram

– complete classifications of 1-dimensional cellular 
automata



History of Cellular Automata

Stephen Wolfram, „A new Kind of Science“



History of Cellular Automata

▪ a spatially extended decentralized system made up
of a number of individual components […] local
interaction […] depending on the states of its local
neighbors […] parallel processing [Ganguly]

▪ regular grid of cells, each in one of a finite number of
states […] neighbourhood […] new generation is
created according to some fixed rule [Wikipedia]



History of Cellular Automata

▪ regular arrangements of single cells […] each cell
holds a finite number of discrete states […] updated
simultaneously […] the rules for the evolution of a
cell depend only on a local neighborhood [Gladrow]



CONCLUSIONS
5. Conclusions



Characteristics of CA

• Regular lattice, same kind of  neighbourhoods



Characteristics of CA

• Discrete time, equidistant time steps



Characteristics of CA

• Spatial representation, locality



Applications for Cellular 

Automata



• map shows relation between sizes

• The dots symbolises cancer patients

Dynamic Cartography



Dynamic Cartography



• Amount of cancer patients spread equally to 
squares in each region (e.g. staats) 

• Diffusion from places with high density to low

• Diffusion continues until the density is equal 
distributed

• Regions with higher density grow, others 
shrink

Dynamic Cartography
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Neumann-Model

Moore-Model

Dynamic Cartography - Boundaries



Dynamic Cartography - Results



1 2

3

Dynamic Cartography - Population



1 2

3

Dynamic Cartography - Tourism



1 2

3

Dynamic Cartography – Hunting game



Nagel-Schreckenberg-Model

• discretisation of a road or motorway into cells of 
approximately 4m

• possible states:
– 𝑠 = 0: no vehicle
– 𝑠 > 0: speed of vehicle

• update rules (implicitly defined!):
– accelerate: IF 𝑣 < 𝑣_max AND next vehicle 𝑣 + 1 cells away 

THEN 𝑣(𝑡 + 1) = 𝑣(𝑡) + 1
– brake: IF next vehicle 𝑗 cells away AND 𝑗 < 𝑣 THEN

𝑣(𝑡 + 1) = 𝑗 – 1
– randomisation: 𝑣(𝑡 + 1) = 𝑣(𝑡) – 1 with a certain probability
– movement: 𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝑣(𝑡)

Application Example: Traffic Simulation



Application Example: Traffic Simulation



Application Example: Traffic Simulation



Application Example: Traffic Simulation



Introduction to  

Agent-Based Modelling 



Historical Background  

• Agent-based modelling is a comparably young 
modelling technique. 

• Were inspired by Cellular Automata (Von 
Neumann, Ulam, etc) 

• Thomas Schelling‘s Model of Segregation (1971) 
is broadly denoted as the first agent-based model 

Model segregation behaviour between individuals 

with different races in US in the 1970s 

http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/


Historical Background  

• Agent-based modelling is a comparably young 
modelling technique. 

• Were inspired by Cellular Automata (Von 
Neumann, Ulam, etc) 

• Thomas Schelling‘s Model of Segregation (1971) 
is broadly denoted as the first agent-based model 



Historical Background  

• Agent-based modelling is a comparably young 
modelling technique. 

• Were inspired by Cellular Automata (Von 
Neumann, Ulam, etc) 

• Thomas Schelling‘s Model of Segregation (1971) 
is broadly denoted as the first agent-based model 



A Small but Powerful Difference… 

CA Model 
Each cell is assigned a colour 

(= a person if colour is not white) 



A Small but Powerful Difference… 

Agent Based 

Model (ABM) 
Each agent (= person) is 

assigned a colour 

(blue or red) and a cell 

agent 



A Small but Powerful Difference… 

for C in Cellspace: 
     if C is not white: 
          N(C) = neighbourhood of C 
          do update rules with C w.r. to N(C) 
Update Cellspace 
 

for A in AgentList: 
     get cell and color of A 
     find neighboured agents N(A) 
     do some actions with A w.r. to N(A) 
Update AgentList 
 

ABM CA Model 

Pseudocode representation of a time step in Schelling‘s model. 

In principle both representations make sense for this 

application. Yet Schelling used the second concept to 

describe the model for its benefits. 



A Small but Powerful Difference… 

for A in AgentList: 
     get cell and color of A 
     find neighboured agents N(A) 
     do some actions with A w.r. to N(A) 
Update AgentList 
 

In principle both representations make sense for this 

application. Yet Schelling used the second concept to 

describe the model for its benefits. 

We could distinguish 

between male and female 

agents (persons)  

We do not have to 

use a cell-space 

It could be some 

„grayscales“ in between if 

we want to  

We could add some 

immigrants We could introduce 

death of agents 

We do not have to 

use a dicrete time-

step!  ABM 

We could include 

more realistic 

distributions 

It is easier to explain the 

model as it is a more 

natural description! 



Agent 

Why Agent? 



Agent 

Latin: „agere“ (to act) 



What is an Agent? (1) 

• Agent – lat. agere (act) 

• There is no unique definition. The word is very 

broadly used. 

[Agent-based modelling is...]  

„Rather a general concept“ 

(Winter Simulation Conference 2005 & 2006) 

 



What is an Agent? (2) 

 With respect to Winter Simulation Conference (2005 & 

2006) an agent has to... 

 

... be uniquely identifiable 

... cohabitate an environment with other agents, 

and has to be able to communicate with them. 

... be able to act targeted. 

... be autonomous and independent. 

... be able to change its behaviour.  



What is an Agent? (2) 

 With respect to Winter Simulation Conference (2005 & 

2006) an agent has to... 

 

... be uniquely identifiable 

... cohabitate an environment with other agents, 

and has to be able to communicate with them. 

... be able to act targeted. 

... be autonomous and independent. 

... be able to change its behaviour.  

Optional properties  (Wintersimulation Conference 2015) 



What is an Agent? (3) 

Agent 



What is an Agent? (3) 

Act Targeted 

Target 

Agent 



What is an Agent? (3) 

Act Targeted 

Target 

Agent 



Cohabitate an environment 

with other agents 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 



What is an Agent? (3) 
Uniquely Identifiable 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 



What is an Agent? (3) 
Uniquely Identifiable 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 



What is an Agent? (3) 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 

Can interact and 

communicate 



What is an Agent? (3) 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 

Can change its behaviour 

individually. 



What is an Agent? (3) 

Agent 
Agent 

Agent 
Agent 

Agent 

Agent 

Can change its behaviour 

individually. 



Short Summary 

• Agent-Based modelling is a bottom up modelling 

approach using a big number of individual system 

components (agents). 

• The components act independently (following given 

rules) 

• As it requires a lot of processing resources ABM is a 

very young science with high potential. 



Properties of Agent-Based Models 

a. Representation of „emergent phenomena“ 

 

b. Flexibility  

(Bonabeau, 2002) 

 

c. Natural description of the system 

 

 



Properties of Agent-Based Models 

a. Representation of „emergent phenomena“ 

 

b. Flexibility  

(Bonabeau, 2002) 

 

c. Natural description of the system 

 

 



Representation of „Emergent 

Phenomena“ 

Simple rules for individual agents 

 

Complex dynamics of the whole system 

 

group dynamics / swarm intelligence 

 



Simple rules 

Representation of „Emergent 

Phenomena“ 



Can lead to complex 

behaviour 

Representation of „Emergent 

Phenomena“ 



Example: Fish or bird flocks 

https://www.youtube.com/watch?v=QOGCSBh3kmM 

https://www.youtube.com/watch?v=QOGCSBh3kmM


Boids Flock Model 

Each agent tends towards 

the centre of its neighbours 

Keep a distance that is 

neither too far nor too small 

Swim in the same direction 

as your neighbours 

Wilensky, U. (1998). NetLogo Flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking. Center for Connected Learning and 

Computer-Based Modeling, Northwestern University, Evanston, IL. 

http://netlogoweb.org/launch
http://ccl.northwestern.edu/netlogo/models/Flocking


Properties of Agent-Based Models 

a. Representation of „emergent phenomena“ 

 

b. Flexibility  

(Bonabeau, 2002) 

 

c. Natural description of the system 

 

 



Flexibility 

• Change of details is very easy compared to other 

(especially macroscopic) modelling approaches. 

• Different parameterisation of single agents does not 

require changes within the system structure.  

• Change or addition of (meta) rules for single agents 

does not influence the system structure as well (as 

long as they remain compatible with the system). 



Example: Emergency exit strategy 

Agent-Based 

Model 

Macroscopic 

approach 

Example: Emergency exit strategy 



Example: Emergency exit strategy 

Agent-Based 

Model 

Macroscopic 

approach 

(Navier Stokes 

PDE Based Model) 



Example: Emergency exit strategy 

Agent-Based 

Model 

Macroscopic 

approach 



Agent-Based 

Model 

Example: Emergency exit strategy 



Agent-Based 

Model 

Macroscopic 

approach 

Example: Emergency exit strategy 



Example: Emergency exit strategy 

Agent-Based 

Model 



Properties of Agent-Based Models 

a. Representation of „emergent phenomena“ 

 

b. Flexibility  

(Bonabeau, 2002) 

 

c. Natural description of the system 

 

 



• Components of the system look like in 

reality 

• Parameters can be seen like data or 

properties of individuals in reality 

• No mathematical background knowledge is 

required in order to understand the 

modelling approach 

Natural description of the System 



Agent 

Current Position: 

Wiedner  

Hauptstraße 8-10 

Ground Floor 

Current State: 

Learning, 

Healthy, 

Hungry, 

Tired 

... 

Properties: 

Female, 

41 years, 

1.72 m, 

71kg, 

Non Smoker, 

... 

Target: 

Survive  

until Lunch  

Communi- 

cating with: 

Colleague to the left, 

Colleague to the right, 

Lecturer, 

... 

 

Natural description of the System 



Example: GEPOC (Generic 

Population Concept)  

• Population model of Austria 

• Simulation of Austria‘s population from 1999 to make prognosis until 

2050 

Each agent has a 

certain coordinate, 

dies, emigrates, 

immigrates and 

reproduces 



Example: GEPOC (Generic 

Population Concept)  

• Population model of Austria 

• Simulation of Austria‘s population from 1999 to make prognosis until 

2050 

Each agent has a 

certain coordinate, 

dies, emigrates, 

immigrates and 

reproduces 

VALIDATION? 



Example: GEPOC (Generic 

Population Concept)  

VALIDATION PROCESS: 
• Project for two years. 

• Parametrisation and Validation data for time <2016 from Statistics 

Austria 

• Parametrisation and Validation for time >=2016 matched with 

Statistics Austria Prognosis tool 



Example: GEPOC Flu 

• Simulation of 2014 Flu 

• Contact driven disease spread 

Each agent has 

certain number of 

contacts each time-

step 

movie.html 

../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html


Example: GEPOC Flu 

• Simulation of 2014 Flu 

• Contact driven disease spread 

Each agent has 

certain number of 

contacts each time-

step 

movie.html 

VALIDATION? 

../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html


Example: GEPOC Flu 

HOW ABOUT 

VALIDATION? 

THIS model is absolute rubbish and has hardly 

anything to do with reality! 



Beware of wrong ideas! 



Interpretation of Agent-Based 

Model Results 

Basically two classes of 

agent-based models can 

be observed 
ABMs for quantitative 

investigation 

• Usually interested in 

temporal behaviour 

of aggregate 

numbers 

• Usually used for 

some kind of 

resource planning 

 

 

ABMs for qualitative 

investigation 

• Usually interested in 

(temporal behaviour) of 

patterns 

• Usually used for 

foundamental scientific 

research 

 

 



Interpretation of Agent-Based 

Model Results 

Basically two classes of 

agent-based models can 

be observed 
ABMs for quantitative 

investigation 

• Rather simple agent 

interactions 

• A lot of data 

involved for model 

parametrisation and 

validation 

• Usually less famous 

 

ABMs for qualitative 

investigation 

• (On purpose) very 

abstract 

• Usually very complex 

model behaviour 

• Hardly any parameters 

identified with real data 

 



Interpretation of Agent-Based 

Model Results : Examples 

ABMs for qualitative 

investigation 

ABMs for quantitative 

investigation 

Schelling‘s Segregation Model 

GEPOC 



Interpretation of Agent-Based 

Model Results : Examples 

„Schelling‘s model 

predicts: In a few years 

only immigrants in Wien 

Hietzing!“ 

WRONG 

INTERPRETATION 



Interpretation of Agent-Based 

Model Results : Examples 

„If we do not take care on 

our migration policy human 

homophobia might lead to 

spatially visible ghettoism 

as seen above in Austria as 

well!“ 

CORRECT 

INTERPRETATION 



Interpretation of Agent-Based 

Model Results : Examples 

WRONG 

INTERPRETATION 

„GEPOC predicts: 

In two years there 

will be a 50 year 

old immigrant in 

Leibnitz“ 

Hi guys, i‘m 

Mike In general: Never  pick only one 

agent from an ABM! 



Interpretation of Agent-Based 

Model Results : Examples 

„GEPOC 

predicts: Austrian 

population is 

assumed to grow 

to x.x Mio people 

until 2030.“ 

CORRECT 

INTERPRETATION 



Summary: Agent-Based Models 

Agent-based models are good in… 

• … analysis and discovery of complex group dynamic 

behaviour. This must not necessarily be a good thing 

as emergent behaviour may occur in models even if it 

is not correct. 

• … communitcating models to non-experts.  

The modelling appoach is easy to understand, 

picturesque and no mathematical background is 

necessary. 



Summary: Agent-Based Models 

Agent-based models are good in… 

• … analysis and discovery of complex group dynamic behaviour.  

• … communitcating models to non-experts.  

Agent-based modelling is problematic … 

• … regards misinterpretation. If it looks like reality it 
must not necessarily be a valid model for it.  

• … regards the validation process. Validation of ABMs 
is a difficult task due to complex model behaviour. 

• … regards computer ressources. ABMs require high 
performance CPUs and a lot of RAM. 



Questions? 



Discrete Modelling 

Difference Equations

Part 1



Difference Equation

• equations involving differences of inputs and 
outputs

• three points of views

– sequence of number

– discrete dynamical system

– iterated function

Difference equation - is a sequence of numbers that 

generated recursively using a rule to relate each number in the 
(output) sequence to previous (output) numbers and input 
numbers in the sequence.



Difference Equations 

• Fibonacci Sequence :

• Growth model

• Dynamical System with unit step input

𝑦 𝑘 = 2𝑦 𝑘 − 1 +
3

2
𝑢 𝑘

𝑢 𝑘 = ቊ
0, 𝑘 = −1,−2,−3,…
1, 𝑘 = 0,1,2,3, …

⇒ 𝑦 𝑘 =
3

2
(1 − 2𝑘+1)

1,1,2,3,5,8,13,21,34
𝑦 𝑘 + 2 = 𝑦 𝑘 + 1 + 𝑦 𝑘
𝑦 0 = 𝑦 1 = 1, 𝑘 = 0,1, …



Difference Equations 

• Iterated map 𝑓 𝑘

𝑦 𝑘 + 2 = 𝑓 𝑦 𝑘 , 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3, …

orbit  {𝑦0, 𝑓 𝑦0 , 𝑓 𝑓 𝑦0 , 𝑓 𝑓 𝑓 𝑦0 , … }

dependent on  𝑦0

• Example: 𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 ≔ 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3…

𝑦 0 = 1,⇒ 𝑜𝑟𝑏𝑖𝑡 1,1,1,1,…
𝑦 0 = −1 ⇒ 𝑜𝑟𝑏𝑖𝑡 −1,1,1,1,…
𝑦 0 = 2 ⇒ 𝑜𝑟𝑏𝑖𝑡 2,4,16,256,65536,…

𝑦 0 =
1

2
⇒ 𝑜𝑟𝑏𝑖𝑡 {0.5,0.25,0.0625, 0.00390625,… }



Difference Equations 

• Example 𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3

𝑦 0 =
1

2
⇒ 𝑜𝑟𝑏𝑖𝑡 {0.5,0.25,0.0625, 0.00390625,… }

Cobweb Function:

𝑦 0 , 0 → 𝑦 0 , 𝑦 1 →

→ 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2 →

→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 →

→ 𝑦 3 , 𝑦(3) → 𝑦 3 , 𝑦 4 →

…

„oscillates“ between
y = 𝑓 𝑥 and 𝑦 = 𝑥



Difference Equations 

• Equlibria – Fixed Points
𝑦 𝑘 + 2 = 𝑓 𝑦 𝑘 , 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3, …
𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑦∗: 𝑦∗ = 𝑓 𝑦∗ ⇔ 𝑦(𝑘 + 1) = 𝑓 𝑦 𝑘 = 𝑦(𝑘)

• Attractive/stable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑦∗

• Repelling/unstable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑓𝑟𝑜𝑚 𝑦∗

• Graphic Test for stability / instability:

Cobweb-function stable/attractive:
𝑦 0 , 0 → 𝑦 0 , 𝑦 1 → 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2
→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 → ⋯ → 𝑦 ∗, 𝑦 ∗

Cobweb−function stable/attractive:
𝑦 0 , 0 → 𝑦 0 , 𝑦 1 → 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2
→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 → ⋯𝑑𝑖𝑣𝑒𝑟𝑔𝑒



Difference Equations

Cobweb Diagram

• Graphical technique to
investigate iterated
functions

• Iteration is performed
graphically

• Consists of

– Iterated Function 𝑓 𝑦

– 1.Mediane 𝑦 𝑘 + 1 = 𝑦 𝑘

– Cobweb path

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘 )

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)
𝑦 𝑘 + 1 =

4

9
𝑦 𝑘 +

7

2



Cobweb Functions

Inward spirals lead to
attracting fixed points

Outward spirals from
repelling fixed points

𝑦 𝑘 + 1 = −0.6𝑦 𝑘 + 8 𝑦 𝑘 + 1 = −3.5𝑦 𝑘 + 17.5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)



Cobweb Functions

• Example 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 ≔ 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3…

⇒ 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑎 𝑦∗ = 𝑓 𝑦∗ = 𝑦∗2 ⇒ 𝑦∗ ∈ {0,1}

Cobweb Function:

𝑦 0 , 0 → 𝑦 0 , 𝑦 1 →

→ 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2 →

→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 →

→ 𝑦 3 , 𝑦(3) → 𝑦 3 , 𝑦 4 →

… → (0,0)

attracts 𝑦∗ = 0



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,…

• Examples in Finance

– Actual balance y(n) 
- after n compounding periods
- with annual interest I
- compounded m times a year
- and constant amount b added at the

end of every compounding period:

𝑦 𝑛 + 1 = 1 +
𝐼

𝑚
𝑦 𝑛 + 𝑏



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,…

• Solution
𝑦 1 = 𝑎𝑦 0 + 𝑏 = 𝑎𝑦0 + 𝑏
𝑦 2 = 𝑎𝑦 1 + 𝑏 = 𝑎 𝑎𝑦0 + 𝑏 + 𝑏 = 𝑎2𝑦0 + 𝑎𝑏 + 𝑏
𝑦 3 = 𝑎𝑦 2 + 𝑏 = 𝑎 𝑎2𝑦0 + 𝑎𝑏 + 𝑏 + 𝑏
= 𝑎3𝑦0 + 𝑎2 + 𝑎 + 1 𝑏
…

𝑦 𝑘 = 𝑎𝑘𝑦0 + 1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1 𝑏 = 𝑎𝑘𝑦0 + 𝑏

𝑖=0

𝑘−1

𝑎𝑖



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1 𝑏 = 𝑎𝑘𝑦0 + 𝑏

𝑖=0

𝑘−1

𝑎𝑖

σ𝑖=0
𝑘−1𝑎𝑖 geometric series for 𝑎 ≠ 1

→ 

𝑖=0

𝑘−1

𝑎𝑖 =
1 − 𝑎𝑘

1 − 𝑎

and for 𝑎 = 1 → σ𝑖=0
𝑘−1𝑎𝑖 = σ𝑖=0

𝑘−11 = 𝑘

• Hence

𝑦 𝑘 = ൞𝑎
𝑘𝑦0 + 𝑏

1 − 𝑎𝑘

1 − 𝑎
, 𝑎 ≠ 1

𝑦0 + 𝑘𝑏, 𝑎 = 1



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = ൞𝑎
𝑘𝑦0 + 𝑏

1 − 𝑎𝑘

1 − 𝑎
, 𝑎 ≠ 1

𝑦0 + 𝑏𝑘, 𝑎 = 1

Example:

𝑦 𝑘 + 1 =
4

9
𝑦 𝑘 +

7

2
,

𝑦 0 = 2.25 =
9

4

𝑦 𝑘 =
9

4

4𝑘

9𝑘
+

7

2

1−
4𝑘

9𝑘

1−
4

9

=
7⋅32𝑘−2−22𝑛−1

10⋅32𝑛−4

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘 )

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Equilibrium / Fixed Point

• 𝑦∗ = 𝑓 𝑦∗ ↔ 𝑦∗ = 𝑎𝑦∗ + 𝑏

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

– Attractive/stable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑦∗

– Repelling/unstable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑓𝑟𝑜𝑚 𝑦∗

• Solution with Equilibrium

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
= 𝑎𝑘 𝑦0 −

𝑏

1 − 𝑎
+

𝑏

1 − 𝑎

= 𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗ , 𝑎 ≠ 1
𝑦 𝑘 = 𝑦0 + 𝑘 , 𝑎 = 1



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 = −0.6𝑦 𝑘 + 8, 𝑦0 = 2

• 𝑦∗ =
𝑏

1−𝑎
=

8

1+0.6
= 5

• 𝑦 𝑘 = −
3

5

𝑘
2 − 5 + 5 =

−1 𝑘+13𝑘+1

5𝑘
+ 5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 = −2.5𝑦 𝑘 + 17.5, 𝑦0 = 4.8

• 𝑦∗ =
𝑏

1−𝑎
=

17.5

1+2.5
= 5

• 𝑦 𝑘 = −
5

2

𝑘 24

5
− 5 + 5 =

−1 𝑘+15𝑘−1

2𝑘
+ 5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 =
4

9
𝑦 𝑘 + 3.5, 𝑦0 =

9

4

• 𝑦∗ =
𝑏

1−𝑎
= 6.3

• 𝑦 𝑘 = −
4

9

𝑘 4

9
− 6.3 + 6.3 =

−
22𝑘−234−2𝑘

5
+ 6.3

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘 )

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Equilibrium – Fixed Point
one (or no) fixed point

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

𝑦∗ = 𝑦0, 𝑎 = 1, 𝑏 = 0
𝑛𝑜 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑓𝑜𝑟 𝑎 = 1, 𝑏 ≠ 0

• Stability:
𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓𝑓 𝑎 < 1, 𝑦∗ 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔
un𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓𝑓 𝑎 ≥ 1, 𝑦∗ 𝑟𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔



Linear Affine Difference Equations 

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Classification of Solutions
Typ of solution depends on 𝑎, 𝑏 and 𝑦0

1. 𝑎 > 1
2. 𝑎 = 1
3. 0 < 𝑎 < 1
4. −1 < 𝑎 < 0
5. 𝑎 = −1
6. 𝑎 < −1

Main 
classification

Sub-
classification

1. 𝑦0 =
𝑏

1−𝑎

2. 𝑦0 >
𝑏

1−𝑎

3. 𝑦0 <
𝑏

1−𝑎
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Parameters Solution Type

1 a > 1, y0 = y* Constant

2 a > 1, y0 > y* Exponentially increasing without bound

3 a > 1, y0 < y* Exponentially decreasing without bound

4 a = 1, b = 0 Constant

5 a = 1, b > 0 Linearly increasing without bound

6 a = 1, b < 0 Linearly decreasing without bound

7 0 < a < 1, y0 = y* Constant

8 0 < a < 1, y0 > y* Exponentially decreasing to a bound

9 0 < a < 1, y0 < y* Exponentially increasing to a bound

10 -1 < a < 0, y0 = y* Constant

11 -1 < a < 0, y0 > y* Oscillating with decreasing amplitude

12 -1 < a < 0, y0 < y* Oscillating with decreasing amplitude

13 a = -1, y0 = b/2 Constant

14 a = -1, y0 > b/2 Oscillating with constant amplitude

15 a = -1, y0 < b/2 Oscillating with constant amplitude

16 a < -1, y0 = y* Constant

17 a < -1, y0 > y* Oscillating with increasing amplitude

18 a < -1, y0 < y* Oscillating with increasing amplitude

Linear 

Affine 

Difference 

Equations 

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏
𝑦 0 = 𝑦0

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1



No Solution Type Solution Sketch Parameters

1 Constant

a > 1, y0 = y*

a = 1, b = 0

0 < a < 1, y0 = y*

-1 < a < 0, y0 = y*

a = -1, y0 = b/2

a < -1, y0 = y*

2

Linearly
increasing
without
bound

a = 1, b > 0

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1



Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

3

Linearly

decreasing

without

bound

a = 1, b < 0

4

Exponentially

increasing

without

bound

a > 1, y0 > y*



Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

5

Exponentially

decreasing

without

bound

a > 1, y0 < y*

6

Exponentially 

increasing 

to a bound

0 < a < 1, y0 < y*



Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

7

Exponentially 

decreasing 

to a bound

0 < a < 1, y0 > y*

8
Oscillating
with constant
amplitude

a = -1, y0 > b/2

a = -1, y0 < b/2



Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

9

Oscillating
with
increasing
amplitude

a < -1, y0 > y*

a < -1, y0 < y*

10

Oscillating
with
decreasing
amplitude

-1 < a < 0, y0 > y*

-1 < a < 0, y0 < y*



Applications to finance

• Actual balance y(n) after n compounding

periods with annual interest I, compounded

m times a year and constant amount b added

at the end of every compounding period:

𝑦(𝑘 + 1) = 1 +
𝐼

𝑚
𝑦 𝑘 + 𝑏

Solution:

𝑦∗ =
𝑏

1−𝑎
=

𝑚𝑏

𝐼
, 𝑦 𝑘 = 1 +

𝐼

𝑚

𝑘
𝑦0 −

𝑚𝑏

𝐼
+

𝑚𝑏

𝐼



Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

– Set of assumptions:

first order affine dynamical
system

s sensitivity of producers to price

d sensitivity of consumers to price

via adjustment of price/bargaining

• 𝑆 𝑘 + 1 = 𝑠𝑃 𝑘 + 𝑎, 𝑎 > 0
• 𝐷 𝑘 + 1 = −𝑑𝑃 𝑘 + 1 + 𝑏
• 𝑆 𝑘 + 1 = 𝐷(𝑘 + 1)

→ −𝑑𝑃 𝑘 + 1 + 𝑏 = 𝑠𝑃 𝑘 + 𝑎

→ 𝑃 𝑛 + 1 = −
𝑠

𝑑
𝑃 𝑛 +

𝑏 − 𝑎

𝑑
, 𝑃∗ =

𝑏 − 𝑎

𝑑 + 𝑠



Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

– Set of assumptions:

first order affine dynamical
system

s sensitivity of producers to price

d sensitivity of consumers to price

via adjustment of price/bargaining

• 𝑆 𝑘 + 1 = 𝑠𝑃 𝑘 + 𝑎, 𝑎 > 0
• 𝐷 𝑘 + 1 = −𝑑𝑃 𝑘 + 1 + 𝑏
• 𝑆 𝑘 + 1 = 𝐷(𝑘 + 1)

→ −𝑑𝑃 𝑘 + 1 + 𝑏 = 𝑠𝑃 𝑘 + 𝑎

→ 𝑃 𝑛 + 1 = −
𝑠

𝑑
𝑃 𝑛 +

𝑏 − 𝑎

𝑑
, 𝑃∗ =

𝑏 − 𝑎

𝑑 + 𝑠



Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

first order affine dynamical
system

Cobweb theorem of economics

• 𝑃 𝑘 + 1 =
𝑠

𝑑
𝑃 𝑘 +

𝑏−𝑎

𝑑

• Fixed Point: 𝑃∗ =
𝑏−𝑎

𝑠+𝑑

• General Solution:

𝑃 𝑘 = 𝑐 −
𝑠

𝑑

𝑘

+ 𝑝

stable for

−1 < −
𝑠

𝑑
< 1



Difference Equations with MATLAB

Case Study: Logistic Equation



Repetition: Difference Equation

• Problems defined by
𝑥𝑛+1 = 𝑓 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑
𝑥0 = 𝑘

are called difference-equations.

• Solution of these equations is given by a 
sequence of, probably vector-valued, 
numbers 𝑥𝑛 with a certain initial value 𝑘.



Repetition: Connection between Difference

E. and Differential E.

• 𝑥𝑛+1 = 𝑓 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑 ֜
𝑥𝑛+1 − 𝑥𝑛 = 𝑔 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑

Difference!

Solutions of difference
equations are gained by the

sum of all differences starting
at a specific value!

Solutions of differential 
equations are gained by the

sum of all infinitesmial
differencials starting at a 

specific value! In this case, 
the sum is called integral!



Repetition: Connection between Difference

E. and Differential E.

A solution of a difference
equation is a sequence. We

receive a value for each
interation step!

{0,1,2, … , 𝑛}
This is usually called explicit 

representation of the
sequence in contrast to a 

recursive one.

A solution of a differential 
equation is a „very infinite“ 

sequence“. We receive a 
value for each timepoint

0, 𝑡𝑒𝑛𝑑
Those kind of „sequences“ 
are usually called functions!



Repetition: Connection between Difference

E. and Differential E.

We differ between linear 
and nonlinear difference

equations. E.g.:
Linear: 𝑥𝑛+1 = 4𝑥𝑛 + 2

Nonlinear: 𝑥𝑛+1 = 𝑥𝑛
2 + 𝑥𝑛

We differ between linear 
and nonlinear differentiale 

equations. E.g.:
Linear: 𝑥′ = 3𝑥 + 2
Nonlinear: 𝑥′ = 𝑥2



Repetition: Connection between Difference

E. and Differential E.

We can perform a z-
Transformation

𝑥𝑛+1 − 𝑥𝑛 = 3𝑥𝑛 + 2

𝑎(𝑧) =
2

1
𝑧 − 3

We can perform a Laplace-
Transformation

𝑥′ = 3𝑥 + 2

t 𝑠 =
2

1
𝑠 − 3



Repetition: Connection between Difference

E. and Differential E.

Finding a explicit solution is
usually very tricky! 

Sometimes comparisons with
geometric sequences can

lead to sucess.

Anyway values can be
calculated directly through

the recursive formula.

Finding an analytic solution
can be performed with

analytical methods. If no
solutions can be found this

way a numerical
approximation method

needs to be used usually
leading to difference

equations.



Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

• Logistic differential equation is given by
𝑥′ = 𝑎𝑥 𝑏 − 𝑥

• The corresponding logistic-difference
equation is given by

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑥𝑛(𝑏 − 𝑥𝑛)



Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

Solutions of the
logistic

differential 
equation are
steady, and

behave similar for
all parameters.



Solutions of the
logistic difference

equation are
unsteady and
seem to differ
extremely for

different 
parameters

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation



Solutions of the
logistic difference

equation are
unsteady and
seem to differ
extremely for

different 
parameters

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation



Conclusion



Logistic Equation and the Border to Chaos

• What is an accumulation point?

Although a sequence (i.e. a 
solution of a difference
equation) might look chaotic on 
the first place…

𝑡 = 1 2 3 4 20



Logistic Equation and the Border to Chaos

• What is an accumulation point?
… one might observe a 
„convergence“ to a periodic sub-
sequence when observed longer

𝑡 = 101,102,103 … . 120



Logistic Equation and the Border to Chaos

• What is an accumulation point?
… one might observe a 
„convergence“ to a periodic sub-
sequence when observed longer

𝑡 = 101,102,103 … . 120
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Experiments with MATLAB/Simulink

𝑥𝑛+1 = 𝑝𝑥𝑛(1 − 𝑥𝑛)



Experiments with MATLAB/Simulink

07.01.2021Vienna UT -
Modeling and 

How many accumulation points??

P=2 P=2.7

P=3.1 P=3.4

P=3.7 P=4



Bifurcation



Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money
planning to have a child
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benefits related to the child. They receive the
money at the end of the month.
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planning to have a child

• Net income of couple after the birth is fixed
1700€/month already added financial
benefits related to the child. They receive the
money at the end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they
have to pay after the second week of each
month



Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money planning
to have a child

• Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at
the end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have
to pay after the second week of each month

• Costs per week after birth are approximated with
150€.



Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money planning to
have a child

• Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at the
end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have to
pay after the second week of each month

• Costs per week after birth are approximated with
150€.

• Income of the couple is saved with interest rate of
0.1%/month.



Research Question:

Does the money last for
18 years?



Difference Equation Model 

• We observe that the type of the recursion
depends on the division of the index by 4

• 𝑥𝑛+1 = 𝑥𝑛 − 150, if 𝑛 ≡ 1 4 or 𝑛 ≡ 3 4

• 𝑥𝑛+1 = 𝑥𝑛 − 150 − 1150 , if 𝑛 ≡ 2 4

• 𝑥𝑛+1 = (𝑥𝑛−150) ∙ (1 +
0.1

100
) + 1700 , if 𝑛 ≡ 0 4



Implementation in Simulink



Adaption of the Model

• Unfortunately the anount of money spent
each week is not known perfectly.

• We introduce a random variable making the
simulation stochastic. This raises new
questions:

Can I expect that the money will last for 18 years?
How confident is this assumption?

Variance? Mean? Quantiles?



Monte Carlo Simulation



Buffon‘s Needle Problem



Migration Analysis
by Modelling and Simulation

Felix Breitenecker1, Tamara Vobruba1, 
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ARGESIM/Mathematical Modelling and Simulation

2 dwh Simulation Services 
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Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Refugee Crisis 2015      1.9.2015 – 30.10.2015

Transit

Application 
for Asylum

Modelling &   Simulation  ?

 Spatial Interaction Model

 Social Gravity Model

 Migration Model



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Spatial Interaction Model
 Spatial interaction = transmission/movement 

over space resulting of decision making 
process

 Decision making process realised by relation 
of influencing factors 

 Applications: flow of traffic, commuters, 
migrants,  goods or messages,...

 Interactions between regions/populations

 Regions/populations represented trough a 
directed graph 



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Spatial Interaction Model

I i , j= f (Ri , A j ,C i , j)



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Gravity Model
 Specific form of Spatial Interaction Model
 Social physics: analogies between social behaviour 

and physics
 Relation of interaction based on law of gravity

 Long history in social sciences:
1924 Ernest Young: movement of farm migration

M=k F
D2

Migration

Intensity of attraction
Distance
proportional constant



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Gravity Model: Development
1941 John Steward: concept of demographic gravitation

Pi, Pj population masses (attributes)
G constant, d Distance

1950 John Steward: refined formulation to include 
heterogeneity of population masses

weights of population masses

I i , j=G
Pi ⋅ P j

d i , j
2

I i , j=G
wi Pi ⋅ w j P j

d i , j
2 wi ,w j



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

Gravity Model: Model Equations

The class of gravity models for spatial interaction 
behaviour follows the form

interaction between vi and vj

function of repulsive attributes in vi

function of attractive attributes in vj

function of separation attributes between vi and vj

(F usually non increasing)

I i , j ∈  ℝ
R : ℝ N  →  ℝ
A : ℝ M  →  ℝ
F : ℝ K  →  ℝ



Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres                                                  Migration Analysis by Modelling and Simulation

• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Dynamic Equations

M i , j(t )=I i , j(t ) ⋅ M i(t)

M i (t)
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• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Difference Equation

M i , j(t )=I i , j(t ) ⋅ M i(t)

M i (t)
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• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Difference Equation

M i , j(t )=I i , j(t ) ⋅ M i(t)

M i (t)



Migration Model: Attributes

Attractive attributes
 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible 
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in 
Europe
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Migration Model: Attributes

Attractive attributes
 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible 
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in 
Europe

Repulsive attributes
 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in 
Europe

Separation attributes
 Border security actions



Migration Model: Attributes & Parameters
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible 
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters
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Refugee Crisis 2015

 Data: Number of asylum applications, partly Transit
 Country of origin: Syria
 Time period: 01.09-31.10.2015



Graph of migration movement
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Weighting of attractive attributes: 
potential destination countries
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Weighting of the repulsive attributes: 
potential destination countries
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Weighting of the attractive 
attributes: country of origin



Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region



Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties
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 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)
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 Asylum recognition rate
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Data: Migration /Day in each region
No satisfying Identification



Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region
No satisfying Identification – only neighbour attraction



Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region
Transit Regions with extended Attraction Attributes

∑
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Migration Model: Transit  Regions
Transit Region
– repulsion 

– attraction given 

- not only by   neighbours, 

- but also by following regions 

Ã( j , t )= max
u= j1,. .. , jñ

(A(au(t )) ⋅ max
v= j1,. .. , jñ

F (cv ,u(t )))

R(r j(t )) ≥ ρ
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Refugee Crisis 2015      1.9.2015 – 30.10.2015

4.9.2015 30.10.2015

Transit

Application 
for Asylum

Modelling + Identification ->  Simulation



Simulation Results Refugee Crisis: 2015

data simulation



Simulation Results Refugee Crisis 2015: 
Route Change

 15.09.2015: 
alternative route
over Croatia 

 15.10.2015:
alternative route 
over Slovenia

Transit in Hungary
Transit in Croatia
Transit in Slovenia
Transit in Austria



Analysis:relative error

total relative error 25.6 %
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Model Characterisation

 Macro theoretic model

 Qualitative simulation of migration movement

 Behaviour of populations not individuals  

 Model Equations treat static patterns

 Probabilistic model description
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Forecast Scenario June 2016

 Time period: June 2016

 Extension of the
graph of movement: 
central Mediterranean route

 Balkan route “closed” 

 Turkey Deal



Forecast Scenario June 2016: Visualisation

Visualisation:
Irene Hafner (dwh), Stefan Emrich (dwh), Filip Krasinianski (orf)

 en
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Forecast Scenario June 2016: 
Simulation Results vs Data (post)



relative error 8% - sum 48,6 %

Forecast Scenario June 2016: Error
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Discussion and outlook

 Qualitative description of migration movement of 
population groups

 Comparative scenarios can describe all phenomena
 Validity dependent on attributes and weighting 
 Include more attribute
 Investigate weighting over longer time period
 Foundation of analysis of influencing factors
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Discussion and outlook

 Qualitative description of migration movement of 
population groups

 Comparative scenarios can describe all phenomena
 Validity dependent on attributes and weighting 
 Include more attribute
 Investigate weighting over longer time period
 Foundation of analysis of influencing factors
 Qualitative Forecast – What if ……



What If  Brenner Closed - Visualisation
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What If  Region Closed - Visualisation
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Thank you for your attention

Models are in any case a simplification of reality, 
- but they should help in better understanding of complex dynamics 

as migration movement, 
- and the intention of this model is to improve the situation of refugees 

under appropriate prerequisites.
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