
Modelling and Simulation

Third Pillar of Science

Mathematical Modelling and Simulation

Question Answer?

Mathematical Modelling and Simulation

Question Answer

Experiment

Mathematical Modelling and Simulation

Question Answer

Experiment

Theory

Mathematical Modelling and Simulation

Question Answer

Experiment

Theory

Mathematical Modelling and Simulation

Question Answer

Experiment

Theory

Modelling and
Simulation

Mathematical Modelling and Simulation
Abstract Example

Does the paper plane fly further
than 5m?

Mathematical Modelling and Simulation
Abstract Example

Experiments

5m

Does the paper plane fly further
than 5m?

Mathematical Modelling and Simulation
Abstract Example

Experiments

In 80% of all
cases.

5m

Does the paper plane fly further
than 5m?

Mathematical Modelling and Simulation
Abstract Example

5m

Does the paper plane fly further
than 5m?

Experiments

In 70% of all
cases.

Mathematical Modelling and Simulation
Abstract Example

5m

Does the paper plane fly further
than 5m?

Experiments

In 70% of all
cases.

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

Mathematical Modelling and Simulation
Abstract Example

Does the paper plane fly further
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

In 90% of all
cases.

Mathematical Modelling and Simulation
Abstract Example

I need to know it in
advance

No
arrow-type

Does the paper plane fly further
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

Mathematical Modelling and Simulation
Abstract Example

Mathematical paper plane
model

𝑒 =
𝑢2

2
+
𝑝

𝜌
+ 𝑔𝑧

• Findings from „ General Paper Plane
Theory“

• Data from experiments
• Additional knowledge like Physikal

laws, ...

Does the paper plane fly further
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

I need to know it in
advance

No
arrow-type

Mathematical Modelling and Simulation
Abstract Example

Simulation

Does the paper plane fly further
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

I need to know it in
advance

No
arrow-type

Mathematical paper plane
model

𝑒 =
𝑢2

2
+
𝑝

𝜌
+ 𝑔𝑧

In 2% of all
cases.

Mathematical Modelling and Simulation
Abstract Example

Simulation

Model Uncertainty:

• Previous knowledge cannot be
used directly

• Impossible to model all influence
factors

• ...

Does the paper plane fly further
than 5m?

General Paper Plane Theory:
„Arrow-type paper planes fly ...
dependent on their wing span...“

I need to know it in
advance

No
arrow-type

Mathematical paper plane
model

𝑒 =
𝑢2

2
+
𝑝

𝜌
+ 𝑔𝑧

In 2% of all cases...
probably

Mathematical Modelling and Simulation
COVID-19

How is SARS-CoV-2 going to
spread in Austria?
What consequences will the
epidemic of COVID-19 have on
the population?

Mathematical Modelling and Simulation
COVID-19

• Italy ≠ Austria

General knowledge about
Influenza, other corona viruses,
and the health care system

• SARS CoV-2 ≠
Influenza

Unintentional „experiments“: data
from countries in which the virus
has started spreading earlier

How is SARS-CoV-2 going to
spread in Austria?
What consequences will the
epidemic of COVID-19 have on
the population?

Mathematical Modelling and Simulation
COVID-19

• Italy ≠ Austria

General knowledge about
Influenza, other corona viruses,
and the health care system

• SARS CoV-2 ≠
Influenza

Unintentional „experiments“: data
from countries in which the virus
has started spreading earlier

How is SARS-CoV-2 going to
spread in Austria?
What consequences will the
epidemic of COVID-19 have on
the population?

COVID-19 simulation model
e.g.:

𝑆′ = −𝛼𝐼𝑆
𝐼′ = 𝛼𝐼𝑆 − 𝛽𝐼
𝑅′ = 𝛽𝐼

• Information / data from countries
with more
„COVID-19 experience“

• General knowledge about the
spread of infectious diseases in
Austria

• Additional causal knowledge
about the spread of infectious
diseases (SIR)

Mathematical Modelling and Simulation
COVID-19

• Italy ≠ Austria

General knowledge about
Influenza, other corona viruses,
and the health care system

• SARS CoV-2 ≠
Influenza

Unintentional „experiments“: data
from countries in which the virus
has started spreading earlier

How is SARS-CoV-2 going to
spread in Austria?
What consequences will the
epidemic of COVID-19 have on
the population?

COVID-19 simulation model
e.g.:

𝑆′ = −𝛼𝐼𝑆
𝐼′ = 𝛼𝐼𝑆 − 𝛽𝐼
𝑅′ = 𝛽𝐼

• Information / data from countries
with more
„COVID-19 experience“

• General knowledge about the
spread of infectious diseases in
Austria

• Additional causal knowledge
about the spread of infectious
diseases (SIR)

Model Uncertainty ?

Introduction to Modelling and Simulation

Methods and Algorithms

Classical Approach

Classical Scientific Problem
• Application of Theories
• Execute Experiments

Experiment

Problem Solution

2

Classical Approach

Classical Scientific Problem
• Application of Theories
• Execute Experiments

Theory

Experiment

Problem Solution

3

Simulation

Simulation
• Experiments in virtual laboratory
• Experiments in the computer
• The third pillar of science beside theory and

experiment

Problem Modell Simulator

Experimental
Environment

Scientific Research
problem

Abstraction of
Reality

4

Simulation

Theory

Simulation

Experiment

Problem Solution

Simulation
• Experiments in virtual laboratory
• Experiments in the computer
• The third pillar of science beside theory and

experiment

5

Solution finding

6

What is Computer Simulation ?

Simulation is the process of designing a model of a

real system and conducting experiments with this

model for the purpose either of understanding the

behavior of the system and its underlying causes or

of evaluating various designs of an artificial system or

strategies for the operation of the system.

Definition (Shannon, 1975)

7

What is Computer Simulation ?

Simulation is a (virtual) copy of a real system with its dynamic processes in a

(virtual) model (computer model) and (virtual) experiments with experiments

with this model, which allow interpretations for the real system.

In a practical sense, simulation is i) preparing, ii) performing, and iii)

evaluating experiments with a simulation model.

Simulation allows to study time-dependent behaviour of complex dynamical

systems in a simulation model.

Definition 2 (VDI-Richtlinie 3633)

8

Dynamical Systems

A system is a set of interacting or interdependent components

forming an integrated whole

A dynamic system is a set of

dynamically interacting or
interdependent components forming
an integrated whole

9

Dynamical Systems

A dynamic system is a set of dynamically

interacting or interdependent
components forming an integrated whole

• Dynamical systems change their behaviour dependent on acting
input signals, disturbances, and initial values

.

• The behaviour of a dynamical system is not direct proportional
to input and disturbance change, it changes its behaviour on
basis of its own dynamic and on inputs.

10

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Elements of a Dynamical System

• States x(t)
• Inputs u(t)
• Disturbances w(t) = Inputs
• Outputs y(t)
• Fixed Parameters, Intial Conditions
• Time dependent Parameters (Inputs)

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs

11

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Elements of a Dynamical System

• States x(t)
• Inputs u(t)
• Disturbances w(t) = Inputs
• Outputs y(t)
• Fixed Parameters, Intial Conditions
• Time dependent Parameters (Inputs)

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs

12

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static

13

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static

),),(()(ParametersttPCFunctiontBF =

dynamic

14

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static

really dynamic

),),(),(()(ParttBFtPCFunctiontBF =

15

Dynamical Systems

• Dynamical systems change their behaviour
dependent on acting input signals, disturbances,
and initial values

.

• The behaviour of a dynamical system is not direct
proportional to input and disturbance change, it
changes its behaviour on basis of its own dynamic
and on inputs.

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static formula

dynamic model

),),(),(()(ParttBFtPCFunctiontBF =

16

Dynamical Systems

Potential

Customers

PC

Benefit

BF

Dynamic System
(States)

Initial Conditions

Disturbances

Inputs Outputs PCFaktorBF =

static formula

dynamic model

),),(),(()(ParttBFtPCFunctiontBF =

Calculation

Simulation

17

Dynamical Systems

Potential

Custome

rs

PC

Benefit

BF

Dynamic
System
(States)

Initial Conditions

Disturbances

Inputs Outputs
Dynamic mathematical model

Simulation

),),(),(()(parttBFtPCFunctiontBF =

A dynamical system
may consist of a set of
components, which
themselves are
dynamical subsystems
and which influence
each other

System input

Subsystem

Feedbacks

System output

Interconnection

18

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

19

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

20

What is a Model?

Modelling

Model Analysis

Numeric/Programmin

g

Basic Simulation

Validation:

Comparison &

Fit of Simulation /

Reality

Experiments with

Model

(„Simulation“)

Identification:

Parameter

Determination

Validation: Analysis

Parameter / Model

Model

Structure

NOT OK

Model

Structure

OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Mod

el

Problem

21

1. Mapping - A model is a
representation of a natural
or an artificial object.

2. Reduction - A model is
usually simplified and does
not have all attributes of the
original object.

3. Pragmatism - A model is
always created for a certain
purpose, a certain subject
and a certain time-span.

(Stachoviak 1973)

Model Classification

Modelling

Model Analysis

Numeric/Programmin

g

Basic Simulation

Validation:

Comparison &

Fit of Simulation /

Reality

Experiments with

Model

(„Simulation“)

Identification:

Parameter

Determination

Validation: Analysis

Parameter / Model

Model

Structure

NOT OK

Model

Structure

OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Mod

el

Problem

models

material

scaled analogue symbolic

immaterial

verbalformal

math.
algorithmic

mathematic grafic math.-grafic

simulation
models

analytic
models

simulation
models

analytic
models

simulation
models

22

Model Classification

Modelling

Model Analysis

Numeric/Programmin

g

Basic Simulation

Validation:

Comparison &

Fit of Simulation /

Reality

Experiments with

Model

(„Simulation“)

Identification:

Parameter

Determination

Validation: Analysis

Parameter / Model

Model

Structure

NOT OK

Model

Structure

OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Mod

el

Problem

models

material

scaled analogue symbolic

immaterial

verbalformal

math.
algorithmic

mathematic grafic math.-grafic

simulation
models

analytic
models

simulation
models

analytic
models

simulation
models

23

Modelling by Abstraction

Two Steps of Abstraction

• Structural Abstraction – Qualitative Knowledge
Identification of system borders and states

• Phenomenological Abstraction – Quantitative
Knowledge
quantisation of states, identification of physical,
economic, biologic, … interactions in and with
subsystems

24

Modelling vs Model

Modelling Approach Model Type

• Ordinary Differential
Equations (ODEs)

• Partial Differential
Equations (PDEs)

• Differential Algebraic
Equations (DAEs)

• Difference Equations
(DEs)

• Cellular Automata (CAs)
• Agent-based

Systems/Models (ABMs)
• Discrete Event Systems

(DES)

• System Dynamics (SD)
• Transfer Functions (TF)
• Compartment Modelling
• Math. Formula
• Lagrange Formalism
• Port-based physical

Modelling
• Difference Equation

Modelling
• Cellular Automata

Modelling
• Agent-based Modelling
• Event Graphs
• Process Flow

Modelling vs Model

Modelling Approach Model Type

• Ordinary Differential
Equations (ODEs)

• Partial Differential
Equations (PDEs)

• Differential Algebraic
Equations (DAEs)

• Difference Equations
(DEs)

• Cellular Automata (CAs)
• Agent-based

Systems/Models (ABMs)
• Discrete Event Systems

(DES)

• System Dynamics (SD)
• Transfer Functions (TF)
• Compartment Modelling
• Math. Formula
• Lagrange Formalism
• Port-based physical

Modelling
• Difference Equation

Modelling
• Cellular Automata

Modelling
• Agent-based Modelling
• Event Graphs
• Process Flow

Landmap of Modelling Methods

Definition (Shannon 1975)

„Simulation is the process of designing a
model of a real system and conducting
experiments with this model for the purpose
either of understanding the behavior of the
system and its underlying causes or of
evaluating various designs of an artificial
system or strategies for the operation of the
system.“

The variety of different

Modelling approaches can be

seen like a structured landmap.

27

Landmap of Modelling Methods –

Dynamic Models

Definition (Shannon 1975)

„Simulation is the process of designing a
model of a real system and conducting
experiments with this model for the purpose
either of understanding the behavior of the
system and its underlying causes or of
evaluating various designs of an artificial
system or strategies for the operation of the
system.“

28

Dynamic Models – Time

Discrete/Continuous

Neglecting quantum-mechanics (space as well as)

time can be seen to be a continuous number.

▪ A model is called time-continuous if the
output value of the model can be calculated
at any time (≈ 𝑡 ∈ ℝ).

▪ In the opposite a model is called time-
discrete if values are only calculated at a
finite number of predefined timesteps (≈ 𝑡 ∈
ℕ).

29

Dynamic Models – Time

Discrete/Continuous

• Usually time-continuous models are preferred
to time-discrete models, but the simulation
process is usually more difficult.

• Yet, there are processes in real world for
which time continous models are not
necessary or even dont make sense.

• Very often, time-continuous models cannot
be simulated continously. So they need to be
reformalised in a time-discrete manner – this
process is called discretisation.

30

Landmap of Modelling Methods – Time

Discrete / Continous

Definition (Shannon 1975)

„Simulation is the process of designing a
model of a real system and conducting
experiments with this model for the purpose
either of understanding the behavior of the
system and its underlying causes or of
evaluating various designs of an artificial
system or strategies for the operation of the
system.“

31

Dynamic Models – Value

Discrete/Continuous

Similar to time-discrete/continuous, also output
values can be determined discrete or
continuously.

▪ Value-discrete:
- Number of passengers on a plane
- Number of cars searching for a parking spot.

▪ Value-continuous:
- Voltage/Current in an Electrical Circuit
- Angular Velocity of a Pendulum

32

Dynamic Models – Value

Discrete/Continuous

▪ Although simulation output is expected to be
continuous/discrete, it is not necessarily
modelled in a continuous/discrete way.

E.g.:
Population of a country is a discrete number…
… yet it can be modelled by a continous
model

It requires a correct result interpretation!

33

Examples –Discrete/Continuous

time

v
a
lu

e

Electricity Consumption

time

v
a
lu

e

Monthly Budget

time

v
a
lu

e

People in check-in hall

time

v
a
lu

e

Number of passengers

each flight

34

Landmap of Modelling Methods –

Discrete / Continous

35

Model Procedures

System

Theoretical Modelling

Deductive Analysis

Modelling by Laws and Rules

White Box Modelling

Experimental Modelling

Inductive Analysis

Modelling by using models

with observed behaviour

Black Box Modelling

Mathematical Model

Ohms Law

Newton‘s Law

Supply/Demand Law

36

Application vs. Modelling Approach

•

Electrotechni
que

• Mechanics

• Environment

• Medicine

• Economy

• Sociology

• Laws

• Laws and Observations

• Laws and Observations

• Observations and Characterisation

• Observations and Characterisation

White Box Modeling

Black Box Modeling

37

Model Reduction

•

Electrotechni
que

• Mechanics

• Environment

• Medicine

• Economy

• Sociology

• Laws

• Laws and Observations

• Laws and Observations

• Observations and Characterisation

• Observations and Characterisation

From Deduction to Induction

Deductive models may contain too many parameters –
problems with identification

38

Landmap of Modelling Methods –

Discrete / Continous

39

Stochastic/Deterministic

• If the output of the simulation of a model is
uniquely defined by input parameters, initial
conditions and model parameters the model
is called deterministic.

• Otherwise it is called stochastic.

Results:
14.2
14.2
14.2
14.2

...

Results:
14.3
14.6
13.9
14.2

...

deterministic stochastic

40

Stochastic/Deterministic

Stochastic models are necessary…

▪ … if random effects are included in the system.
→ coin toss, rolling a dice, …

▪ … if emelents of the system are too complex to
be described by deterministic rules.

→ human behaviour, problems at system borders,…

41

Stochastic/Deterministic

Stochastic models are necessary…

▪ … if random effects are included in the system.
→ coin toss, rolling a dice, ...

▪ … if emelents of the system are too complex to
be described by deterministic rules.

→ human behaviour, problems at system borders,…

→ coin toss, rolling a dice, …

42

Landmap of Modelling Methods –

Discrete / Continous

43

Microscopic/Macroscopic Models

• If systems consist of a big set of similar
subsystems...

... the question arises whether a micro- meso-
or macroscopic model should be used.

individual

subsidiary

car

wooden
fibre

44

Microscopic/Macroscopic Models

• Microscopic models treat each subsystem as
an individual model. Finally they are linked in
order to model the whole system.

individual

individual

individual

individual

individual

individual

individual

individual

individual individual

45

Microscopic/Macroscopic Models

• Macroscopic models treat the whole system,
neglecting the fact, that it consists of
subsystems.

Population

46

Landmap of Modelling Methods –

Microscopic/Macroscopic

47

Approaches for Soft Sciences

Simulation

(Troitzsch)

48

Approaches for Soft Sciences

Simulation

(Troitzsch) Aggregated Distributed

49

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

50

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

51

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

• simulation
software

• simulation
languages

• Simulators

• Simulation
systems

• Simulation
Environments

52

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

• simulation
software

• simulation
languages

• Simulators

• Simulation
systems

• Simulation
Environments

53

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

• simulation
software

• simulation
languages

• Simulators

• Simulation
systems

• Simulation
Environments

54

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

• simulation
software

• simulation
languages

• Simulators

• Simulation
systems

• Simulation
Environments

55

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

• simulation
software

• simulation
languages

• Simulators

• Simulation
systems

• Simulation
Environments

56

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

57

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

58

Verification

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

59

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

60

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

61

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

62

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

SimulationMeasurement

⧫

⧫

⧫

⧫ ⧫

⧫

⧫

⧫

⧫

⧫
⧫

⧫

⧫

⧫

⧫

time

State,

Observation

63

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

64

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

65

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

66

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

67

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

68

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

Visualisation???

69

Visualisation

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

70

Visualisation
Data-Driven

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

71

Visualisation
Data Driven

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

72

Visualisation
Simulation Driven

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

73

Visualisation
Model-Driven

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

74

SIMULATION CIRCLE

Testcase: Predator-Prey

75

Simulation Circle

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

76

What is System Dynamics

Forrester, 1961

System Dynamics is a field that resulted from the pioneering

efforts of Jay W. Forrester to apply the engineering principles of

feedback and control to social systems.

System Dynamics generates qualitative models based on

causalities.

By appropriate parameterisation, the qualitative models can be

transformed into “quantitative” computer models to simulate the

investigated system

77

World Models

Systems Dynamics and DYNAMO received widespread

interest mainly because they were used to build large

world models such as

• WORLD2 (World Dynamics, Forrester1971);

• WORLD3 (The Dynamics of Growth in a Finite World,

[Meadows]);

• and WORLD3 revisited (Beyond the Limits).

78

World Models

79

Key to develop SD Models

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)

cause effect

How to build a SD Model?

1. Identify system variables and system
boundaries

2. Capture links of variables in a
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

• Implement the model in a simulator

1. System Variables and Boundaries

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation.

b. Start collecting information and data. Start
developing hypothesis about the parts of the
system.

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.

1. System Variables and Boundaries

System
boundary

System variables

Links

2. Causal Loop Diagram

Capture the behavior and links of and within the
system by interlinking system variables that are related
to each other

Behavior of system due to:

• Feedback Loops

• System memory (stocks)

• Delays in material and information delays

2. Causal Loop Diagram

Main components of CLDs:

• System variables: names of elements

• Link - positive:

Represented by a plus-sign

Increase in variable Eating results in an increase in
variable Weight

Eating Weight

+

2. Causal Loop Diagram

Main components of CLDs:

• Link – negative:

Represented by minus-sign.

Increase in variable Diet results in a
decrease in variable Weight

Diet Weight

-

2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows,
represented by a:
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.

2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows,
represented by a
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.

2. Causal Loop Diagram

Feedback Loops

▪ Search to identify closed, causal feedback loops
is one key element of System Dynamics

▪ The most important causal influences will be
exactly those that are enclosed within feedback
loops

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Exponential Growth: arises from positive
(reinforcing) feedback loop.

Example:

Population Births

2. Causal Loop Diagram

Causation vs. Correlation

• Correlation represents past behavior and not
the structure of the system

• Causation represents the causal links of the
structure

Ice Creme
Sales

Murder
Rate

+
Ice Creme

Sales
Murder

Rate+

Avgerage
Temperature

Wrong: Right:

+

2. Causal Loop Diagram

At least one negative feedback loop is
necessary to receive a stable system

PopulationLack of Space

3. Stock and Flow Diagram

Problem: Not all system elements are system variables!

Solution: distinguish between

• Sources/Sinks

• Levels/Stocks

• Flows

• Auxiliaries

• Paramters

• Links

SFM – Sources/Sinks

Sources/Sinks:
Source represents systems of levels and
rates outside the boundary of the
model
Sink is where flows terminate outside
the system

E.g.: Raw Material (Source for

„Construction“ Flow), Graveyard (Sink for

„Dying“ Flow)

SFM - Stocks

Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of

people waiting in a queue, Number of

goods waiting to be transported, etc.

SFM – Flow

Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow
in order to change its value.

E.g.: Birth (Changes the value of the

stock „population“), Eating (Changes the

value of the stock „amount of food“), etc.

SFM – Auxiliary

Auxiliary:
Everything that can directly/analytically be
calculated out of stocks and constants.
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated

by the stocks/constants „mass“ and

„volume“), Quelength (calculated by stock

„people in queue“ and constant „average

size of one person“), etc.

SFM – System/Input Parameters

Parameter /Constant
Everything that is predefined for the
whole simulation – usually it is a
constant but can be a function too.

E.g.: Average Temperature, Number of

Cash Desks (In a supermarket), Birth

Rate, Maximum capacity of a Room, etc.

Graphical Representation

Source Change of

State
State

Initial value of state

Rate of

change

Feedback

From CLD to SFM (1)

Population Births

Births

Population

From CLD to SFM (2)

Population BirthsLack of Space

Births

Population

Lack of Space

Space

Modelling

Predator – Prey System

Dynamics: Predator eats Prey
Predator / Prey births, deaths

Environment: isolated

Measurement: Predator Population

5 Years = 60 months, quarterly

Problem: When is a reasonable time to use
chemical pesticides to reduce number of
predators?

Model

Problem

102

Predator – Prey System

Modelling

Model

Problem

103

Predator – Prey System

Modelling

Model

Problem

Separation –

Isolated environment

Choice -

2 variables = 2 states

𝑌 𝑡 … Prey

𝑋 𝑡 … Predators

104

Modelling

Modelling

Model

Problem
Separation –

Isolated environment

Choice -

2 variables = 2 states

Causality –

Predator – Prey – Model

105

Modelling

Modelling

Model

Problem
Separation –

Isolated environment

Choice -

2 variables = 2 states

Causality –

Predator – Prey – Model

Y(t) .. Prey Population

X(t) .. Predator Population

106

Modelling

Modelling

Model

Problem
Causality –

Predator – Prey – Model

Y(t) .. Prey Population

X(t) .. Predator Population

System Dynamics –

Population Interaction

107

Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey,
X(t) .. Predator

System Dynamics - Population interaction

If #Prey
increases

Then #Predators
increases

If #Predator
increases

Then #Preys
decreases

108

Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey,
X(t) .. Predator

System Dynamics - Population interaction

If #Prey
increases

Then #Predators
increases

If #Predator
increases

Then #Preys
decreases

+

+

+

-

109

Modelling

Modelling

Model

Problem

Causality – Predator – Prey – Model
Y(t) .. Prey,
X(t) .. Predator

System Dynamics - Population interaction

+

- Causal

Loop

Diagram

110

Modelling

Modelling

Model

Problem

System Dynamics - Population interaction

+

-

Causal

Loop

Diagram

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-
+

+

-

+

+

111

Modelling

Modelling

Model

Problem

System Dynamics - Population interaction

+

-

Causal

Loop

Diagram

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

112

Causality –

Predator – Prey – Model

x(t) .. Prey

y(t) .. Predator

Logistic Growth -

Population rate = Growth rate + food
rate

Modelling

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

Modelling

Model

Problem

113

ሶ𝑥 = 𝑎𝑥 − 𝑏𝑥𝑦
ሶ𝑦 = −𝑑𝑦 + 𝑒𝑥𝑦

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

114

Model Analysis

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Causal

Loop

Diagram

Stock

and

Flow

Diagram

Model Analysis
Numeric/Programming

Simulator

Model

115

Model Analysis

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Causal

Loop

Diagram

Stock

and

Flow

Diagram

Model Analysis
Numeric/Programming

Simulator

Model

116

Implementation

Model Analysis
Numeric/Programming

Simulator

Model

117

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

118

Basic Simulation

Simulation Results

Simulator

Implementation

119

Basic Simulation

Simulation Results

Simulator

Implementation

Parameters:

Population development over time:

yxdcy

xybax

)(

)(

+−=

−=

120

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

121

Validation

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Data
Bad Fit

Good Fit

122

Data & Simulation Results

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Search for

convenient

parameters

123

Data & Simulation Results

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Search for

convenient

parameters

No

Damping

in Model

124

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

Prey

PopPrey

Growt

h

Prey

Loss

Pred

Pop

Pred

Growt

h

Pred

Loss

Food

Rate

+

+

-

+

+

+

+

125

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-
+

+

-

+

+Model Extension:

• Both the predator and the

prey compete for food and

shelter in the forest.

• Competition sets in and the

population of each species tends

to control itself via a negative

effect, that is the population

decreases with a rate directly

proportional to the present

population of that species.

126

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Model Extension:

• Both the predator and the

prey compete for food and

shelter in the forest.

• Competition sets in and the

population of each species tends

to control itself via a negative

effect, that is the population

decreases with a rate directly

proportional to the present

population of that species.

Prey

PopPrey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Prey

Comp

Pred

Comp

+

+

127

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Model Extension:

• Competition Feedback

Prey

Pop

Prey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Prey

Comp

Pred

Comp

+

+

Causal

Loop

Diagram

128

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Prey

Pop

Prey

Growth

Prey

Loss

Pred

Pop

Pred

Growth

Pred

Loss

Food

Rate

+

+

-

+

+

-

+

+

Prey

Comp

Pred

Comp

+

+

Causal

Loop

Diagram

Stock

and

Flow

Diagram

129

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Stock

and

Flow

Diagram

130

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Parameters:

yxdyfcyfyxdcy

xybxeaxexybax

)()(

)()(

2

2

+−−=−+−=

−−=−−=

131

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

132

Model Modification

Validation: Comparison &
Fit of Simulation / Reality

Simulation Results

Bad Fit

Good Fit

Parameters:

yxdyfcyfyxdcy

xybxeaxexybax

)()(

)()(

2

2

+−−=−+−=

−−=−−=

133

Simulation Circle: Predator - Prey

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure
NOT OK

Model Structure
OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

134

Results Interpretation / Analysis

• Determination of long time behavior /
stationary solutions (equilibria)Experiments with Model

(„Simulation“)

Good Fit

Problem Solution

135

Results Interpretation / Analysis

• Determination of long time behavior /
stationary solutions (equilibria)Experiments with Model

(„Simulation“)

Good Fit

Problem Solution

136

Use of Pesticide

Modification of Predator-prey model with intraspecific
competition

• Assume, that at a specific time poison is released
into the system, e.g. some of predators are
removed
from the population by hunting.

• The growth rate a of prey is changed to:

where K is growth rate change.

• This change occurs at the specific time point.

• The new growth rate a depends on the difference
between populations at this specific time point and
stays constant after that.

Experiments with Model
(„Simulation“)

Good Fit

Problem Solution

137

Use of Pesticide

Experiments with Model
(„Simulation“)

Good Fit

Problem Solution

newoldnewoldc ffddt →→ ,:

Adequate

time instant

138

ሶ𝑥 = 𝑎𝑥 − 𝑏𝑥𝑦 − 𝑒𝑥2

ሶ𝑦 = −𝑐𝑦 + 𝑑𝑥𝑦 − 𝑓𝑦2

Modification of Predator-prey model

with intraspecific competition

Population development over time:

Experiments with Model
(„Simulation“)

Good Fit

Problem Solution

Parameters:

139

Modification of Predator-prey model

with intraspecific competition

Population development over time:

Experiments with Model
(„Simulation“)

Good Fit

Problem Solution

Parameters:

140

Modification of Predator-prey model

with intraspecific competition

Experiments with Model
(„Simulation“)

Good Fit

Problem Solution

Modelling

Model

Problem

Dynamics: Prey – Predators

Environment: isolated

Measurement: natural enemies

5 Years = 60 months

quarterly

Problem: When is a reasonable time
to use chemical pesticides?

Assignment: short time,
changes the growth of preys,
damping parameter

Approach: optimal time point
𝑡𝑐 is dependent on the
population difference

Result: The assignment is not
conducive

141

The DON‘Ts of Mathematical Modelling

(S. W. Golomb, Simulation 14 (1970), 197-198)

• DON‘T believe that the model is the reality

• DON‘T extrapolate beyond the region of fit

• DON‘T distort reality to fit the model

• DON‘T retain a discredited model

• DON‘T fall in love with your model

142

Introduction to System Dynamics

Overview

• Introduction

• General Information

• How to Build a System Dynamics Model

– System Variables and Boundaries

– Causal Loop Diagrams

– Stock-and-Flow Diagrams

• Helpful Tools

• Analysis

• Simulators

• Conclusion

• Further Steps

General Information (1)

• System Dynamics (short SD) is a modelling and
simulation method developed by Jay W. Forrester.

• He adapted methods formerly used for system
analysis of technological systems to social systems
(MIT Sloan School of Management, 1956).

• Thus he was criticising mathematical models
developed for management sciences.

• SD has roots on control theory and nonlinear
dynamics

• SD is very intuitive, supported by graphics

General Information (2)

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure

NOT OK

Model Structure

OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

S
im

u
la

ti
o
n

 C
ir

cl
e

System Dynamics is a method

to develop a conceptual/formal

model…

General Information (2)

Modelling

Model Analysis
Numeric/Programming

Basic Simulation

Validation: Comparison &
Fit of Simulation / Reality

Experiments with Model
(„Simulation“)

Identification:
Parameter Determination

Validation: Analysis
Parameter / Model

Model Structure

NOT OK

Model Structure

OK

Bad Fit

Good Fit

Problem Solution

Simulation Results

Simulator

Model

Problem

S
im

u
la

ti
o
n

 C
ir

cl
e

…but it additionally gives

guidelines how this model is

simulated

General Information (3)

Hypothesis:

– Manager usually know very good about
processes and their causal relationships within
their companies (system).

– The behaviour of a system is mostly
predetermined by its (complex) structure.

– Practically useful models can usually not be
simulated by analytic calculations.

General Information (4)

Literature:

• 1961: Industrial Dynamics (Forrester)

• 1969: Urban Dynamics (Forrester), first use of
System Dynamics apart from economic
businesses.

• 1970: World Dynamics (Forrester), superwised by
Club of Rome, use of System Dynamics for
development of a so called „World Model“.
Similar:

• 1972: Meadows et al.: The Limits to Growth

General Information (5)

• Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development
of DE models.

• Advantages:

– Picturesque

– Optimized to understand dynamics and causal
relationships of the system.

– Finally calculated like a DE model.

Relationship: SD & Differential Equations Modelling

General Information (5)

• Each System Dynamics model is equvalent to
exactly one differential-equation (DE) system. It
can be seen to be a graphical way for development
of DE models.

• Advantages:

– Picturesque

– Optimized to understand dynamics and causal
relationships of the system.

– Finally calculated like a DE model.
Perfect starting-point for learning about

Modelling and Simulation

Relationship: SD & Differential Equations Modelling

Key to develop SD Models

Causal thinking is the key to organizing
ideas in a system dynamics study

(Roberts et al. 1983)

cause effect

How to build a SD Model?

1. Identify system variables and system
boundaries

2. Capture links of variables in a
Causal Loop Diagram (CLD)

3. Build a Stock and Flow Diagram (SFD)

• Implement the model in a simulator

1. System Variables and Boundaries

a. Analysis of the problem - Determining the
purpose and the use of the model and
defining a target for the simulation.

b. Start collecting information and data. Start
developing hypothesis about the parts of the
system.

c. Determine the elements of the system.

d. Determine causal relationships between the
elements.

1. System Variables and Boundaries

System boundary

System variables

Links

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not
the structure of the system

• Causation represents the causal links of the
structure

Ice Cream

Sales

Murder

Rate
+

Ice Cream

Sales
Murder

Rate+

Average

Temperature

Wrong: Right:

+

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Correlation Wrong Causal
Implication

Lesson?

Smoking, Lung
Cancer (+)

People suffering from
lung cancer are more
likely to start smoking

??

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Correlation Wrong Causal
Implication

Lesson?

Smoking, Lung
Cancer (+)

People suffering from
lung cancer are more
likely to start smoking

Causality is always directed! Be
careful to take the correct one.

Darkness,
Electricity
Consumption (-)

If it was darker, we
could reduce our
energy problems

??

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Correlation Wrong Causal
Implication

Lesson?

Smoking, Lung
Cancer (+)

People suffering from
lung cancer are more
likely to start smoking

Causality is always directed! Be
careful to take the correct one.

Darkness,
Electricity
Consumption (-)

If it was darker, we
could reduce our
energy problems

Always look for direct
causalities! Don‘t foget that
people sleep when its dark...

Murder Rate,
Ice Cream Sales
(+)

Ice cream makes
people potential
murderes

??

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Correlation Wrong Causal
Implication

Lesson?

Smoking, Lung
Cancer (+)

People suffering from
lung cancer are more
likely to start smoking

Causality is always directed! Be
careful to take the correct one.

Darkness,
Electricity
Consumption (-)

If it was darker, we
could reduce our
energy problems

Always look for direct
causalities! Don‘t foget that
people sleep when its dark...

Murder Rate,
Ice Cream Sales
(+)

Ice cream makes
people potential
murderes

Always look for confounding
factors! E.g. the average
Temperature?

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Famous example (1):

Causality vs Correlation

Causation vs. Correlation

• Correlation represents past behavior and not the structure of the
system

• Causation represents the causal links of the structure

Famous example (2):

2. Causal Loop Diagram

Capture the behavior and links of and within the
system by interlinking system variables that are related
to each other

Behavior of system due to:

• Feedback Loops

• System memory (stocks)

• Delays in material and information delays

2. Causal Loop Diagram

Main components of CLDs:

• System variables: names of elements

• Link - positive:

Represented by a plus-sign

Increase in variable Eating results in an increase in
variable Weight

Eating Weight

+

2. Causal Loop Diagram

Main components of CLDs:

• Link – negative:

Represented by minus-sign.

Increase in variable Diet results in a
decrease in variable Weight

Diet Weight

-

2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows,
represented by a:
“(+)” (or ”(R)” for reinforcing) or
“(-)” (or “(B)” for balancing) sign in the middle.

2. Causal Loop Diagram

Main components of CLDs:

• Feedback Loops: are closed loops of arrows,
represented by a
“(+)” (or ”(R)” for reinforcing) or
“()” (or “(B)” for balancing) sign in the middle.

2. Causal Loop Diagram

Feedback Loops:

– Reinforcing: A system variable effects itself
(via other system variable(s) of the loop), resulting
in a reinforcing of the original state of the system
variable
Even number of negative links

A

B

CD

E

F

A

time

value

2. Causal Loop Diagram

Feedback Loops:

– Balancing: A system variable effects itself (via
other system variable(s) of the loop), resulting in
a balancing of the original state of the system
variable
Uneven number of negative links

A

B

CD

E

F

A

time

value

2. Causal Loop Diagram

Feedback Loops

▪ Search to identify closed, causal feedback loops
is one key element of System Dynamics

▪ The most important causal influences will be
exactly those that are enclosed within feedback
loops

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Exponential Growth: arises from positive
(reinforcing) feedback loop.

Example:

Population Births

2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of positive
and negative feedback loops (nonlinear interactions)

Important here:

− Carrying capacity: Number of organisms a habitat can
support and it is determined by the resources available in the
environment and the resource requirements of the
population. When the population reaches its carrying
capacity the net increase rate slows down until it is zero and
the population reaches its equilibrium (limit of growth)

2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of
positive and negative feedback loops (nonlinear
interactions)

PopulationLack of Space

Carrying

Capacity

Births

2. Causal Loop Diagram

Types of behavior due to loops:

▪ S-shaped Growth: arises from a combination of
positive and negative feedback loops (nonlinear
interactions)

Necessary requirements:

− Negative feedback loops must not
include any significant delays

− Carrying capacity must be fixed

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Goal Seeking Behavior: arises from negative
(balancing) feedback loop.

Example:

Corrective action

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with
delays.

Example:

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with
delays.

The state of the system is compared to the
desired state of the system and corrective actions
are taken. The goal is constantly overshot, then
corrects / reverses and then undershoots the
system and so on.

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with
delays.

Special oscillations are:

− Damped oscillation: e.g. pendulum

− Chaotic oscillations

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Oscillation: arises from negative feedback with
delays.

Special oscillations are:

− Expanding oscillation and limit cycles: If an
oscillatory system is given a nudge off its
equilibrium, its swings grow larger and larger
until they are constrained by various
nonlinearities this oscillation is called limit
cycles. Predator prey populations are cycles.

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Growth with overshoot and oscillation: is
basically s-shaped growth with additional delay
in the negative feedback loop.

Example:

2. Causal Loop Diagram

Types of behavior due to loops:

▪ Overshoot and collapse: is basically s-shaped
growth but with a not fixed carrying capacity

Example: A population in a forest that grows so
large, that they overbrowse the vegetation, leading
to starvation and a
decline in the population. If there
is no regeneration of the carrying
capacity, the equilibrium of the
system is extinction.

2. Causal Loop Diagram

Dominating Loop

▪ There are systems which have more than one
feedback loop within them

▪ A particular loop in a system of more than one
loop is most responsible for the overall behavior
of that system

▪ The dominating loop might shift over time

▪ When a feedback loop is within another, one
loop must dominate

▪ Stable conditions will exist when negative loops
dominate positive loops

2. Causal Loop Diagram

+

-

+

-

-

+

-

+

+

-

-

+
+

+

+

+

+-

+

+ +

+

+ -

++ ++

+

+

+
+

+
+

++
+ ++

Example:

3. Stock and Flow Diagram

Problem: Not all system elements are system variables!

Solution: distinguish between

• Sources/Sinks

• Levels/Stocks

• Flows

• Auxiliaries

• Paramters

• Links

SFM – Sources/Sinks

Sources/Sinks:
Source represents systems of levels and
rates outside the boundary of the
model
Sink is where flows terminate outside
the system

E.g.: Raw Material (Source for

„Construction“ Flow), Graveyard (Sink for

„Dying“ Flow)

SFM - Stocks

Levels/Stocks/System variables:
A quantity that accumulates over
time and changes its value
continuously.

E.g.: Size of a population, Number of

people waiting in a queue, Number of

goods waiting to be transported, etc.

SFM – Flow

Flow/Rate/Activity/Movement:
Changes the values of levels. Every level
has at least to be connected to one flow
in order to change its value.

E.g.: Birth (Changes the value of the

stock „population“), Eating (Changes the

value of the stock „amount of food“), etc.

SFM – Auxiliary

Auxiliary:
Everything that can directly/analytically be
calculated out of stocks and constants.
Often useful, to avoid confusing models.

E.g.: Density (can directly be calculated

by the stocks/constants „mass“ and

„volume“), Quelength (calculated by stock

„people in queue“ and constant „average

size of one person“), etc.

SFM – System/Input Parameters

Parameter /Constant
Everything that is predefined for the
whole simulation – usually it is a
constant but can be a function too.

E.g.: Average Temperature, Number of

Cash Desks (In a supermarket), Birth

Rate, Maximum capacity of a Room, etc.

Graphical Representation

Source Change of

State
State

Initial value of state

Rate of

change

Feedback

From CLD to SFM (1)

Population Births

Births

Population

Initial value of

population

From CLD to SFM (2)

Population BirthsLack of Space

Births

Population

Lack of Space

Space
Initial value of

population

Quantification?

Births

Population

Lack of Space

Space

𝐵𝑖𝑟𝑡ℎ𝑠 = 3 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 ?
𝐵𝑖𝑟𝑡ℎ𝑠 = 10 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒?

𝐵𝑖𝑟𝑡ℎ𝑠 = 0.2 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +
1

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒
?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 − 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?
𝑙𝑎𝑐𝑘𝑜𝑓𝑆𝑝𝑎𝑐𝑒 = 𝑆𝑝𝑎𝑐𝑒 − 3 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 =
𝑆𝑝𝑎𝑐𝑒

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
?

𝑙𝑎𝑐𝑘_𝑜𝑓_𝑆𝑝𝑎𝑐𝑒 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑝𝑎𝑐𝑒
?

Initial value of

population

?

Table Function

❖Responsible for nonlinar relationships

❖Uses pairs of numbers

❖ Interpolation inbetween:

linear, step, spline, approximation

❖Out of range:

error, repeat, extrapolate

Helpful SD Tools

Delays

The Value of the input will be time-delayed for the

delay time:

Output = Material in Transit / Delaytime

Material in

Transit

Inflow Outflow

Average

Delaytime

Helpful SD Tools

System Dynamics - Analysemöglichkeiten

❖Analytical: Evaluation of equilibrium, behaviour and

stability in an area (ordinary differential equations)

But: For large systems this can be difficult and not

useful for time variant values

❖Base Run:

The Model runs with the predefined set of parameters

(which represent the best information available at this

time).

Analysis of SD Models

Stock and Flow with two flows

Differential Equation:

Integral equation:

Simple Structure

Static Equilibrium:

Inflow and Outflow are 0;

State of the system remains unchanged.

Dynamic Equilibrium:

Inflow and Outflow are the same;

State of the system remains unchanged

System Dynamics – Equilibrium

Equilibrium

❖Optimization / Calibration:

With specific algorithms some – unknown –

parameter values can be calculated by macthing a

objective function.

❖Parametervariation / Sensitivity Analysis:

Multiple simultion runs are simulated with different

sets of parameter values, which are gained from

❖ even distributed intervals or

❖ stocastically from a probability function

Analysis of SD Models

Simulators

• SD-simulators at least offer the most important
elements (Flows, Levels, Auxiliaries, Table-
functions, etc.) to be preimplemented.

• Additionally parametervariation and optimization is
possible with most SD simulators.

• Examples: AnyLogic (does not only support SD),
Vensim, Stella, PowerSim…

Conclusion

• System-Dynamics is a top-down modelling
approach. Its graphical representation is broadly
standartized.

• Important Elements: causal relationships, causal
loops, stock and flow diagrams

• It is equivalent to a DE model. Thus results can be
analysed using the same methods.

• Simulators: AnyLogic, Vensim, Stella, PowerSim…

Thank you for your attention!

Questions?

Discrete Event Simulation and

Modelling with Event Graphs

General

Modelling Approach/
Representation Form

Model Type

Event Graphs
leads

to

Discrete Event
Simulation Model

General

Modelling Approach/
Representation Form

Model Type

Event Graphs
leads

to

Lagrange Formalism
Differential Equation

Model
leads

to

Compare:

Discrete Event
Simulation Model

System Dynamics or

Motivation

• Simulation of systems that change their states only at so
called „events“

• (Simulation of systems that can be approximated as such)

Discrete Event Simulation

Fundamental Concept

Two fundamental components of a discrete event simulation (DES)

model

State Variables

„Observables“ or the model. Used to generate the simulation output

Events:

Cause state variables to change and schedule/cancle future events

• Events

• States piecewise constant

cn-1

c4

tn-1t1 t2 tnt0 T

c1

c2

c3

c0

Ttn-1t1 t2 tnt0

Discrete Event Simulation

Fundamental Concept

Events are scheduled using

Event Notices.

Every event notice contains two pieces of information:

• What (type of) event is being scheduled, and

• the (simulated) time at which the event is planned to occur

The

Event List

keeps the event notices in order by ranking them based on the lowest
scheduled time.

The events list is managed by basic

Discrete Event Algorithm

that controls the flow of time in the simulated world of the model

Discrete Event Simulation

Fundamental Concept

Event List

Discrete Event Simulation

Fundamental Concept

Event

First
Entry

Event
Notice

DES
Algorithm

time
enhanceuse

State
variables

update

execute
Event

Notice 1

Event
Notice 2

create
new

Event
Notice 3 delete

insort

Fundamental Concept of a DES Model

EVENT GRAPHS

How to formalise DES Models

Event Graphs General

• Concept introduced by Lee Schruben in 1983

• Sometimes called „Simulation Graphs“

• Graphical representation of a DES model
which can directly be fed to Event Graphs
simulators, e.g. SIGMA (Compare with System
Dynamics and AnyLogic)

• Very general – for most applications, more
specialised concepts / simulators are used

The occurrence of an event with type A

− causes state variable 𝑥 to change its state to 𝑦

causes an event with type B

− to be scheduled after a time delay of t,

− providing condition (i) is true, after the state
transitions for Event A have been performed

Event Graph Formalism

B

(i)

t
A

𝑥 ≔ 𝑦

• As the event-list is empty at the beginning
of the simulation, a designated initial
event needs to be given.

• Usually this event is labelled with „Run“

Event Graph Formalism

Run B

(i)

t
A

𝑥 ≔ 𝑦𝑥 ≔ 𝑐0

• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Example: Difference Equation

• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Run

𝑡: = 0
𝑦 ≔ 𝑦0

Example: Difference Equation

U

𝑦 ≔ 𝑎 ∙ 𝑦 + 𝑏

1

𝑡 < 𝑡𝑒𝑛𝑑

1

• Goal: model the sequence
𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏,
𝑘 = 0,… , 𝑡𝑒𝑛𝑑 , 𝑦 0 = 𝑦0

using the Event Graph formalism

Run

𝑡: = 0
𝑦 ≔ 𝑦0

Example: Difference Equation

U

𝑦 ≔ 𝑎 ∙ 𝑦 + 𝑏

1

𝑡 < 𝑡𝑒𝑛𝑑

Arrival Process:

• Used to generate „entities“ coming
from outside the system boundaries

• Usually changes increases a
cumulative state variable by one. This
variable is usually called a queue

• Sequence of interarrival times 𝑡𝐴 that
can
be

− constant, a

− deterministic sequence, or a

− sequence of random variables

Classical Elements

Arrival

𝑡𝐴

𝑁 ++

Service Process:
• Used to treat „entities“

coming from, e.g. an arrival
process

• If available (𝑆 > 0), takes an
element from the queue

• Sequence of service times 𝑡𝑆
that can
be
− constant, a
− deterministic sequence, or

a
− sequence of random

variables

Classical Elements

Start
Service

𝑡𝑆 End
Service

𝑁 −−
𝑆 − −

𝑆 + +

𝑆 > 0

Multiple Server Queue

• Customers arrive to a service facility according to an
arrival process and are served by one of k servers.

• Customers arriving to find all servers busy wait in a
single queue and are served in order of their arrival.

• Parameters:
𝑡𝐴 = interarrival times
𝑡𝑠 = service times
𝑘 = total number of servers

• State Variables:
𝑄 ≔ # of customers in queue
𝑆 = # of available servers

Multiple Server Queue

• Customers arrive to a service facility according to an arrival process
and are served by one of k servers order of their arrival.

• Parameters:
𝑡𝐴 = interarrival times
𝑡𝑠 = service times
𝑘 = total number of servers

• State Variables:
𝑄 ≔ # of customers in queue
𝑆 = # of available servers

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start
Service

End
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

• the inverse operation of the scheduling edge

• whenever event with tyoe A occurs, then if condition (i) is

true, the first occurrence of an event with type B is

removed from the event list

• if event B is not scheduled to occur, then nothing happens.

• if there are multiple occurrences, only the first is removed.

Cancelling Edge

A B

(i)

Multiple Server Queue with Failure

• Customers arrive to a service facility according to an arrival process and are served by one of k servers
order of their arrival.

• With certain failure probability the server breaks while serving

• Parameters:
𝑡𝐴 = interarrival times
𝑡𝑠 = service times
𝑘 = total number of servers
𝑝𝑓 = failure probability
𝑈 = sequence of iid U[0,1] random numbers
𝑡𝑅 = repair time

• State Variables:
𝑄 ≔ # of customers in queue
𝑆 = # of available servers

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start
Service

End
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

Failure

𝑈 < 𝑝𝑓

𝑄 + +

𝑡𝑆

Fixed

𝑄 > 0 𝑆 + +

Scheduling edge with parameter: When A
occurs then, if (i) is true, B is scheduled after
t time units. When B occurs, its parameter k
will be set to the value given by the
expression j (j is calculated when A occurs).

Parameterization of Events

A B(k)

(i)

t
j

A B(k)

(i)

t
j

Tandem Server Queue

• Customers processed by one workstation consisting of a
multiple-server queue.

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p)..

• Parameters:
𝑡𝐴𝑖 = interarrival times at WS 𝑖
𝑡𝑠𝑖 = service times at WS 𝑖
𝑘𝑖 = total number of servers at WS 𝑖
𝑝 = probability to proceed from 1 to 2
𝑈 = sequence of iid U(0,1) random numbers

• State Variables:
𝑄𝑖 ≔ # of customers in queue at WS 𝑖
𝑆𝑖 = # of available servers at WS 𝑖

Tandem Server Queue

• Customers processed by one workstation consisting of a
multiple-server queue.

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p)..

Arrival

{Q ++}

Run Start

Service
End

Service

{Q = 0, S = k}

t
At

A

t
S

(S > 0)

{Q --, S --}
{S ++}

(Q > 0)

Arrival

{Q ++}

Start

Service
End

Service

t
S

(S > 0)

{Q --, S --}{S ++}

(Q > 0)

(U < p)

2
22

11
1

2

2

22

2

2

2

1

1

1

1

111
11

Tandem Server Queue

• Customers processed by one workstation consisting of a
multiple-server queue.

• Upon completion of service at the first workstation, a customer
proceeds with probability p to a second workstation or departs the
system with probability (1- p)..

𝑈 < 𝑝, 𝑖 ≤ 2,

Multiple Server Queue

Case Study:

• What happens, when executing a Multiple
Server Queue model with deterministic
service and arrival times?

• Event Notices?

• Event List?

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start
Service

End
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

DISCRETE start

server = 2; queue = 0

SCHEDULE arrival .AT. t+0.

END ! of start

DISCRETE arrival

queue = queue + 1; t_arrival = 1

SCHEDULE arrival .AT. t+tarr

IF server .GE. 0 SCHEDULE start_service at t+0.

END ! of arrival

Event Notices and Parameters

Arrival

𝑡𝐴

𝑄 + +

Run

𝑄 = 0
𝑆 = 𝑘

Start
Service

End
Service

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

𝑡𝑆

DISCRETE start_service

queue = queue – 1; server = server -1

t_service = 2.5

SCHEDULE end_service .AT. t+t_service

END ! of start_service

DISCRETE end_service

server = server + 1

IF queue .GE. 0 SCHEDULE start_service at t+0.

END ! of end_service

time event action schedule

0 ST Q=0; S=2; A at t+0=0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A

2.5 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2.5 ES

2 A

3.5 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

Event List Multiple Server Queue

time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2 A Q=Q+1=1 A at t+1=3; (SS condition not

true)

2.5 ES

3.5 ES

3 A

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

0 ST Q=0; S=2; A at t+0

0 A Q=Q+1=1 A at t+1=1; SS at t+0=0

0 SS Q=Q-1=0; S=S-1=1 ES at t+2.5=2.5

1 A Q=Q+1=1 A at t+1=2; SS at t+0=1

1 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=3.5

2 A Q=Q+1=1 A at t+1=3; (SS condition not

true)

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A

3.5 ES

5 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A Q=Q+1=1 A at t+1=4; (SS condition not

true)

3.5 ES

5 ES

4 A

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

2.5 ES S=S+1=1; SS at t+0=2.5

2.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=5

3 A Q=Q+1=1 A at t+1=4; (SS condition not

true)

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A

5 ES

6 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not

true)

5 ES

5 A

6 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not

true)

5 ES S=S+1=1; SS at t+0=5

5 SS simultaneous events – ordering problems

5 A

6 ES

Event List Multiple Server Queue

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not

true)

5 ES S=S+1=1; SS at t+0=5

5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=7.5

5 A Q=Q+1=1; A at t+1=6; (SS condition not

true)

6 ES

7.5 ES

6 A

Which one should occur first?
Does it matter?

Event List Multiple Server Queue

time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not

true)

5 ES S=S+1=1; SS at t+0=5

5 A Q=Q+1=2; A at t+1=6; SS at t+0=5

5 SS Q=Q-1=1; S=S-1=0 ES at t+2.5=7.5

6 ES

7.5 ES

6 A

5 SS

Event List Multiple Server Queue

Which one should occur first?
Does it matter?

time event action schedule

3.5 ES S=S+1=1 SS at t+0=3.5

3.5 SS Q=Q-1=0; S=S-1=0 ES at t+2.5=6

4 A Q=Q+1=1; A at t+1=5; (SS condition not

true)

5 ES S=S+1=1; SS at t+0=5

5 A Q=Q+1=2; A at t+1=6; SS at t+0=5

5 SS Q=Q-1=1; S=S-1=0 ES at t+2.5=7.5

5 SS Q=Q-1=0; S=S-1=-1 ES at t+2.5=7.5

6 ES

6 A

7.5 ES

WRONG ORDER,
WRONG RESULTS

Event List Multiple Server Queue

Simultaneous Events

• Simultaneous events occur when more than one event is schedule
to occur the exactly the same time.

• In some cases the order of execution of the events is irrelevant, but
in other cases certain permutations of the order of occurrence
impact the outcome dramatically, often leading to invalid state
trajectories and inadmissible values of state variables.

• Event Graph methodology provides the capability of prioritizing
scheduling edges, so that simultaneous occurrences of the
scheduled event always occur before other scheduled events.

• Although these edge priorities are typically not indicated on the
graph itself, all software implementations of Event Graph
methodology support edge prioritization.

Simulation Multiple Server Queue

t_arrival = 1, t_service = 2.5, max_server = 2

correct sequence of simultaneous
events

Simulation Multiple Server Queue

t_arrival = 1, t_service = 2.5, max_server = 2

wrong sequence of simultaneous
events

ANALYSIS OF QUEUING MODELS

Terminology

• Abbreviation of Queues:

Arrival Time Service Time Servers

Determinisitic D Determinisitic D One 1

Markovian M Markovian M Multiple m

General G General G

⇒ Possible combinations:
D/D/1, M/D/m, G/D/m, M/M/m, ...

Terminology

• „Deterministic“: 𝑡 is Constant

• „Markovian“: Distribution of 𝑡 is memoryless.
I.e. Exponentially distributed 𝑡 ∼ 𝐸 𝜆
⇒ times become a Markov-process

• „General“ : Distribution of 𝑡 is arbitrary
(positive)

Analysis of Queues

• Deterministic Queues (D/D/1, D/D/m):

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
> 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒

⇒ 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
≤ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒

⇒ 𝑠𝑡𝑎𝑏𝑙𝑒

Analysis of Queues

• Stochastic Queues (M/M/1,G/M/m,...):

𝐸(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒)

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
≥ 𝐸(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒)

⇒ 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

𝐸(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒)

𝑠𝑒𝑟𝑣𝑒𝑟𝑠
< 𝐸(𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑡𝑖𝑚𝑒)

⇒ 𝑠𝑡𝑎𝑏𝑙𝑒

Analysis of Queues

• Notation
– 𝑌𝑘 – time elapsed between (k-1)th and k-th arrival

– 𝑍𝑘 – k-th customer service time

– 𝑊𝑘 – k-th customer waiting time

– 𝑋(𝑡) – average queue length

𝐸 𝑌𝑘 =
1

𝜆
… average interarrival time

(𝜆 is the average arrival rate)

𝐸 𝑍𝑘 =
1

𝜇
… average service time

(𝜇 is the average service rate)

Analysis of Queues

• Customer system time
𝑆𝑘 = 𝑊𝑘 + 𝑍𝑘, the time k-th customer spends in the system

𝐸 𝑊𝑘 = 𝑊 … average waiting time

𝐸 𝑆𝑘 = 𝑇 … average system time, 𝑇 = 𝑊 +
1

𝜇

• Little‘s law

– ഥ𝑁 … average number of customers in the system

ഥ𝑁 = 𝜆𝑇

– special cases

𝑋 𝑡 = ഥ𝑁𝑞 = 𝜆𝑊 … average number of customers in the queue

ഥ𝑁𝑠 =
𝜆

𝜇
… average no. of customers in service

Analysis of Queues

• Average waiting time in the queue

𝑊 =
1

𝜇 − 𝜆
−
1

𝜇
=

𝜌

1 − 𝜌 𝜇
, 𝜌 =

𝜆

𝜇

• Average length of the queue

𝑋 𝑡 = ഥ𝑁𝑞 = 𝜆𝑊 =
𝜌2

1 − 𝜌

• Average system time of customers

𝑇 = 𝑊 +
1

𝜇
=

1

𝜇 − 𝜆
=

1

1 − 𝜌 𝜇

• Average number of customers in the system

ഥ𝑁 = 𝜆𝑇 =
𝜌

1 − 𝜌

Results M/M/1 queues:

Analysis of Queues

• Exponential distribution of interarrival times

• Service times are mutually independent and
distributed arbitrarily with parameters

𝐸 𝑍𝑘 =
1

𝜇
in 𝑣𝑎𝑟 𝑍𝑘 = 𝜎2, we define also 𝜌 =

𝜆

𝜇

• Average queue length

𝑋 𝑡 = ഥ𝑁𝑞 =
𝜌2

2 1 − 𝜌
1 + 𝜇2𝜎2

• Average number of customers in the system

ഥ𝑁 = ഥ𝑁𝑞 + 𝜌 =
𝜌

1 − 𝜌
−

𝜌2

2 1 − 𝜌
1 − 𝜇2𝜎2

Results M/G/1 queues:

OTHER SIMULATION ENVIRONMENTS

Other Simulation Environments

• Most DES models are based on entities being
processed in a sysrem

• Therefore they use very similar process
structures

• Event Graph description sometimes
unnecessary general and unintuitive

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

unintuitive

Other Simulation Environments

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

• DES Simulators for simulation of processes
usually use a more intuitive description

DES Modeling in
AnyLogic

Other Simulation Environments

A

1

𝑄 + +

ST

𝑄 = 0
𝑆 = 3

SS ES

𝑄 − −
𝑆 − −

𝑆 + +

𝑆 > 0

𝑄 > 0

2.5

• DES Simulators for simulation of processes
usually use a more intuitive description

DES Modeling in
SimEvents

FIFO

Entity Queue
Entity Server

1

Entity Terminator

Entity

Entity Generator

EVENT GRAPHS BEYOND ENTITIES

Beyond Queues

• DES / Event Graphs not only interesting for
queuing systems.

Init step

𝑡 = 0
𝑥 = 𝑥0

𝑡 = 𝑡 + ℎ
𝑥 = 𝑥 + ℎ𝑓(𝑡, 𝑥)

ℎ

Beyond Queues

• DES / Event Graphs not only interesting for
queuing systems.

Init step

𝑡 = 0
𝑥 = 𝑥0

𝑡 = 𝑡 + ℎ
𝑥 = 𝑥 + ℎ𝑓(𝑡, 𝑥)

ℎ

Explicit Euler Method for
approximation of ሶ𝒙 = 𝒇(𝒕, 𝒙)

Beyond Queues

• DES / Event Graphs not only interesting for
queuing systems.

Case Study 1: Collision of Spheres

Beyond Queues

• DES / Event Graphs not only interesting for
queuing systems.

Discrete Event and Multi-Method
Simulation with Anylogic

Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Event Graphs Discrete Event Simulation
Model

leads
to

System Dynamics
Differential Equation

Model
leads

to

Compare:

Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Discrete Event Simulation
Model

leads
to

Event Graphs
SimEvents GUI

Anylogic GUI

System Dynamics
Lagrange Formalism

Modelica/Dymola GUI

Differential Equation
Model

leads
to

Compare:

Modelling Method vs Model

Modelling Approach/
Representation Form

Model Type

Discrete Event Simulation
Model

leads
to

Event Graphs
SimEvents GUI

Anylogic GUI

System Dynamics
Lagrange Formalism

Modelica/Dymola GUI

Differential Equation
Model

leads
to

Compare:

Getting started…

https://www.anylogic.com/downloads/

or

USB Stick

https://www.anylogic.com/downloads/

What is AnyLogic?

Example 1:
Potential

Sales

Example 2:
Logistic
Model

Basics

Basics

• AnyLogic Cloud: run models online from a web browser

on any device, including phones and tablets, and share

the models with other users.

• https://cloud.anylogic.com/

• Export models to the cloud

https://cloud.anylogic.com/

EXAMPLE: PREDATOR-PREY MODEL IN
ANYLOGIC

Predator-Prey Model

General Idea:

The model describes the development of two populations.

Population size depends on births and deaths.

Births depend on the population size.

Predator births also depends on the prey.

The predator population diminishes the prey population.

The predator death rate is independent from prey.

Predator-Prey Model

Model Equations:

ሶ𝑝𝑟𝑒𝑦 = 𝑏𝑖𝑟𝑡ℎ𝑝𝑟𝑒𝑦 − 𝑓𝑖𝑛𝑑𝑝𝑟𝑒𝑦 ∗ 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 ∗ 𝑝𝑟𝑒𝑦
ሶ𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟 = 𝑓𝑒𝑒𝑑𝑦𝑜𝑢𝑛𝑔 ∗ 𝑝𝑟𝑒𝑦 − 𝑝𝑟𝑒𝑑𝑑𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 ∗ 𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟

Predator-Prey Model

Lets build the model…

Predator-Prey Model

MULTI METHOD MODELLING

Basics on
Multi-Method Modelling

Definition

If a system can be decomposed into subsystems and a model is applied to
such a subsystem, this is called a submodel.

A multi-method model is a model that consists of at least two submodels,
where at least two different modelling techniques are used. These
submodels exchange information in some way. This process of information
exchange is called combining.

Different Types of Multi Method Models

Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of
the outbreak of an epidemic

Susceptible person

Infectious
person

infectious
contact

diagnosis

Quarantined
person

Immune
person

treatment

loss of
immunity

Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of
the outbreak of an epidemic

Modelling Problem:

Modelling a disease requires either a nonlinear macroscopic model or a
microscopic model with contacts

⇕

Modelling utilization of processes is best modelled with servers and
queues.

Example: SIRS Epidemic

Research Question:

Investigate the utilization of health-care facilities (e.g. hospitals) in case of
the outbreak of an epidemic

Modelling Problem:

Modelling a disease requires either a nonlinear macroscopic model or a
microscopic model with contacts

⇕

Modelling utilization of processes is best modelled with servers and
queues.

System Dynamics

Discrete Event Simulation

Example: SIRS Epidemic

Let‘s build the model….

EXAMPLE: AIRPORT MODEL IN ANYLOGIC

Source

Initializes the event „Arrival of
Entity/Entities“

Parameters:

-) Arrival Rate & Interarrival time:
When do Entities arrive?

-) Entities per Arrival: How much?

Anylogic GUI: Blocks for DES Models

Sink

Initializes event „Remove
Entity/Entities“

Passive without parameters

Anylogic GUI: Blocks for DES Models

Queue

Initializes event „Waiting
Line“

Parameters:

-) Capacity

-) Timeout

-) Preempted abort

Anylogic GUI: Blocks for DES Models

Seize

Initializes event „get resources“

Parameters:

-) Number of resources

-) Includes a queue

-) Timeout

-) Preempted abort

Stays attached until Release

Anylogic GUI: Blocks for DES Models

Resource Pool

Container of resources of
same kind

Parameters:

-) Capacity (absolute or
schedule)

-) Is used by Seize, Release
and Service

Anylogic GUI: Blocks for DES Models

Release

Initializes event „Release
Resource“

Parameters:

-) Capacity

-) Coupled to a Resource
Pool

Anylogic GUI: Blocks for DES Models

Delay

Initializes event „Wait“

Parameters:

-) Waitingtime

-) Capacity

Anylogic GUI: Blocks for DES Models

Server

Initializes event „Processing“

Parameters:

-) Consists of Seize, Delay,
Release

-) Capacity

-) Timeout and preempted
abort

Anylogic GUI: Blocks for DES Models

Split and Combine Initialize
events „Copy“ and „Join“

Parameters:

-) Number of copies

-) Different classes of copies
possible

-) Does not forward the
CLOCK

Anylogic GUI: Blocks for DES Models

SelectOutput

Initializes event „Decide“

Parameters:

-) On condition

-) On probability

Anylogic GUI: Blocks for DES Models

Assembler

Initializes event „construction“

Parameters:

-) Capacity of inputs

-) Delay

-) Can use resources

-) Different classes possible

Anylogic GUI: Blocks for DES Models

Conveyor

Initializes event „conveyor“

Parameters:

-) Length

-) Space between entities

-) Speed

Anylogic GUI: Blocks for DES Models

Anylogic GUI: Blocks for DES Models

Example: Airport

Research Question:

How many check-in counters, security control and counters for passport
control do we need on an airport with given flight schedule?

Example: Airport

Research Question:

How many check-in counters, security control and counters for passport
control do we need on an airport with given flight schedule?

Introduction to Cellular Automata

BASIC CONCEPTS

Cellular Automata

• Modelling using „cellular
automata“, short CA, is a
microscopic simulation
method

• Cellular automata can be
imagined as a coloured
grid observed dynamically

Although this is a very simplified image of a CA,
keep it in mind to understand the formal details of

this concept

Components of a CA

• Cells

Components of a CA

• Cells

▪ Notations: cell, entity, node
▪ Cells are passive: no internal dynamic, only container

for some information
▪ Each cell has some state.

Components of a CA

• Cells

• States

• State-space

▪ Every Cell has a state
▪ There is always some space 𝕊 that contains all

possible states. It is usually called state-space.

A 3.14 (3,6,1) 1

Components of a CA

• Cells

• States

• State-space

A 3.14 (3,6,1) 1

Every cell has a state from a

common state-space

Components of a CA

• Cells

• States

• State-space

A 3.14 (3,6,1) 1

Every cell has a state from a

common state-space

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

▪ All cells are arranged on some lattice structure: the
„cell-space“ – in the simplest case, a rectangular grid.

▪ There is some index mapping that maps some subset
of I ⊂ ℤ𝑑 onto each cell

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

1

3
2

4

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

(3,4)

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

(3,4)

Sometimes indexing is not
so trivial…

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

(1,1)

(3,2)
(1,2)

It often is, but does not necessarily have to be a
natural attribute of the cell-space…

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

A 3.14 (3,6,1) 1

▪ Possible characteristics of the index set:
• regular
• finite or infinite
• connected
• multi-dimensional

▪ Interpretation of the index set: discretisation of a space or spatial arrangement
of entities

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

A 3.14 (3,6,1) 1

The neighborhood of a cell z is an ordered set of
n other cells (𝑧1, … , 𝑧𝑛).

1

2
3

4

5

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

A 3.14 (3,6,1) 1

Some examples:

Neighbourhood

• The neighbourhood mapping is relative to the cell’s
position (= index)

• Calculation of neighbouring cells by stencil: Index
translations yield the positions (index) of n
neighboring cells: 𝑖 ↦ 𝑖 + 𝑡1, … 𝑖 + 𝑡𝑛

(𝑖, 𝑗) (𝑚, 𝑛)

(𝑘, 𝑙)

Neighbourhood

• Possible characteristics of neighbourhoods:

▪ local: the neighbourhood consists of cells of
neighboring points on the grid

▪ symmetric: the neighborhood of cell A contains cell B
if and only if the neighborhood of cell B contains cell A

Neighbourhood

• Classic, popular neighborhoods

Moore

neighborhood
Von-Neumann

neighborhood

𝑑

Neighbourhood by distance:

𝑖 → {𝑗 : 𝑖 − 𝑗 < 𝑑}

Neighbourhood

• Von Neumann/Moore Neighbourhood of higher
order

Von-Neumann

neighborhood

1st order

Von-Neumann

neighborhood

2nd order

Von-Neumann

neighborhood

3rd order

Neighbourhood

• The index set is limited → either incomplete
neighborhoods for cells near the borders
𝑧1, 𝑧2, ∅, 𝑧4… , 𝑧𝑛 ….

…or other compensation ideas.

Periodic Boundary Conditions (Torus)

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

A 3.14 (3,6,1) 1

Some rule, that simultaneously updates all states of all cells of
the CA.
Maps all states of a cell’s neighbourhood to a new state for the
cell.

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

A 3.14 (3,6,1) 1

𝑓 𝑠, 𝑠1, … , 𝑠𝑛 = 𝑠𝑛𝑒𝑤

state of

the cell

state of the

(ordered) neighbors

new state of

the cell

Stochastic CAs have
stochastic updates!

Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =
= 1 + 1 + 2 + 1 + 0 𝑚𝑜𝑑4 =
= 5 𝑚𝑜𝑑 4 = 1

Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

2

𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =
= 1 + 1 + 2 + 3 + 3 𝑚𝑜𝑑4 =
= 10 𝑚𝑜𝑑 4 = 2

Update Rule

▪ Example:

2 2

3 2 1 1

0 1 2 0

2 0 1 1

2 2 0 2

0

1

2

1

3

1 2 1 0

2 3 1 2

2

3

2

5

2

3

1

1

1

0

1

2

1

1

1

1

0 1

Neighbourhood = Von Neumann
2

1 3
4𝑓 𝑠, 𝑠1, 𝑠2, 𝑠3, 𝑠4 =𝑠 (𝑚𝑜𝑑 4)

Old state of the CA New state of the CA

1

2

0

𝑓 𝑠, 𝑠1, 𝑠2, ∅, 𝑠4 =
= 1 + 1 + 1 + 1 𝑚𝑜𝑑4 =
= 4 𝑚𝑜𝑑 4 = 0

The update function needs to
be capable to deal with

incomplete neighbourhoods as
well

Updates

▪ Updates happen for all cells simultaneously.

– Neighborhoods are all computed from the same
system state

– Update order of cells is irrelevant

Why?

Components of a CA

• Cells

• States

• State-space

• Arrangement
(Cell-space)

• Neighbourhood

• Update Rule

• Iterations

A 3.14 (3,6,1) 1

Iteratively apply the update rule on the complete CA
finally leads to a simulation model

Iterations

▪ Define discrete, equidistant time points (all time
steps between time points are of the same length):
𝑡0, 𝑡1,…,𝑡𝑛

▪ Every update of states brings the model to the next
time point

➢ Cellular Automaton (CA)

Iterations

▪ Tasks for one iterations

– Compute the neighbors of all cells

– Determine states of all cells, and states of all
neighbours of all cells

– Compute state updates for all cells and store them

– Apply the updated states for all cells

time 𝑡0 time 𝑡1 … time 𝑡𝑛

…

Properties of CA models

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

They are, hence, not only
a very powerful, but also
a very dangerous
modelling approach with
respect to validity.

1D deterministic CA!
Time is plotted vertically

Properties of CA models

Cellular Automata are microscopic simulation models that are capable
of producing almost arbitrarily complex, up to chaotic, behaviour.

Stephen Wolfram
(A New Kind of Science, 2002)
stated that CAs may have one
of the four types of
behavour:

fixed, cyclic, complex, chaotic

Chris Langton developed
the schematic to the right.

CONWAY’S GAME OF LIFE
Example:

Conway‘s Game of Life

▪ Cells on a 2-dimensional, rectangular or infinite
lattice: 𝐼 = (1,2, … 𝑎) × (1,2, … , 𝑏) or on 𝐼 = ℤ2.

▪ Set of states: 𝕊 = (𝑎𝑙𝑖𝑣𝑒 , 𝑑𝑒𝑎𝑑)

▪ Moore neighborhood

Index translations:
1
0
, 1
1
, 0
1
, −1

1
, −1

0
, −1
−1

, 0
−1

, 1
−1

Conway‘s Game of Life

▪ Update rules:

– An alive cell with fewer than two or
more than three alive neighbors
dies (“under-population” or
“overcrowding”)

– A dead cell with exactly three alive
neighbors becomes alive
(“reproduction”)

– Cells keep their state in any other
case

→

→

→

→

Conway‘s Game of Life

time t=0 time t=1

Conway‘s Game of Life

▪ Designed by John Horton Conway, 1970

▪ Why “Game of Life”?

– Teaching purposes

– Academic competitions

– Fundamental/methodological research

– Game→ figures

Probably worst example for a Cellular Automata
simulation model,…

…but probably the best example to show the
concepts of CAs.

Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Static figures

Loaf
Block

Beehive Boat

Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Oscillators

Pulsar (period 3)

Blinker (period 2)

Toad (period 2)

Beacon (period 2)

Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Gliders (moving
objects)

Lightweight spaceship (LWSS)

Glider

Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

As it seemed as if any starting configuration of the GoL
resulted in a static or oscillating end-configuration, Conway

offered a price of 50$ for a pattern that resulted in an
infinitely growing population.

Conway‘s Game of Life

Pattern analysis of the Game of Life became its own
science (although its applicability can be doubted).

Source: http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Bill Gosper‘s answer:

Gosper Glider Gun

NAGEL SCHRECKENBERG MODEL
Example

Nagel-Schreckenberg-Model

• discretisation of a road or motorway into cells of approximately 4m
• possible states:

– 𝑠 = 0: no vehicle
– 𝑠 > 0: speed of vehicle

• update rules (implicitly defined!):
– accelerate: IF 𝑣 < 𝑣_max AND next vehicle 𝑣 + 1 cells away THEN
𝑣(𝑡 + 1) = 𝑣(𝑡) + 1

– brake: IF next vehicle 𝑗 cells away AND 𝑗 < 𝑣 THEN
𝑣(𝑡 + 1) = 𝑗 – 1

– randomisation: 𝑣(𝑡 + 1) = 𝑣(𝑡) – 1 with a certain probability
– movement: 𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝑣(𝑡)

Application Example: Traffic
Simulation

Application Example: Traffic Simulation

Application Example: Traffic Simulation

Application Example: Traffic Simulation

DYNAMIC MAPS
Example

• map shows relation between sizes

• The dots symbolises cancer patients

Dynamic Cartography

Dynamic Cartography

• Amount of cancer patients spread equally to squares
in each region (e.g. staats)

• Diffusion from places with high density to low

• Diffusion continues until the density is equal
distributed

• Regions with higher density grow, others shrink

Dynamic Cartography

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,

5

5

5

5 0,9 0,9 0,9

0,9 0,90,9 0,9

0,9 0,9 0,9

0,9 0,9 0,9

Dynamic Cartography

Neumann model

Moore model

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,

5

0,8

5

0,8 0,8 0,8 0,8

0,8 0,80,8 0,8

0,8 0,8 0,8

0,8 0,8 0,8

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,

5

2,5

2,5

2,5 1,2 1,2 2,5

1,2 1,21,2 1,2

1,2 1,2 1,2

2,5 1,2 2,5

Density depending model

Neumann-Model

Moore-Model

Dynamic Cartography - Boundaries

Dynamic Cartography - Results

1 2

3

Dynamic Cartography - Population

1 2

3

Dynamic Cartography - Tourism

1 2

3

Dynamic Cartography – Hunting
game

LATTICE GAS CELLULAR AUTOMATA
(LGCA)

Example

Lattice Gas Cellular Automata

▪ Lattice Gas Cellular Automata (LGCA)

▪ Extension of the CA concept

▪ Intention: Simulate fluids and gases

▪ Invented by Hardy, Pomeau and de Pazzis (HPP
automaton on square lattice), 1973

▪ Improved by Frisch, Hasslacher and Pomeau (FHP
automaton on hexagonal grid), 1986

Lattice Gas Cellular Automata

• Ideas

▪ Cells do not have states but instead can contain
particles

▪ A particle can only proceed to a cell in the
neighborhood

▪ Instead of state updates, particles move to other cells

▪ Particles represent the fluid or the gas

Lattice Gas Cellular Automata

• HPP

▪ square grid, Von-Neumann neighborhood, max. 4
particles per cell so that max. 1 particle goes to each
neighbor

▪ several issues when it comes to real interpretations
(comparison with real fluids, validation)

Lattice Gas Cellular Automata

• FHP

▪ hexagonal grid

▪ neighborhood = surrounding cells

▪ max. 6 particles per cell, each going into a different
direction→ consistent definition

▪ Corresponds to the Navier-Stokes-Equations → valid
representation of fluid dynamics

FHP Model

neighbourhood particles and directions

FHP Model

▪ Particle movements consist of two phases

– Rotation of cells for special configurations

– Movements of particles into their direction

▪ Developed by Wolf-Gladrow (2000)

▪ Different variations (FHP-I, FHP-II, FHP-III)

FHP Model

• Rotations

▪ In the most simple case of FHP-I only for two
situations

▪ Provide a randomness

FHP Model

• Movements into designated directions

LGCAs

• Simulations & Visualizations

• HPP
• http://en.wikipedia.org/wiki/File:Gas_velocity.gif

• FHP
• http://www.youtube.com/watch?v=HluQpDFOceg

• http://www.youtube.com/watch?v=00W6H7BGZ94

http://en.wikipedia.org/wiki/File:Gas_velocity.gif
http://www.youtube.com/watch?v=HluQpDFOceg
http://www.youtube.com/watch?v=00W6H7BGZ94

Remark: Implementation of a
hexagonal grid

• Implementation

▪ hexagonally arranged grid → assign to a square lattice

▪ conditional neighborhoods

Remark: Implementation of a
hexagonal grid

Remark: Implementation of a
hexagonal grid

EPIDEMIC SIMULATION
WITH CA AND LGCA

Example

SIR concept

• Simulate the spread of an epidemics

• Susceptible (S) people become infected by infectous
(I) and become resistant/recovered (R) after some
time.

• Resistant persons cannot be infected again.

S I R

CA Implementation

CA Implementation of SIR epidemics:

• Every cell in a rectangular (hexagonal..) lattice represents
a person/group of persons/household/…

• Infecious cells recover after some time (with some
probability).

• Infectious cells may spread the disease to their
neighbours (e.g. Moore neighbourhood)

LGCA Implementation

LGCA Implementation of SIR epidemics:

• Every cell in a rectangular (hexagonal..) lattice contains a
number of persons (e.g. 4)

• Infecious persons recover after some time (with some
probability).

• Infectious persons may spread the disease to all other
persons in the cell

LGCA Implementation

LGCA Implementation of SIR epidemics:

Infection

- Phase

Movement

-Phase

Infection

- Phase

Epidemic simulation with CA

Epidemic simulation with HPP-LGCA

HISTORY OF
CELLULAR AUTOMATA

History of Cellular Automata

• 1925: Ising Modell

– ferromagnetism, discrete model

• 1950: Von Neumann, Ulam

– term “cellular automaton”

– self reproductive, Von-Neumanns theory on logic
automata

• 1950-1970: Zuse, u.a.

– parallel algorithms

– discrete processes (e.g. PDEs)

• 1970s: Hardy, Pomeau, de Pazzis

– Lattice Gas Cellular Automata

• 1979: Conway's Game of Life

History of Cellular Automata

• 1980+: different applications

• 2002: Wolfram

– complete classifications of 1-dimensional cellular
automata

History of Cellular Automata

Stephen Wolfram, „A new Kind of Science“

History of Cellular Automata

▪ a spatially extended decentralized system made up
of a number of individual components […] local
interaction […] depending on the states of its local
neighbors […] parallel processing [Ganguly]

▪ regular grid of cells, each in one of a finite number of
states […] neighbourhood […] new generation is
created according to some fixed rule [Wikipedia]

History of Cellular Automata

▪ regular arrangements of single cells […] each cell
holds a finite number of discrete states […] updated
simultaneously […] the rules for the evolution of a
cell depend only on a local neighborhood [Gladrow]

CONCLUSIONS
5. Conclusions

Characteristics of CA

• Regular lattice, same kind of neighbourhoods

Characteristics of CA

• Discrete time, equidistant time steps

Characteristics of CA

• Spatial representation, locality

Applications for Cellular

Automata

• map shows relation between sizes

• The dots symbolises cancer patients

Dynamic Cartography

Dynamic Cartography

• Amount of cancer patients spread equally to
squares in each region (e.g. staats)

• Diffusion from places with high density to low

• Diffusion continues until the density is equal
distributed

• Regions with higher density grow, others
shrink

Dynamic Cartography

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,
5

5

5

5 0,9 0,9 0,9

0,9 0,90,9 0,9

0,9 0,9 0,9

0,9 0,9 0,9

Dynamic Cartography

Neumann model

Moore model

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,
5

0,8

5

0,8 0,8 0,8 0,8

0,8 0,80,8 0,8

0,8 0,8 0,8

0,8 0,8 0,8

2

21,5

1,5

1,5

1,5 1,5 1,5

1,5 1,5 1,5

2

2

2

21,
5

2,5

2,5

2,5 1,2 1,2 2,5

1,2 1,21,2 1,2

1,2 1,2 1,2

2,5 1,2 2,5

Density depending model

Neumann-Model

Moore-Model

Dynamic Cartography - Boundaries

Dynamic Cartography - Results

1 2

3

Dynamic Cartography - Population

1 2

3

Dynamic Cartography - Tourism

1 2

3

Dynamic Cartography – Hunting game

Nagel-Schreckenberg-Model

• discretisation of a road or motorway into cells of
approximately 4m

• possible states:
– 𝑠 = 0: no vehicle
– 𝑠 > 0: speed of vehicle

• update rules (implicitly defined!):
– accelerate: IF 𝑣 < 𝑣_max AND next vehicle 𝑣 + 1 cells away

THEN 𝑣(𝑡 + 1) = 𝑣(𝑡) + 1
– brake: IF next vehicle 𝑗 cells away AND 𝑗 < 𝑣 THEN

𝑣(𝑡 + 1) = 𝑗 – 1
– randomisation: 𝑣(𝑡 + 1) = 𝑣(𝑡) – 1 with a certain probability
– movement: 𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝑣(𝑡)

Application Example: Traffic Simulation

Application Example: Traffic Simulation

Application Example: Traffic Simulation

Application Example: Traffic Simulation

Introduction to

Agent-Based Modelling

Historical Background

• Agent-based modelling is a comparably young
modelling technique.

• Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

• Thomas Schelling‘s Model of Segregation (1971)
is broadly denoted as the first agent-based model

Model segregation behaviour between individuals

with different races in US in the 1970s

http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/

Historical Background

• Agent-based modelling is a comparably young
modelling technique.

• Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

• Thomas Schelling‘s Model of Segregation (1971)
is broadly denoted as the first agent-based model

Historical Background

• Agent-based modelling is a comparably young
modelling technique.

• Were inspired by Cellular Automata (Von
Neumann, Ulam, etc)

• Thomas Schelling‘s Model of Segregation (1971)
is broadly denoted as the first agent-based model

A Small but Powerful Difference…

CA Model
Each cell is assigned a colour

(= a person if colour is not white)

A Small but Powerful Difference…

Agent Based

Model (ABM)
Each agent (= person) is

assigned a colour

(blue or red) and a cell

agent

A Small but Powerful Difference…

for C in Cellspace:
 if C is not white:
 N(C) = neighbourhood of C
 do update rules with C w.r. to N(C)
Update Cellspace

for A in AgentList:
 get cell and color of A
 find neighboured agents N(A)
 do some actions with A w.r. to N(A)
Update AgentList

ABM CA Model

Pseudocode representation of a time step in Schelling‘s model.

In principle both representations make sense for this

application. Yet Schelling used the second concept to

describe the model for its benefits.

A Small but Powerful Difference…

for A in AgentList:
 get cell and color of A
 find neighboured agents N(A)
 do some actions with A w.r. to N(A)
Update AgentList

In principle both representations make sense for this

application. Yet Schelling used the second concept to

describe the model for its benefits.

We could distinguish

between male and female

agents (persons)

We do not have to

use a cell-space

It could be some

„grayscales“ in between if

we want to

We could add some

immigrants We could introduce

death of agents

We do not have to

use a dicrete time-

step! ABM

We could include

more realistic

distributions

It is easier to explain the

model as it is a more

natural description!

Agent

Why Agent?

Agent

Latin: „agere“ (to act)

What is an Agent? (1)

• Agent – lat. agere (act)

• There is no unique definition. The word is very

broadly used.

[Agent-based modelling is...]

„Rather a general concept“

(Winter Simulation Conference 2005 & 2006)

What is an Agent? (2)

 With respect to Winter Simulation Conference (2005 &

2006) an agent has to...

... be uniquely identifiable

... cohabitate an environment with other agents,

and has to be able to communicate with them.

... be able to act targeted.

... be autonomous and independent.

... be able to change its behaviour.

What is an Agent? (2)

 With respect to Winter Simulation Conference (2005 &

2006) an agent has to...

... be uniquely identifiable

... cohabitate an environment with other agents,

and has to be able to communicate with them.

... be able to act targeted.

... be autonomous and independent.

... be able to change its behaviour.

Optional properties (Wintersimulation Conference 2015)

What is an Agent? (3)

Agent

What is an Agent? (3)

Act Targeted

Target

Agent

What is an Agent? (3)

Act Targeted

Target

Agent

Cohabitate an environment

with other agents

Agent
Agent

Agent
Agent

Agent

Agent

What is an Agent? (3)
Uniquely Identifiable

Agent
Agent

Agent
Agent

Agent

Agent

What is an Agent? (3)
Uniquely Identifiable

Agent
Agent

Agent
Agent

Agent

Agent

What is an Agent? (3)

Agent
Agent

Agent
Agent

Agent

Agent

Can interact and

communicate

What is an Agent? (3)

Agent
Agent

Agent
Agent

Agent

Agent

Can change its behaviour

individually.

What is an Agent? (3)

Agent
Agent

Agent
Agent

Agent

Agent

Can change its behaviour

individually.

Short Summary

• Agent-Based modelling is a bottom up modelling

approach using a big number of individual system

components (agents).

• The components act independently (following given

rules)

• As it requires a lot of processing resources ABM is a

very young science with high potential.

Properties of Agent-Based Models

a. Representation of „emergent phenomena“

b. Flexibility

(Bonabeau, 2002)

c. Natural description of the system

Properties of Agent-Based Models

a. Representation of „emergent phenomena“

b. Flexibility

(Bonabeau, 2002)

c. Natural description of the system

Representation of „Emergent

Phenomena“

Simple rules for individual agents

Complex dynamics of the whole system

group dynamics / swarm intelligence

Simple rules

Representation of „Emergent

Phenomena“

Can lead to complex

behaviour

Representation of „Emergent

Phenomena“

Example: Fish or bird flocks

https://www.youtube.com/watch?v=QOGCSBh3kmM

https://www.youtube.com/watch?v=QOGCSBh3kmM

Boids Flock Model

Each agent tends towards

the centre of its neighbours

Keep a distance that is

neither too far nor too small

Swim in the same direction

as your neighbours

Wilensky, U. (1998). NetLogo Flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL.

http://netlogoweb.org/launch
http://ccl.northwestern.edu/netlogo/models/Flocking

Properties of Agent-Based Models

a. Representation of „emergent phenomena“

b. Flexibility

(Bonabeau, 2002)

c. Natural description of the system

Flexibility

• Change of details is very easy compared to other

(especially macroscopic) modelling approaches.

• Different parameterisation of single agents does not

require changes within the system structure.

• Change or addition of (meta) rules for single agents

does not influence the system structure as well (as

long as they remain compatible with the system).

Example: Emergency exit strategy

Agent-Based

Model

Macroscopic

approach

Example: Emergency exit strategy

Example: Emergency exit strategy

Agent-Based

Model

Macroscopic

approach

(Navier Stokes

PDE Based Model)

Example: Emergency exit strategy

Agent-Based

Model

Macroscopic

approach

Agent-Based

Model

Example: Emergency exit strategy

Agent-Based

Model

Macroscopic

approach

Example: Emergency exit strategy

Example: Emergency exit strategy

Agent-Based

Model

Properties of Agent-Based Models

a. Representation of „emergent phenomena“

b. Flexibility

(Bonabeau, 2002)

c. Natural description of the system

• Components of the system look like in

reality

• Parameters can be seen like data or

properties of individuals in reality

• No mathematical background knowledge is

required in order to understand the

modelling approach

Natural description of the System

Agent

Current Position:

Wiedner

Hauptstraße 8-10

Ground Floor

Current State:

Learning,

Healthy,

Hungry,

Tired

...

Properties:

Female,

41 years,

1.72 m,

71kg,

Non Smoker,

...

Target:

Survive

until Lunch

Communi-

cating with:

Colleague to the left,

Colleague to the right,

Lecturer,

...

Natural description of the System

Example: GEPOC (Generic

Population Concept)

• Population model of Austria

• Simulation of Austria‘s population from 1999 to make prognosis until

2050

Each agent has a

certain coordinate,

dies, emigrates,

immigrates and

reproduces

Example: GEPOC (Generic

Population Concept)

• Population model of Austria

• Simulation of Austria‘s population from 1999 to make prognosis until

2050

Each agent has a

certain coordinate,

dies, emigrates,

immigrates and

reproduces

VALIDATION?

Example: GEPOC (Generic

Population Concept)

VALIDATION PROCESS:
• Project for two years.

• Parametrisation and Validation data for time <2016 from Statistics

Austria

• Parametrisation and Validation for time >=2016 matched with

Statistics Austria Prognosis tool

Example: GEPOC Flu

• Simulation of 2014 Flu

• Contact driven disease spread

Each agent has

certain number of

contacts each time-

step

movie.html

../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html

Example: GEPOC Flu

• Simulation of 2014 Flu

• Contact driven disease spread

Each agent has

certain number of

contacts each time-

step

movie.html

VALIDATION?

../Documents/DexhelppNoDropbox/gepoc_coordinates/movie.html

Example: GEPOC Flu

HOW ABOUT

VALIDATION?

THIS model is absolute rubbish and has hardly

anything to do with reality!

Beware of wrong ideas!

Interpretation of Agent-Based

Model Results

Basically two classes of

agent-based models can

be observed
ABMs for quantitative

investigation

• Usually interested in

temporal behaviour

of aggregate

numbers

• Usually used for

some kind of

resource planning

ABMs for qualitative

investigation

• Usually interested in

(temporal behaviour) of

patterns

• Usually used for

foundamental scientific

research

Interpretation of Agent-Based

Model Results

Basically two classes of

agent-based models can

be observed
ABMs for quantitative

investigation

• Rather simple agent

interactions

• A lot of data

involved for model

parametrisation and

validation

• Usually less famous

ABMs for qualitative

investigation

• (On purpose) very

abstract

• Usually very complex

model behaviour

• Hardly any parameters

identified with real data

Interpretation of Agent-Based

Model Results : Examples

ABMs for qualitative

investigation

ABMs for quantitative

investigation

Schelling‘s Segregation Model

GEPOC

Interpretation of Agent-Based

Model Results : Examples

„Schelling‘s model

predicts: In a few years

only immigrants in Wien

Hietzing!“

WRONG

INTERPRETATION

Interpretation of Agent-Based

Model Results : Examples

„If we do not take care on

our migration policy human

homophobia might lead to

spatially visible ghettoism

as seen above in Austria as

well!“

CORRECT

INTERPRETATION

Interpretation of Agent-Based

Model Results : Examples

WRONG

INTERPRETATION

„GEPOC predicts:

In two years there

will be a 50 year

old immigrant in

Leibnitz“

Hi guys, i‘m

Mike In general: Never pick only one

agent from an ABM!

Interpretation of Agent-Based

Model Results : Examples

„GEPOC

predicts: Austrian

population is

assumed to grow

to x.x Mio people

until 2030.“

CORRECT

INTERPRETATION

Summary: Agent-Based Models

Agent-based models are good in…

• … analysis and discovery of complex group dynamic

behaviour. This must not necessarily be a good thing

as emergent behaviour may occur in models even if it

is not correct.

• … communitcating models to non-experts.

The modelling appoach is easy to understand,

picturesque and no mathematical background is

necessary.

Summary: Agent-Based Models

Agent-based models are good in…

• … analysis and discovery of complex group dynamic behaviour.

• … communitcating models to non-experts.

Agent-based modelling is problematic …

• … regards misinterpretation. If it looks like reality it
must not necessarily be a valid model for it.

• … regards the validation process. Validation of ABMs
is a difficult task due to complex model behaviour.

• … regards computer ressources. ABMs require high
performance CPUs and a lot of RAM.

Questions?

Discrete Modelling

Difference Equations

Part 1

Difference Equation

• equations involving differences of inputs and
outputs

• three points of views

– sequence of number

– discrete dynamical system

– iterated function

Difference equation - is a sequence of numbers that

generated recursively using a rule to relate each number in the
(output) sequence to previous (output) numbers and input
numbers in the sequence.

Difference Equations

• Fibonacci Sequence :

• Growth model

• Dynamical System with unit step input

𝑦 𝑘 = 2𝑦 𝑘 − 1 +
3

2
𝑢 𝑘

𝑢 𝑘 = ቊ
0, 𝑘 = −1,−2,−3,…
1, 𝑘 = 0,1,2,3, …

⇒ 𝑦 𝑘 =
3

2
(1 − 2𝑘+1)

1,1,2,3,5,8,13,21,34
𝑦 𝑘 + 2 = 𝑦 𝑘 + 1 + 𝑦 𝑘
𝑦 0 = 𝑦 1 = 1, 𝑘 = 0,1, …

Difference Equations

• Iterated map 𝑓 𝑘

𝑦 𝑘 + 2 = 𝑓 𝑦 𝑘 , 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3, …

orbit {𝑦0, 𝑓 𝑦0 , 𝑓 𝑓 𝑦0 , 𝑓 𝑓 𝑓 𝑦0 , … }

dependent on 𝑦0

• Example: 𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 ≔ 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3…

𝑦 0 = 1,⇒ 𝑜𝑟𝑏𝑖𝑡 1,1,1,1,…
𝑦 0 = −1 ⇒ 𝑜𝑟𝑏𝑖𝑡 −1,1,1,1,…
𝑦 0 = 2 ⇒ 𝑜𝑟𝑏𝑖𝑡 2,4,16,256,65536,…

𝑦 0 =
1

2
⇒ 𝑜𝑟𝑏𝑖𝑡 {0.5,0.25,0.0625, 0.00390625,… }

Difference Equations

• Example 𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3

𝑦 0 =
1

2
⇒ 𝑜𝑟𝑏𝑖𝑡 {0.5,0.25,0.0625, 0.00390625,… }

Cobweb Function:

𝑦 0 , 0 → 𝑦 0 , 𝑦 1 →

→ 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2 →

→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 →

→ 𝑦 3 , 𝑦(3) → 𝑦 3 , 𝑦 4 →

…

„oscillates“ between
y = 𝑓 𝑥 and 𝑦 = 𝑥

Difference Equations

• Equlibria – Fixed Points
𝑦 𝑘 + 2 = 𝑓 𝑦 𝑘 , 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3, …
𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑦∗: 𝑦∗ = 𝑓 𝑦∗ ⇔ 𝑦(𝑘 + 1) = 𝑓 𝑦 𝑘 = 𝑦(𝑘)

• Attractive/stable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑦∗

• Repelling/unstable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑓𝑟𝑜𝑚 𝑦∗

• Graphic Test for stability / instability:

Cobweb-function stable/attractive:
𝑦 0 , 0 → 𝑦 0 , 𝑦 1 → 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2
→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 → ⋯ → 𝑦 ∗, 𝑦 ∗

Cobweb−function stable/attractive:
𝑦 0 , 0 → 𝑦 0 , 𝑦 1 → 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2
→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 → ⋯𝑑𝑖𝑣𝑒𝑟𝑔𝑒

Difference Equations

Cobweb Diagram

• Graphical technique to
investigate iterated
functions

• Iteration is performed
graphically

• Consists of

– Iterated Function 𝑓 𝑦

– 1.Mediane 𝑦 𝑘 + 1 = 𝑦 𝑘

– Cobweb path

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘)

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)
𝑦 𝑘 + 1 =

4

9
𝑦 𝑘 +

7

2

Cobweb Functions

Inward spirals lead to
attracting fixed points

Outward spirals from
repelling fixed points

𝑦 𝑘 + 1 = −0.6𝑦 𝑘 + 8 𝑦 𝑘 + 1 = −3.5𝑦 𝑘 + 17.5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)

Cobweb Functions

• Example

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 ≔ 𝑦 𝑘 2, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,3…

⇒ 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑎 𝑦∗ = 𝑓 𝑦∗ = 𝑦∗2 ⇒ 𝑦∗ ∈ {0,1}

Cobweb Function:

𝑦 0 , 0 → 𝑦 0 , 𝑦 1 →

→ 𝑦 1 , 𝑦(1) → 𝑦 1 , 𝑦 2 →

→ 𝑦 2 , 𝑦(2) → 𝑦 2 , 𝑦 3 →

→ 𝑦 3 , 𝑦(3) → 𝑦 3 , 𝑦 4 →

… → (0,0)

attracts 𝑦∗ = 0

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,…

• Examples in Finance

– Actual balance y(n)
- after n compounding periods
- with annual interest I
- compounded m times a year
- and constant amount b added at the

end of every compounding period:

𝑦 𝑛 + 1 = 1 +
𝐼

𝑚
𝑦 𝑛 + 𝑏

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2,…

• Solution
𝑦 1 = 𝑎𝑦 0 + 𝑏 = 𝑎𝑦0 + 𝑏
𝑦 2 = 𝑎𝑦 1 + 𝑏 = 𝑎 𝑎𝑦0 + 𝑏 + 𝑏 = 𝑎2𝑦0 + 𝑎𝑏 + 𝑏
𝑦 3 = 𝑎𝑦 2 + 𝑏 = 𝑎 𝑎2𝑦0 + 𝑎𝑏 + 𝑏 + 𝑏
= 𝑎3𝑦0 + 𝑎2 + 𝑎 + 1 𝑏
…

𝑦 𝑘 = 𝑎𝑘𝑦0 + 1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1 𝑏 = 𝑎𝑘𝑦0 + 𝑏

𝑖=0

𝑘−1

𝑎𝑖

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1 𝑏 = 𝑎𝑘𝑦0 + 𝑏

𝑖=0

𝑘−1

𝑎𝑖

σ𝑖=0
𝑘−1𝑎𝑖 geometric series for 𝑎 ≠ 1

→

𝑖=0

𝑘−1

𝑎𝑖 =
1 − 𝑎𝑘

1 − 𝑎

and for 𝑎 = 1 → σ𝑖=0
𝑘−1𝑎𝑖 = σ𝑖=0

𝑘−11 = 𝑘

• Hence

𝑦 𝑘 = ൞𝑎
𝑘𝑦0 + 𝑏

1 − 𝑎𝑘

1 − 𝑎
, 𝑎 ≠ 1

𝑦0 + 𝑘𝑏, 𝑎 = 1

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = ൞𝑎
𝑘𝑦0 + 𝑏

1 − 𝑎𝑘

1 − 𝑎
, 𝑎 ≠ 1

𝑦0 + 𝑏𝑘, 𝑎 = 1

Example:

𝑦 𝑘 + 1 =
4

9
𝑦 𝑘 +

7

2
,

𝑦 0 = 2.25 =
9

4

𝑦 𝑘 =
9

4

4𝑘

9𝑘
+

7

2

1−
4𝑘

9𝑘

1−
4

9

=
7⋅32𝑘−2−22𝑛−1

10⋅32𝑛−4

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘)

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Equilibrium / Fixed Point

• 𝑦∗ = 𝑓 𝑦∗ ↔ 𝑦∗ = 𝑎𝑦∗ + 𝑏

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

– Attractive/stable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒 𝑡𝑜 𝑦∗

– Repelling/unstable: 𝑦0, 𝑦1, 𝑦2, 𝑦3, … . 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑓𝑟𝑜𝑚 𝑦∗

• Solution with Equilibrium

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
= 𝑎𝑘 𝑦0 −

𝑏

1 − 𝑎
+

𝑏

1 − 𝑎

= 𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗ , 𝑎 ≠ 1
𝑦 𝑘 = 𝑦0 + 𝑘 , 𝑎 = 1

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 = −0.6𝑦 𝑘 + 8, 𝑦0 = 2

• 𝑦∗ =
𝑏

1−𝑎
=

8

1+0.6
= 5

• 𝑦 𝑘 = −
3

5

𝑘
2 − 5 + 5 =

−1 𝑘+13𝑘+1

5𝑘
+ 5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 = −2.5𝑦 𝑘 + 17.5, 𝑦0 = 4.8

• 𝑦∗ =
𝑏

1−𝑎
=

17.5

1+2.5
= 5

• 𝑦 𝑘 = −
5

2

𝑘 24

5
− 5 + 5 =

−1 𝑘+15𝑘−1

2𝑘
+ 5

𝑦(𝑘 + 1)

𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑦(𝑘)

𝑓 𝑦(𝑘)

𝑦(0)

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Example

𝑦 𝑘 + 1 =
4

9
𝑦 𝑘 + 3.5, 𝑦0 =

9

4

• 𝑦∗ =
𝑏

1−𝑎
= 6.3

• 𝑦 𝑘 = −
4

9

𝑘 4

9
− 6.3 + 6.3 =

−
22𝑘−234−2𝑘

5
+ 6.3

⋮
𝑦 3
𝑦 2
𝑦(1)

𝑦(0) 𝑦(1) 𝑦 2 … 𝑦(𝑘)

𝑦 𝑘 + 1 = 𝑓(𝑦 𝑘)

𝑦 𝑘 + 1 = 𝑦 𝑘𝑦(𝑘 + 1)

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Equilibrium – Fixed Point
one (or no) fixed point

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

𝑦∗ = 𝑦0, 𝑎 = 1, 𝑏 = 0
𝑛𝑜 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑓𝑜𝑟 𝑎 = 1, 𝑏 ≠ 0

• Stability:
𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓𝑓 𝑎 < 1, 𝑦∗ 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔
un𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓𝑓 𝑎 ≥ 1, 𝑦∗ 𝑟𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔

Linear Affine Difference Equations

𝑦 𝑘 + 1 = 𝑓 𝑦 𝑘 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑘 = 0,1,2, …

• Solution

𝑦 𝑘 = 𝑎𝑘𝑦0 + 𝑏
1 − 𝑎𝑘

1 − 𝑎
=

𝑎𝑘 𝑦0 − 𝑦∗ + 𝑦∗, 𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

• Classification of Solutions
Typ of solution depends on 𝑎, 𝑏 and 𝑦0

1. 𝑎 > 1
2. 𝑎 = 1
3. 0 < 𝑎 < 1
4. −1 < 𝑎 < 0
5. 𝑎 = −1
6. 𝑎 < −1

Main
classification

Sub-
classification

1. 𝑦0 =
𝑏

1−𝑎

2. 𝑦0 >
𝑏

1−𝑎

3. 𝑦0 <
𝑏

1−𝑎

0,
1

*

)0(

,3,2,1,0

)(

))(()1(

0

−

=

=

=

+=

==+

a
a

b
y

yy

k

bkya

kyfky

Parameters Solution Type

1 a > 1, y0 = y* Constant

2 a > 1, y0 > y* Exponentially increasing without bound

3 a > 1, y0 < y* Exponentially decreasing without bound

4 a = 1, b = 0 Constant

5 a = 1, b > 0 Linearly increasing without bound

6 a = 1, b < 0 Linearly decreasing without bound

7 0 < a < 1, y0 = y* Constant

8 0 < a < 1, y0 > y* Exponentially decreasing to a bound

9 0 < a < 1, y0 < y* Exponentially increasing to a bound

10 -1 < a < 0, y0 = y* Constant

11 -1 < a < 0, y0 > y* Oscillating with decreasing amplitude

12 -1 < a < 0, y0 < y* Oscillating with decreasing amplitude

13 a = -1, y0 = b/2 Constant

14 a = -1, y0 > b/2 Oscillating with constant amplitude

15 a = -1, y0 < b/2 Oscillating with constant amplitude

16 a < -1, y0 = y* Constant

17 a < -1, y0 > y* Oscillating with increasing amplitude

18 a < -1, y0 < y* Oscillating with increasing amplitude

Linear

Affine

Difference

Equations

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏
𝑦 0 = 𝑦0

𝑦∗ =
𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

1 Constant

a > 1, y0 = y*

a = 1, b = 0

0 < a < 1, y0 = y*

-1 < a < 0, y0 = y*

a = -1, y0 = b/2

a < -1, y0 = y*

2

Linearly
increasing
without
bound

a = 1, b > 0

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

3

Linearly

decreasing

without

bound

a = 1, b < 0

4

Exponentially

increasing

without

bound

a > 1, y0 > y*

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

5

Exponentially

decreasing

without

bound

a > 1, y0 < y*

6

Exponentially

increasing

to a bound

0 < a < 1, y0 < y*

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

7

Exponentially

decreasing

to a bound

0 < a < 1, y0 > y*

8
Oscillating
with constant
amplitude

a = -1, y0 > b/2

a = -1, y0 < b/2

Linear Affine Difference Equations -

Classification of Solutions

𝑦 𝑘 + 1 = 𝑎𝑦 𝑘 + 𝑏, 𝑦 0 = 𝑦0, 𝑦
∗ =

𝑏

1 − 𝑎
, 𝑎 ≠ 1

No Solution Type Solution Sketch Parameters

9

Oscillating
with
increasing
amplitude

a < -1, y0 > y*

a < -1, y0 < y*

10

Oscillating
with
decreasing
amplitude

-1 < a < 0, y0 > y*

-1 < a < 0, y0 < y*

Applications to finance

• Actual balance y(n) after n compounding

periods with annual interest I, compounded

m times a year and constant amount b added

at the end of every compounding period:

𝑦(𝑘 + 1) = 1 +
𝐼

𝑚
𝑦 𝑘 + 𝑏

Solution:

𝑦∗ =
𝑏

1−𝑎
=

𝑚𝑏

𝐼
, 𝑦 𝑘 = 1 +

𝐼

𝑚

𝑘
𝑦0 −

𝑚𝑏

𝐼
+

𝑚𝑏

𝐼

Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

– Set of assumptions:

first order affine dynamical
system

s sensitivity of producers to price

d sensitivity of consumers to price

via adjustment of price/bargaining

• 𝑆 𝑘 + 1 = 𝑠𝑃 𝑘 + 𝑎, 𝑎 > 0
• 𝐷 𝑘 + 1 = −𝑑𝑃 𝑘 + 1 + 𝑏
• 𝑆 𝑘 + 1 = 𝐷(𝑘 + 1)

→ −𝑑𝑃 𝑘 + 1 + 𝑏 = 𝑠𝑃 𝑘 + 𝑎

→ 𝑃 𝑛 + 1 = −
𝑠

𝑑
𝑃 𝑛 +

𝑏 − 𝑎

𝑑
, 𝑃∗ =

𝑏 − 𝑎

𝑑 + 𝑠

Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

– Set of assumptions:

first order affine dynamical
system

s sensitivity of producers to price

d sensitivity of consumers to price

via adjustment of price/bargaining

• 𝑆 𝑘 + 1 = 𝑠𝑃 𝑘 + 𝑎, 𝑎 > 0
• 𝐷 𝑘 + 1 = −𝑑𝑃 𝑘 + 1 + 𝑏
• 𝑆 𝑘 + 1 = 𝐷(𝑘 + 1)

→ −𝑑𝑃 𝑘 + 1 + 𝑏 = 𝑠𝑃 𝑘 + 𝑎

→ 𝑃 𝑛 + 1 = −
𝑠

𝑑
𝑃 𝑛 +

𝑏 − 𝑎

𝑑
, 𝑃∗ =

𝑏 − 𝑎

𝑑 + 𝑠

Applications to economics

• Supply and Demand

– S(n), D(n), P(n) … supply, demand, price in the year n

first order affine dynamical
system

Cobweb theorem of economics

• 𝑃 𝑘 + 1 =
𝑠

𝑑
𝑃 𝑘 +

𝑏−𝑎

𝑑

• Fixed Point: 𝑃∗ =
𝑏−𝑎

𝑠+𝑑

• General Solution:

𝑃 𝑘 = 𝑐 −
𝑠

𝑑

𝑘

+ 𝑝

stable for

−1 < −
𝑠

𝑑
< 1

Difference Equations with MATLAB

Case Study: Logistic Equation

Repetition: Difference Equation

• Problems defined by
𝑥𝑛+1 = 𝑓 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑
𝑥0 = 𝑘

are called difference-equations.

• Solution of these equations is given by a
sequence of, probably vector-valued,
numbers 𝑥𝑛 with a certain initial value 𝑘.

Repetition: Connection between Difference

E. and Differential E.

• 𝑥𝑛+1 = 𝑓 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑 ֜
𝑥𝑛+1 − 𝑥𝑛 = 𝑔 𝑛, 𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑑

Difference!

Solutions of difference
equations are gained by the

sum of all differences starting
at a specific value!

Solutions of differential
equations are gained by the

sum of all infinitesmial
differencials starting at a

specific value! In this case,
the sum is called integral!

Repetition: Connection between Difference

E. and Differential E.

A solution of a difference
equation is a sequence. We

receive a value for each
interation step!

{0,1,2, … , 𝑛}
This is usually called explicit

representation of the
sequence in contrast to a

recursive one.

A solution of a differential
equation is a „very infinite“

sequence“. We receive a
value for each timepoint

0, 𝑡𝑒𝑛𝑑
Those kind of „sequences“
are usually called functions!

Repetition: Connection between Difference

E. and Differential E.

We differ between linear
and nonlinear difference

equations. E.g.:
Linear: 𝑥𝑛+1 = 4𝑥𝑛 + 2

Nonlinear: 𝑥𝑛+1 = 𝑥𝑛
2 + 𝑥𝑛

We differ between linear
and nonlinear differentiale

equations. E.g.:
Linear: 𝑥′ = 3𝑥 + 2
Nonlinear: 𝑥′ = 𝑥2

Repetition: Connection between Difference

E. and Differential E.

We can perform a z-
Transformation

𝑥𝑛+1 − 𝑥𝑛 = 3𝑥𝑛 + 2

𝑎(𝑧) =
2

1
𝑧 − 3

We can perform a Laplace-
Transformation

𝑥′ = 3𝑥 + 2

t 𝑠 =
2

1
𝑠 − 3

Repetition: Connection between Difference

E. and Differential E.

Finding a explicit solution is
usually very tricky!

Sometimes comparisons with
geometric sequences can

lead to sucess.

Anyway values can be
calculated directly through

the recursive formula.

Finding an analytic solution
can be performed with

analytical methods. If no
solutions can be found this

way a numerical
approximation method

needs to be used usually
leading to difference

equations.

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

• Logistic differential equation is given by
𝑥′ = 𝑎𝑥 𝑏 − 𝑥

• The corresponding logistic-difference
equation is given by

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑥𝑛(𝑏 − 𝑥𝑛)

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

Solutions of the
logistic

differential
equation are
steady, and

behave similar for
all parameters.

Solutions of the
logistic difference

equation are
unsteady and
seem to differ
extremely for

different
parameters

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

Solutions of the
logistic difference

equation are
unsteady and
seem to differ
extremely for

different
parameters

Repetition: Comparison Logistic Difference

Equation and Logistic Differential Equation

Conclusion

Logistic Equation and the Border to Chaos

• What is an accumulation point?

Although a sequence (i.e. a
solution of a difference
equation) might look chaotic on
the first place…

𝑡 = 1 2 3 4 20

Logistic Equation and the Border to Chaos

• What is an accumulation point?
… one might observe a
„convergence“ to a periodic sub-
sequence when observed longer

𝑡 = 101,102,103 … . 120

Logistic Equation and the Border to Chaos

• What is an accumulation point?
… one might observe a
„convergence“ to a periodic sub-
sequence when observed longer

𝑡 = 101,102,103 … . 120

F
o

u
r

a
cc

u
m

u
la

ti
o

n
-p

o
in

ts

Experiments with MATLAB/Simulink

𝑥𝑛+1 = 𝑝𝑥𝑛(1 − 𝑥𝑛)

Experiments with MATLAB/Simulink

07.01.2021Vienna UT -
Modeling and

How many accumulation points??

P=2 P=2.7

P=3.1 P=3.4

P=3.7 P=4

Bifurcation

Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money
planning to have a child

Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money
planning to have a child

• Net income of couple after the birth is fixed
1700€/month already added financial
benefits related to the child. They receive the
money at the end of the month.

Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money
planning to have a child

• Net income of couple after the birth is fixed
1700€/month already added financial
benefits related to the child. They receive the
money at the end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they
have to pay after the second week of each
month

Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money planning
to have a child

• Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at
the end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have
to pay after the second week of each month

• Costs per week after birth are approximated with
150€.

Case Study: „Baby Planner“

Problem Definition

• A couple (person) saved some money planning to
have a child

• Net income of couple after the birth is fixed
1700€/month already added financial benefits
related to the child. They receive the money at the
end of the month.

• Fixed costs (flat, insurance, car..) after birth is
approximated to 1150€/month which they have to
pay after the second week of each month

• Costs per week after birth are approximated with
150€.

• Income of the couple is saved with interest rate of
0.1%/month.

Research Question:

Does the money last for
18 years?

Difference Equation Model

• We observe that the type of the recursion
depends on the division of the index by 4

• 𝑥𝑛+1 = 𝑥𝑛 − 150, if 𝑛 ≡ 1 4 or 𝑛 ≡ 3 4

• 𝑥𝑛+1 = 𝑥𝑛 − 150 − 1150 , if 𝑛 ≡ 2 4

• 𝑥𝑛+1 = (𝑥𝑛−150) ∙ (1 +
0.1

100
) + 1700 , if 𝑛 ≡ 0 4

Implementation in Simulink

Adaption of the Model

• Unfortunately the anount of money spent
each week is not known perfectly.

• We introduce a random variable making the
simulation stochastic. This raises new
questions:

Can I expect that the money will last for 18 years?
How confident is this assumption?

Variance? Mean? Quantiles?

Monte Carlo Simulation

Buffon‘s Needle Problem

Migration Analysis
by Modelling and Simulation

Felix Breitenecker1, Tamara Vobruba1,
Andreas Körner1, Nikolas Popper1,2

1TU Wien, COCOS - Computational Complex Systems and
ARGESIM/Mathematical Modelling and Simulation

2 dwh Simulation Services

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Refugee Crisis 2015 1.9.2015 – 30.10.2015

4.9.2015 30.10.2015

Transit

Application
for Asylum

UNHCR Data

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Refugee Crisis 2015 1.9.2015 – 30.10.2015

4.9.2015 30.10.2015

Transit

Application
for Asylum

Modelling & Simulation ?

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Refugee Crisis 2015 1.9.2015 – 30.10.2015

Transit

Application
for Asylum

Modelling & Simulation ?

 Spatial Interaction Model

 Social Gravity Model

 Migration Model

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Spatial Interaction Model
 Spatial interaction = transmission/movement

over space resulting of decision making
process

 Decision making process realised by relation
of influencing factors

 Applications: flow of traffic, commuters,
migrants, goods or messages,...

 Interactions between regions/populations

 Regions/populations represented trough a
directed graph

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Spatial Interaction Model

I i , j= f (Ri , A j ,C i , j)

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Gravity Model
 Specific form of Spatial Interaction Model
 Social physics: analogies between social behaviour

and physics
 Relation of interaction based on law of gravity

 Long history in social sciences:
1924 Ernest Young: movement of farm migration

M=k F
D2

Migration

Intensity of attraction
Distance
proportional constant

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Gravity Model: Development
1941 John Steward: concept of demographic gravitation

Pi, Pj population masses (attributes)
G constant, d Distance

1950 John Steward: refined formulation to include
heterogeneity of population masses

weights of population masses

I i , j=G
Pi ⋅ P j

d i , j
2

I i , j=G
wi Pi ⋅ w j P j

d i , j
2 wi ,w j

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Gravity Model: Model Equations

The class of gravity models for spatial interaction
behaviour follows the form

interaction between vi and vj

function of repulsive attributes in vi

function of attractive attributes in vj

function of separation attributes between vi and vj

(F usually non increasing)

I i , j ∈ ℝ
R : ℝ N → ℝ
A : ℝ M → ℝ
F : ℝ K → ℝ

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Dynamic Equations

M i , j(t)=I i , j(t) ⋅ M i(t)

M i (t)

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Difference Equation

M i , j(t)=I i , j(t) ⋅ M i(t)

M i (t)

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

• Migrants in vi at time t

• Interaction

• Migrants from vi to vj

• Migrants in vi at time t+1

Migration Model: Difference Equation

M i , j(t)=I i , j(t) ⋅ M i(t)

M i (t)

Migration Model: Attributes

Attractive attributes
 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in
Europe

Migration Model: Attributes

Attractive attributes
 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in
Europe

Repulsive attributes
 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in
Europe

Migration Model: Attributes

Attractive attributes
 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in
Europe

Repulsive attributes
 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in
Europe

Separation attributes
 Border security actions

Migration Model: Attributes & Parameters
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible
counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Refugee Crisis 2015

 Data: Number of asylum applications, partly Transit
 Country of origin: Syria
 Time period: 01.09-31.10.2015

Graph of migration movement

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Weighting of attractive attributes:
potential destination countries

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Weighting of the repulsive attributes:
potential destination countries

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Weighting of the attractive
attributes: country of origin

Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region

Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region
No satisfying Identification

Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region
No satisfying Identification – only neighbour attraction

Migration Model: Parameter Identification
Attractive attributes

 Gross domestic Product (GPD)

 Fragile State Index (FSI)

 Migrants in the country

 Attractive attributes of accessible counties

 Not exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Repulsive attributes

 Gross domestic product (GPD)

 Fragile State Index (FSI)

 Exceeded capacity

 Asylum recognition rate

 Asylum recognition quote in Europe

Separation attributes

 Border security actions

 Parameters

Data: Migration /Day in each region
Transit Regions with extended Attraction Attributes

∑

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Migration Model: Transit Regions
Transit Region
– repulsion

– attraction given

- not only by neighbours,

- but also by following regions

Ã(j , t)= max
u= j1,. .. , jñ

(A(au(t)) ⋅ max
v= j1,. .. , jñ

F (cv ,u(t)))

R(r j(t)) ≥ ρ

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Refugee Crisis 2015 1.9.2015 – 30.10.2015

4.9.2015 30.10.2015

Transit

Application
for Asylum

Modelling + Identification -> Simulation

Simulation Results Refugee Crisis: 2015

data simulation

Simulation Results Refugee Crisis 2015:
Route Change

 15.09.2015:
alternative route
over Croatia

 15.10.2015:
alternative route
over Slovenia

Transit in Hungary
Transit in Croatia
Transit in Slovenia
Transit in Austria

Analysis:relative error

total relative error 25.6 %

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Model Characterisation

 Macro theoretic model

 Qualitative simulation of migration movement

 Behaviour of populations not individuals

 Model Equations treat static patterns

 Probabilistic model description

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Forecast Scenario June 2016

 Time period: June 2016

 Extension of the
graph of movement:
central Mediterranean route

 Balkan route “closed”

 Turkey Deal

Forecast Scenario June 2016: Visualisation

Visualisation:
Irene Hafner (dwh), Stefan Emrich (dwh), Filip Krasinianski (orf)

 en

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Forecast Scenario June 2016:
Simulation Results vs Data (post)

relative error 8% - sum 48,6 %

Forecast Scenario June 2016: Error

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Discussion and outlook

 Qualitative description of migration movement of
population groups

 Comparative scenarios can describe all phenomena
 Validity dependent on attributes and weighting
 Include more attribute
 Investigate weighting over longer time period
 Foundation of analysis of influencing factors

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Discussion and outlook

 Qualitative description of migration movement of
population groups

 Comparative scenarios can describe all phenomena
 Validity dependent on attributes and weighting
 Include more attribute
 Investigate weighting over longer time period
 Foundation of analysis of influencing factors
 Qualitative Forecast – What if ……

What If Brenner Closed - Visualisation

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

What If Region Closed - Visualisation

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Mathematical
Modelling and
S i m u l a t i o nICBTI 2016, Durres Migration Analysis by Modelling and Simulation

Thank you for your attention

Models are in any case a simplification of reality,
- but they should help in better understanding of complex dynamics

as migration movement,
- and the intention of this model is to improve the situation of refugees

under appropriate prerequisites.

	021 Introduction
	Definition: Computer Simulation
	Dynamical Systems
	Elements of a Dynamical System

	Simulation Circle
	Modelling
	Model Classification
	Modelling vs Model
	Dynamic Models
	Model Procedures
	Stochastic/Deterministic
	Microscopic/Macroscopic

	Simulation
	Visualization

	Definition: System Dynamics
	Build a SD Model
	Causal Loop Diagram
	Stock and Flow Diagram
	EXAMPLE Predator - Prey

	Don'ts of Mathematical Modelling

	163 System Dynamics
	Build a SD Model
	Causality vs. Correlation
	Causal Loop Diagram
	S-Shaped Growth
	Goal Seeking Behavior
	Oscillation
	Overshoot and Oscillation
	Overshoot and Collapse

	Stock and Flow Diagram
	Helpful SD Tools
	Analysis of SD Models

	223 DES and Event Graphs
	Fundamental Components
	Fundamental Concept
	Event Graphs
	Classical Elements
	Parameterization of Events
	Event List
	Ordering Problems

	Simultaneous Events

	Queuing Models
	Terminology
	Analysis of Queues

	282 DES and Multi-Method Simulation
	EXAMPLE Predator - Prey
	Definition Multi-Method Modelling
	EXAMPLE Airport

	318 Cellular Automata
	Neighborhood
	Classic Neighborhoods

	EXAMPLE Game of Life
	EXAMPLE Nagel Schreckenberg Model
	EXAMPLE Dynamic Maps
	EXAMPLE Lattice Gas Cellular Automata
	EXAMPLE Epidemic Simulation
	History of Cellular Automata
	Conclusions

	407 Cellular Automata Applications
	421 Agent-Based Modelling
	Difference CAM vs. ABM
	What is an Agent
	Summary ABM
	Properties of ABM
	Interpretation of ABM Results
	Summary ABM

	479 Discrete Modelling, Difference Equations
	Cobweb Function
	Linear Affine Difference Equations
	Classification of Solutions

	Applications

	508 Difference Equations with MATLAB
	Difference vs. Differential Equations
	Accumulation Point
	MATLAB/Simulink
	EXAMPLE Baby Planner

	537 Migration Analysis
	Spatial Interaction Model
	Gravity Model
	Migration Model Attributes
	Parameter Identification
	Simulation Results
	Model Characterization
	Discussion and Outlook

