
Lab2: High-Level Synthesis Lab

Advanced Computer Architecture

Johannes Kappes, Daniel Mueller-Gritschneder

18.11.2025



High-Level Synthesis Lab Structure

3 Modules:

• M1 „Hello World!“ on a VP

• M2 Introduction into High Level Syntesis Tool (Vivado HLS)

• M3 Acceleration of Advanced Encryption Standard (AES) 
algorithm

ACA 2



Module 1: Hello World! On a Virtual Prototype



Module 1.1: Background



Why Virtual Prototyping?

ACA 5

hardware softwareorganization testing

hardware

software

organization testing

time

time

conventional

virtual prototyping



EdaDuino -  SoC (M1)

ACA 6

uart

ISS

TLM

clint plic

timermemory

interrupt

signals

TLM bus

cpu

rv32imac

uart

ISS

TLM

clint plic

timermemory

interrupt

signals

TLM bus

cpu

rv32imac

- 32-bit RISC-V CPU

- Core-local Interrupt Controller (clint) 

with Real-time Clock 

- (Machine Timer Interrupt) 

- MSI (Multi-Core)

- Platform-level Interrupt Controller (plic) 

     as Interrupt MUX for:

 - UART with Interrupt

 - Timer with Interrupt

- Transaction Level Modeling (TLM) of 

Memory bus



EdaDuino -  SoC (M3)

ACA 7

7

uart

ISS

TLM

clint plic

timermemory

interrupt

signals

TLM bus

cpu

rv32imac

aes-ha

- 32-bit RISC-V CPU

- Core-local Interrupt Controller (clint) 

with Real-time Clock 

- (Machine Timer Interrupt) 

- MSI (Multi-Core)

- Platform-level Interrupt Controller (plic) 

     as Interrupt MUX for:

 - UART with Interrupt

 - Timer with Interrupt

- Transaction Level Modeling (TLM) of 

Memory bus

- AES Hardware Accelerator 
(generated with Vivado-HLS)



EdaDuino - Toolchain / Build System

ACA 8

[1] https://github.com/tum-ei-eda/etiss 

[2] https://github.com/tum-ei-eda/etiss-sc

[3] https://github.com/VP-Vibes/VPV-Peripherals

[4] https://github.com/VP-Vibes/SystemC-Components

[5] https://github.com/accellera-official/systemc

systemc [5]

scc [4]

vpvper [3]

etiss-sc [2]

etiss [1]

edaduino

SystemC

sources

aes-ha

CMake Configuration

Host C++ Compiler

edaduino

executable

virtual prototype

https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/accellera-official/systemc
https://github.com/accellera-official/systemc
https://github.com/accellera-official/systemc


EdaDuino - Toolchain / Build System

ACA 9

systemc [5]

scc [4]

vpvper [3]

etiss-sc [2]

etiss [1]

edaduino

SystemC

sources

aes-ha

CMake Configuration

Host C++ Compiler

edaduino

executable

virtual prototype

target

software

binary

CMake Configuration

RV32 Cross Compiler

application

software

edaduino

chip supp.

package

target software



EdaDuino - Toolchain / Build System

ACA 10

systemc [5]

scc [4]

vpvper [3]

etiss-sc [2]

etiss [1]

edaduino

SystemC

sources

aes-ha

CMake Configuration

Host C++ Compiler

virtual prototype

CMake Configuration

RV32 Cross Compiler

application

software

edaduino

chip supp.

package

target software

edaduino

executable

target

software

binary

x86 

machine 

code

RISC-V 

machine 

code



EdaDuino -  Virtual Platform

ACA 11

11

uart

ISS

TLM

clint plic

timermemory

interrupt

signals

TLM bus

cpu

rv32imac

aes-ha

ELF

>_

>_ uartin

uartout

simulation host

- Simulation host initializes memory with target 
software binary

- Opens Unix Pipelines for UART terminal, e.g., 

    `echo “hello world!” > uartin`

    `cat uartout`



M1.2 Task: Utilizing UART Interrupt



Polling vs. Interrupt-driven Hardware synchronization

ACA 13

• Polling:

- cyclical sampling a peripherals status by an application program 

(synchronous)

- cyclical checks can be scheduled 

• continuous sampling: “busy-wait”:

• increase sampling period: better performance, risk of losing 
events

 

• Interrupt-driven:

- peripheral reports a (configured) state change event to the CPU 

by and interrupt



The System

ACA 14

● UART Peripheral *

- 16750 standard

- memory mapped registers

- single Interrupt line to CPU

 

● Software: 

“Serial Mirror”: UART received data

is mirrored on Transmitter data

                

*elaborate guide to UART: https://www.lammertbies.nl/comm/info/serial-uart

 

UART

Register

Address std Addr. abs 

EdaDuino
Type Access Config

RBR
THR

DLL

base + (0*w) 0x1000_0000 RO
WO

RW

LCR.DLAB = lo
LCR.DLAB = lo

LCR.DLAB = hi

IER

DLM
base + (1*w) 0x1000_0004 RW

RW

LCR.DLAB = lo

LCR.DLAB = hi

IIR

FCR
base + (2*w) 0x1000_0008 RO

WO

LCR base + (3*w) 0x1000_000c RW

MCR base + (4*w) 0x1000_0010 RW

LSR base + (5*w) 0x1000_0014 RO

MSR base + (6*w) 0x1000_0018 RO

SCR base + (7*w) 0x1000_001C RW

https://www.lammertbies.nl/comm/info/serial-uart
https://www.lammertbies.nl/comm/info/serial-uart
https://www.lammertbies.nl/comm/info/serial-uart


C Driver Library

ACA 15

sw/csp/inc/uart_drv.h UART

Register

Address std Addr. abs. 

EdaDuino
Type Access Config

RBR
THR

DLL

base + (0*w) 0x1000_0000 RO
WO

RW

LCR.DLAB = lo
LCR.DLAB = lo

LCR.DLAB = hi

IER

DLM
base + (1*w) 0x1000_0004 RW

RW

LCR.DLAB = lo

LCR.DLAB = hi

IIR

FCR
base + (2*w) 0x1000_0008 RO

WO

LCR base + (3*w) 0x1000_000c RW

MCR base + (4*w) 0x1000_0010 RW

LSR base + (5*w) 0x1000_0014 RO

MSR base + (6*w) 0x1000_0018 RO

SCR base + (7*w) 0x1000_001C RW



The Task

ACA 16

1. Write a `uart_send_string(const char* str)` driver function

2. Check the pre-implemented busy-wait “Serial Mirror”

3. Replace the busy-wait poll with a wait for interrupt (WFI)

4. Write an UART_IRQ_HANDLER

5. Check your interrupt-driven solution, if it still performs the “Serial 

Mirror”



Learning Goals?

ACA 17

● Basics of (embedded) Software Compilation Flow

 

● Programming Low-Level Memory Mapped I/O

 

● Basics of Bare-metal programming

 

● Basics of ETISS VP for Module part 3



Module 2: High Level Synthesis with Vivado-HLS



High Level Synthesis (HLS) 

ACA 19

Static Code Analysis & Optimization

Scheduling, Binding, Allocation for Data-Path

FSM generation for Control-Path

High level spec. of 

functionality

Optimized IR Code

RTL model of functionality



Example

ACA 20

void foo(int in[3], char a, char b, char c, int out[3]) {

int x,y;

for (int i=0; i<3; ++i) {

x = in[i];

y = a*x + b + c;

out[i] = y;

}

}

Source: Xilinx Web



Learning Goals?

ACA 21

Source: Xilinx Web



HLS Benefits

ACA 22

• Design at higher abstraction
– improved productivity for HW designers

 • employing Model-Based-Design principles

 • rapid system prototyping; shorter time-to-market

– improved system performance for SW designers
 • HW/SW CO-design to accelerate applications

• Better Design Space Exploration
– optimize resource, perf. trade-off early in design cycle



HLS Limitations

ACA 23

• Some SW concepts do not map well into HW
  – Datatypes: No fixed datatypes
  – Pointers: No heap for dynamic memory
  – Recursion: No notion of execution stack
  – Communication: No notion of shared memory

• Generated RTL hard to extend / modify

 – difficult to debug if RTL verification fails



HLS abstract tool view

ACA 24

High-Level Synthesis

Tool

Library of 

functional 

units

Algorithmic desc. of a task

(MATLAB, C/C++ etc)

Design Constraints

Optimization Directives 

HDL module (RTL model)

Verification Testbenches 



Vivado HLS Flow

ACA 25

• Inputs:

 – C function

 – Constraints

 – Directives

 – C testbench

• Outputs:

 – RTL code in HDLs,

 SystemC etc.

 – RTL testbench

 – Report files

Source: Xilinx Web



Vivado-HLS: Implementation Aspects (1)

ACA 26

• Top-level function args into 

 - RTL I/O ports

 - supported Interfaces (AXI)

• C functions into blocks in RTL hierarchy

 – hierarchy of sub-funcs -> hierarchy of RTL modules

 – all instances of a function use same RTL block

• Loops into blocks in RTL hierarchy with control path

 – nested-loops -> hierarchy of RTL modules



Vivado-HLS: Implementation Aspects (2)

ACA 27

• Loops are kept rolled by default

 – RTL logic (as component) for one iteration of loop
 – all iterations scheduled in sequence using the same logic

• Arrays synthesize to Block-RAM by default

 – Arrays in I/O ports as external block-RAMs

 – FIFOs, HW Registers, Distributed RAM also possible



Synthesis

ACA 28

Synthesis reports:
• Estimated Timing
• Utilization
• Loop/Module:

- iteration latency 
 - initiation interval



Analysis

ACA 29

Reports:

• Data Dependencies within Modules

• Various Latencies such as: 

– Loop iteration latency

– Loop initiation interval



Optimization

ACA 30

• Strategies:
 - Instruct a task to execute pipelined

 - Specify latency for completion of funcs/loops

 - Specify limit on number of resources used

 - Select a specific I/O protocol for optimal integration

 - Efficient structuring of data items



Directives

ACA 31

https://download.amd.com/docnav/documents/aem/xilinx2019_1-ug1253-sdx-pragma-
reference.pdf?utm_source=chatgpt.com



M2.1 Lab tasks



Finite Impulse Response (Getting started)

ACA 33

• Intro to Vivado HLS tool

• Synthesize an initial solution for FIR filter (C func)

• Steps:

 – Set up an HLS project

 – Source code for FIR filter in C

 – Validate the C source

 – Create and synthesize a solution

 – Analyze the synthesized HW

 – Package the RTL as IP



HLS of a DCT Filter

ACA 34

• Discrete Cosine Transform (DCT) is heavily used in

signal-processing applications

• Steps:

 – Start off with an initial C-level implementation

 – Analyze the performance bottlenecks

 – Optimize via directives to improve performance

 – Package the final generated IP



Module 3: Acceleration of embedded AES Cryptography
with HLS



M3.1 Background 



Advanced Encryption Standard (AES)

• Essentially a symmetric data-processing algorithm

– Block Cipher AES-128 (128-bit blocks)
 → requires add. Block Mode of Operation (BCMO) 

         to en-/decrypt messages of multiples blocks

 

• In general compute-intensive

– High optimization potential for HLS

• Regular data-flow oriented nature

• Symmetry allows usage of same hardware for both directions
• Please don’t do this in HLS in the real life! -> Side-Channels

ACA 37



AES-128

ACA 38

AES 128 Block Cipher

block [127:0]

key [127:0]

KeyExpansion

xblock [127:0]

• 128-bit IO and key. Input mapped to 4*4 byte state

• KeyExpansion: Generate individual key for each round

• AddRoundKey: state is XORed with round key

• SubBytes: Each state byte’s value is substituted by a mapped value 
 (can be a LUT or calculated) (non-linear)

• ShiftRows: Shifting rows of state matrix

• MixColumns: Mixing operation on columns of state matrix

-> computationally heavy



Encrypting a message: Straight-forward

ACA 39

AES 128
Block Cipher

key [127:0]

block 0 [127:0]

block 1 [127:0]

block n [127:0] xblock 0 [127:0]

xblock 1 [127:0]

xblock n [127:0]

• Consider message m with n 128-bit blocks of information 
of which some bear the same information, i.e. their 128-bit 
value is equal

• Block-by-block transformation with AES128 would yield 
encrypted but recurring encrypted blocks.

—> Very bad!



Encrypting a message: Straight-forward

ACA 40

AES 128
Block Cipher

key [127:0]

block 0 [127:0]

block 1 [127:0]

block n [127:0] xblock 0 [127:0]

xblock 1 [127:0]

xblock n [127:0] Comparison between original, ECB and otherwise encrypted messages
https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Tux_encrypted_
ecb.png/196px-Tux_encrypted_ecb.png



Encrypting a message: BCMO

ACA 41

Block Cipher Mode of Operation (BCMO) enables Block Ciphers (like AES128) to be used on multi-block 
messages. Here: Counter (CTR) + Initiation Vector (IV)

AES 128
Block Cipher

key [127:0]

block 0 [127:0]

block 1 [127:0]

block n [127:0]

iv [127:0] + 0

xblock 0 [127:0]

AES 128
Block Cipher

key [127:0]

block 0 [127:0]

block 1 [127:0]

block n [127:0]

iv [127:0] + n

xblock n [127:0]



M3.2 Task 1: AES-SW



Task 1: Pure Software implementation

ACA 43

uart

ISS

TLM

clint plic

timermemory

interrupt
signals

TLM 
bus

cpu
rv32imac

ELF

• Decrypting a message m, containing a secret ASCII-based picture.

• m can be resembled by a 46x192 byte = 46x(12x128) bit matrix.

• m, private key (AES key) and public key (IV) are provided

Task: Application Profiling the AES software library as a software 
implementation on EDAduino. #cycles spent for this solution?



M3.2 Task 2: AES-HA



Extended Design Flow: AES-CTR to AES-HA

1) AES-CTR (AES128 w/ CTR BCMO) as C software library

2) Vivado-HLS builds RTL (normally we would export

 to a Xilinx FPGA design suite)

3) Verilator builds cycle-accurate SystemC model from RTL

-> Tests at each design stage

ACA 45

Vivado-HLS          

TinyAES (C)

aes-ha
(systemc)

aes test (C)

C Synthesis

C Simulation C/RTL Co
Simulation

aes-ha (verilog)

C Test

C Synthesis
(Test Bench) aes test (verilog)

aes-ha (verilog)

RTL Test

Verilator



Extended Design Flow: AES-CTR to AES-HA

1) AES-CTR (AES128 w/ CTR BCMO) as C software library

2) Vivado-HLS builds RTL (normally we would export to

a Xilinx FPGA design suite)

3) Verilator builds cycle-accurate SystemC 

     models from RTL

-> Tests at each design stage

ACA 46

edaduino

sources
(systemc)

axi-tlm

systemc

scc

vpvper

etiss-sc

etiss aes-ha
(systemc)

CMake Configuration

Host C++ Compiler

edaduino
executable

target
software

binary (ELF)

CMake Configuration

RV32 Cross Compiler

application
software

edaduino
chip support

virtual prototype target software

aes-ha drv

aes-ha (verilog)Verilator



Task 2: HLS AES-SW to AES-HA

ACA 47

Rules:
1) Do not change nor introduce additional 
directives to the top function aes_ha.c,

2) the design is implemented for the Xilinx 
FPGA chip xc7s15-ftgb196-2,

3) no resource usage shall exceed 100%,

4) a maximum latency of 500 clock cycles, 
and

5) the solution must pass the Vivado-HLS 
C/RTL Cosimulation test)

Task: Generate and optimize a hardware accelerated 

solution with Vivado-HLS.



M3.3 Task 3: AES-HW Integration



EDAduino AES-HA Integration (Basic)

Transactor provides memory-mapped registers for CPU 

and routes data flow AES-HA (VRTL) and registers

• Key, IV, readable and writeable by CPU

• IV updated by CTR after each AES-HA run

• Interrupt gen. by FSM signals to CPU

ACA 49

memory
write address channel

write data channel

write response channel

read address channel

read data channel

AES-HA
(XAes)

TLM2AXI-Lite
Transactor

EDAduino
TLM BUS

clock gen

key [127:0]

iv [127:0]

inout [127:0]

FSM
+

Logic

aes + bcmo

to plic
from reset



Task 3: HA No DMA Implementation

ACA 50

• No Direct Memory Access from aes-ha

• AXI-lite target port for control

• Same AXI-lite target port for I/O
• Driver library generated by Vivado-HLS

• CPU has to …
→ read message from memory
→ write input register
→ issue start command
→ synchronize (wait)
→ read output register
→ write to memory

Task: Integrate, drive and evaluate the hardware accelerated 

cryptography on EDAduino. #cycles spent for this solution?

uart

ISS

TLM

clint plic

timermemory

interrupt
signals

TLM 
bus

cpu
rv32imac

ELF

Aes-ha



EDAduino AES-HA Integration (DMA)

ACA 51

AXI-to-TLM
Transactor

read address channel

registers
write address channel

AES-HA

(XAes_ha)
TLM-to-AXI-lite

Transactor

EDAduino
TLM BUS

(as target)

clock gen

key [127:0]

iv [127:0]

aes + bcmo

to plic
from reset

write data channel

write response channel

read data channel in [31:0]

out [31:0]

in [31:0]

length [31:0]

EDAduino
TLM BUS

(as 
initiator)

read address channel

write address channel

write data channel

write response channel

read data channel

AES-HA with AXI4-M (Initiator) port for
direct memory access of AES-HA
• Key, IV, readable and writeable by CPU
• Message length, Input address and output 

address writeable
• IV updated by CTR after each AES-HA run
• Interrupt gen. by FSM signals to CPU
• No CPU memory operations for I/O



Task 3: HA with DMA Implementation

ACA 52

•Direct Memory Access from aes-ha
•AXI-lite target port for control
•AXI-M initiator port for I/O
•Driver library generated by Vivado-HLS

•CPU has to …
→ write message address to input register
→ write output destination address
→ issue start command
→ synchronize (wait)

Task: Integrate, drive and evaluate the hardware 
accelerated cryptography on EDAduino. #cycles 
spent for this solution?

uart

ISS

TLM

clint plic

timermemory

interrupt
signals

TLM 
bus

cpu
rv32imac

ELF

Aes-ha



Reference: Decrypted Message

ACA 53

192

46



Exam Preperation

ACA 54

• Solution Slides provided for the 3 modules

• Knowledge of Vivado HLS tool and most common directives

• Exam from last WS24 in HLS to practice (in a zip folder on TUWEL )

(similar expectations in 90mins)



INFO

The registration for the second lab exam is already open!



Working on your own



Options for Accessing the Lab Material

• Lab Access:
• TILab accounts are generated by now and should be available next week (Room 4)

• Access with your student card (https://www.tilab.tuwien.ac.at/howto.shtml)

• Virtual Machine:
• Using the TILab account, a virtual machine containing all sources and dependencies can be 

downloaded

• Source Files on gitlab:
• A TUWEL assignment was opened asking for gitlab IDs.  We will use this to give you access to the 

material

• Lab Manual will be uploaded to TUWEL

ACA 57



Warning

Warning: This lab has been reworked

recently. So you might encounter Bugs.

Please report them!!!



2nd Warning

Warning: The VM has been recently created and is giant (119GB 
uncompressed) and 52 GB compressed!

If you want to use it, test it ASAP!

Decompressing will take ages if you don’ t find a tool with xz algorithm

 (USE LINUX ^^)



Thank you for your attention!


	Folie 1
	Folie 2: High-Level Synthesis Lab Structure
	Folie 3: Module 1: Hello World! On a Virtual Prototype
	Folie 4: Module 1.1: Background
	Folie 5:  Why Virtual Prototyping?
	Folie 6: EdaDuino -  SoC (M1)
	Folie 7: EdaDuino -  SoC (M3)
	Folie 8: EdaDuino - Toolchain / Build System
	Folie 9: EdaDuino - Toolchain / Build System
	Folie 10: EdaDuino - Toolchain / Build System
	Folie 11: EdaDuino -  Virtual Platform
	Folie 12: M1.2 Task: Utilizing UART Interrupt
	Folie 13: Polling vs. Interrupt-driven Hardware synchronization
	Folie 14: The System
	Folie 15: C Driver Library
	Folie 16: The Task
	Folie 17: Learning Goals?
	Folie 18: Module 2: High Level Synthesis with Vivado-HLS
	Folie 19: High Level Synthesis (HLS) 
	Folie 20: Example
	Folie 21: Learning Goals?
	Folie 22: HLS Benefits
	Folie 23: HLS Limitations
	Folie 24: HLS abstract tool view
	Folie 25: Vivado HLS Flow
	Folie 26: Vivado-HLS: Implementation Aspects (1)
	Folie 27: Vivado-HLS: Implementation Aspects (2)
	Folie 28: Synthesis
	Folie 29: Analysis
	Folie 30: Optimization
	Folie 31: Directives
	Folie 32: M2.1 Lab tasks
	Folie 33: Finite Impulse Response (Getting started)
	Folie 34: HLS of a DCT Filter
	Folie 35: Module 3: Acceleration of embedded AES Cryptography with HLS
	Folie 36: M3.1 Background  
	Folie 37: Advanced Encryption Standard (AES)
	Folie 38: AES-128
	Folie 39: Encrypting a message: Straight-forward
	Folie 40: Encrypting a message: Straight-forward
	Folie 41: Encrypting a message: BCMO
	Folie 42: M3.2 Task 1: AES-SW
	Folie 43: Task 1: Pure Software implementation
	Folie 44: M3.2 Task 2: AES-HA
	Folie 45: Extended Design Flow: AES-CTR to AES-HA
	Folie 46: Extended Design Flow: AES-CTR to AES-HA
	Folie 47: Task 2: HLS AES-SW to AES-HA
	Folie 48: M3.3 Task 3: AES-HW Integration
	Folie 49: EDAduino AES-HA Integration (Basic)
	Folie 50: Task 3: HA No DMA Implementation
	Folie 51: EDAduino AES-HA Integration (DMA)
	Folie 52: Task 3: HA with DMA Implementation
	Folie 53: Reference: Decrypted Message
	Folie 54: Exam Preperation
	Folie 55: INFO
	Folie 56: Working on your own
	Folie 57: Options for Accessing the Lab Material
	Folie 58: Warning
	Folie 59: 2nd Warning
	Folie 60: Thank you for your attention!

