ystems

i Informatics

Advanced Computer Architecture
Lab2: High-Level Synthesis Lab

Johannes Kappes, Daniel Mueller-Gritschneder

18.11.2025

High-Level Synthesis Lab Structure

3 Modules:
* M1 ,Hello World!“ on a VP
* M2 Introduction into High Level Syntesis Tool (Vivado HLS)

* M3 Acceleration of Advanced Encryption Standard (AES)
algorithm

ACA 2

Module 1: Hello World! On a Virtual Prototype

Module 1.1: Background

Why Virtual Prototyping?

hardware software testing
> time
conventional
software
hardware testing
> time

virtual prototyping

ACA 5

EdaDuino - SoC (M1)

- 32-bit RISC-V CPU
- Core-local Interrupt Controller (clint)
with Real-time Clock

cpu - (Machine Timer Interrupt)
rv32imac - MSI (Multi-Core)
ISS
- Platform-level Interrupt Controller (plic)

TLM
TLM bus ’ interrupt
‘ signals
‘ memory

as Interrupt MUX for:

- UART with Interrupt

- Timer with Interrupt

- Transaction Level Modeling (TLM) of
Memory bus

ACA 6

EdaDuino - SoC (M3)

- 32-bit RISC-V CPU
- Core-local Interrupt Controller (clint)
with Real-time Clock

- (Machine Timer Interrupt)
- MSI (Multi-Core)

cpu
rv32imac

TLM bus

interrupt
signals

- Platform-level Interrupt Controller (plic)
as Interrupt MUX for:

- UART with Interrupt

memory

- Timer with Interrupt

- AES Hardware Accelerator - Transaction Level Modeling (TLM) of
(generated with Vivado-HLS) Memory bus

ACA 7

EdaDuino - Toolchain / Build System

virtual prototype

—
7 etiss [1] :
etiss-sc [2]
—_— aes-ha
vpvper [3] -
— edaduino
SystemC

M sources

scc [4]
[1] https://github.com/tum-ei-eda/etiss

[2] https://github.com/tum-ei-eda/etiss-sc

[3] https://github.com/VP-Vibes/VPV-Peripherals
CMake COnfiguration [4] https://github.com/VP-Vibes/SystemC-Components
[5] https://github.com/accellera-official/systemc

Host C++ Compiler

edaduino
executable

ACA 8

https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/tum-ei-eda/etiss-sc
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/VPV-Peripherals
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/VP-Vibes/SystemC-Components
https://github.com/accellera-official/systemc
https://github.com/accellera-official/systemc
https://github.com/accellera-official/systemc

EdaDuino - Toolchain / Build System

virtual prototype target software
e —
etiss [1]
aes-ha

G D SystemC
systemc [5] sources

edaduino
application chip supp.
software package

CMake Configuration

scc [4]

t

RV32 Cross Compiler

target
software
binary

CMake Configuration

Host C++ Compiler

v

edaduino
executable

ACA 9

EdaDuino - Toolchain / Build System

virtual prototype target software
e —
etiss [1]
aes-ha

~ vpvper [3]

G D SystemC
systemc [5] sources

CMake Configuration

Host C++ Compiler
v

edaduino
application chip supp.
software package

CMake Configuration
t

RV32 Cross Compiler

scc [4]

x86 edaduino sé?trg::e RISC-V

machine | =hGelizle)l= 1 machine
binary

code code

ACA

10

EdaDuino - Virtual Platform

- Simulation host initializes memory with target

cpu software binary

rv32imac

- Opens Unix Pipelines for UART terminal, e.g.,

TLM bus interrupt “echo “hello world!” > uartin’

signals cat uartout

aes-ha ' : :
_Eﬂ_n_l plic : simulation host
r P‘ B- - —> uartout
M o
ELF | — i - !
memory timer uart [_ —-—0_ - =N uartin

11

ACA 11

M1.2 Task: Utilizing UART Interrupt

Polling vs. Interrupt-driven Hardware synchronization

* Polling:
- cyclical sampling a peripherals status by an application program
(synchronous)
- cyclical checks can be scheduled
» continuous sampling: “busy-wait”:
 Increase sampling period: better performance, risk of losing
events

* Interrupt-driven:

- peripheral reports a (configured) state change event to the CPU
by and interrupt

ACA 13

The System

e UART Peripheral *
- 16750 standard
- memory mapped registers
- single Interrupt line to CPU

e Software:
“Serial Mirror”: UART received data
IS mirrored on Transmitter data

*elaborate guide to UART: https://www.lammertbies.nl/comm/info/serial-uart

UART
Register

RBR
THR
DLL

IER
DLM

IIR
FCR
LCR
MCR
LSR

MSR

SCR

Address std

base + (0*w)

base + (1*w)

base + (2*w)

base + (3*w)

base + (4*w)

base + (5*w)

base + (6*w)

base + (7*w)

ACA

Addr. abs
EdaDuino

0x1000_0000

0x1000_0004

0x1000_0008

0x1000_000c

0x1000_0010

0x1000_0014

0x1000_0018

0x1000_001C

Type

RO
wo
RW

RW
RW

RO
wo
RW
RW
RO

RO

RW

Access Config

LCR.DLAB = lo
LCR.DLAB = lo
LCR.DLAB = hi

LCR.DLAB = lo
LCR.DLAB = hi

14

https://www.lammertbies.nl/comm/info/serial-uart
https://www.lammertbies.nl/comm/info/serial-uart
https://www.lammertbies.nl/comm/info/serial-uart

C Driver Library

sw/csp/inc/uart_drv.h

/// \brief Uart control object. Holds states and registers

typedef struct Uart

{
/* Registers */
volatile uint8_ 1 *rbr ; ///<
volatile uint8_t *thr_; ///<
volatile uint8_t *dll ; ///<
volatile uint8_t *ier_; ///<
volatile uint8 t *dlm : ///<
volatile uint8_ t *iir_; ///<
volatile uint8 t *fcr ; ///<
volatile uint8_ t *lcr_; ///<
volatile uint8_t *mcr_; ///<
volatile uint8 t *1sr_; ///<
volatile uint8_t *msr_; ///<
volatile uint8 t *scr ; ///<
/* Callbacks */

Receiver Buffer Register (make sur
Transmitter Holding Register (make
Divisor Latch (LSByte) Register (m
Interrupt Enable Register (make su
Divisor Latch (MSByte) Register (m
Interrupt Identification Register
FIFO Control Register [WO]

Line Control Register [RW]

Modem Control Register [RW]

Line Status Register [RO]

Modem Status Register [RO]

Scratch [Rw]

void (*irg callback)(void); ///< Function pointer to custom int

} uart_t;

uart_ set_dlab(uart_t *handle);

uart_ reset_dlab(uart_t *handle);

uart set IERbit(uart t *handle, uint8 t nbit);
uart_ reset_IERbit(uart_t *handle, uint8_t nbit);

uart set irqg callback(uart
uart__enable_interrupt(uart_

t *handle, void (*fptr)(void));
t *handle, ier_bits_t interrupt);

uart__disable_interrupt(uart_t *handle, ier_bits_t interrupt);

uart__send_char(uart_t *handle, const char c);
uart_ get char(uart_t *handle);

UART
Register

RBR
THR
DLL

IER
DLM

IIR
FCR

LCR

MCR

LSR

MSR

SCR

ACA

Address std

base + (0*w)

base + (1*w)

base + (2*w)

base + (3*w)

base + (4*w)

base + (5*w)

base + (6*w)

base + (7*w)

Addr. abs.
EdaDuino

0x1000_0000

0x1000_0004

0x1000_0008

0x1000_000c

0x1000_0010

0x1000_0014

0x1000_0018

0x1000_001C

Type

RO
WO
RW

RW
RW

RO
wo

RW

RW

RO

RO

RW

Access Config

LCR.DLAB = lo
LCR.DLAB = lo
LCR.DLAB = hi

LCR.DLAB = lo
LCR.DLAB = hi

15

The Task

1. Write a "uart_send_string(const char* str)" driver function
2. Check the pre-implemented busy-wait “Serial Mirror”

3. Replace the busy-wait poll with a wait for interrupt (WFI)
4. Write an UART _IRQ_HANDLER

5. Check your interrupt-driven solution, if it still performs the “Serial
Mirror”

ACA 16

Learning Goals?

e Basics of (embedded) Software Compilation Flow
e Programming Low-Level Memory Mapped 1/O
e Basics of Bare-metal programming

e Basics of ETISS VP for Module part 3

ACA 17

Module 2: High Level Synthesis with Vivado-HLS

High Level Synthesis (HLS)

High level spec. of
functionality

4

Static Code Analysis & Optimization

‘ Optimized IR Code

Scheduling, Binding, Allocation for Data-Path
FSM generation for Control-Path

4

RTL model of functionality

ACA 19

void foo(int in[3], char a, char b, char c, int out[3]) {

int x,y;

for (int i=0; i<3; ++i) {
X = inlif;
y=a'x+b+c;
outfi] =y;

}

}

Y

y out_data
+ —>

a

.
\

in_data

* —p out_addr

ACA

—in_addr —» out_ce
—»in_ce —» out_we
. . . \
Finite State Machine (FSM)
J

Source: Xilinx Web

20

Learning Goals?

(&)} Cl C2 C3 Cl C2 C3
Read B Addr Read Cale. Addr Read Cale.
and C in[0] in[0] out|0] in[1] in[1] out[1]

b (lic Addr x=Data a Addr x=Data a

Y[0] Y(1]

Function Latency =9

Cl C2
Addr Read
inf2] in[2]
Addr x=Data

C3 C0
Cale. Read B
out|2] and C
a b
T
Y[2]

Function Initiation Interval = 10
Loop Iteration Latency = 3
>
Loop Iteration Interval = 3
ES
Loop Latency =9

ACA

Source: Xilinx Web

21

HLS Benefits

« Design at higher abstraction
— improved productivity for HW designers
» employing Model-Based-Design principles
* rapid system prototyping; shorter time-to-market

— improved system performance for SW designers
« HW/SW CO-design to accelerate applications

» Better Design Space Exploration
— optimize resource, perf. trade-off early in design cycle

ACA 22

HLS Limitations

« Some SW concepts do not map well into HW
— Datatypes: No fixed datatypes
— Pointers: No heap for dynamic memory
— Recursion: No notion of execution stack
— Communication: No notion of shared memory

* Generated RTL hard to extend / modify
— difficult to debug if RTL verification fails

ACA 23

HLS abstract tool view

Algorithmic desc. of a task
(MATLAB, C/C++ etc)

High-Level Synthesis Design Constraints
Tool Optimization Directives

!

HDL module (RTL model)
Verification Testbenches

ACA 24

Vivado HLS Flow

¢ I N p u tS Figure 4: Vivado HLS Design Flow

— C fu n Cti O n Test C, C++, CO{lslra.inls/
. Bench SystemC, Directives
— Constraints

— Directives '

— C testbench C Simisio r—

- Outputs: | |

— RTL code in HDLs, L Vivado HLS /vveﬁfff;
SystemC etc.

— RTL testbench p— —

— Report files I

Y

Y Y

Vivado Systern Xilinx
De“ &n Generator Pl‘atlo‘rm Source: Xilinx Web
Suite Studio

ACA 25

Vivado-HLS: Implementation Aspects (1)

 Top-level function args into
- RTL 1/O ports
- supported Interfaces (AXI)

» C functions into blocks in RTL hierarchy
— hierarchy of sub-funcs -> hierarchy of RTL modules
— all instances of a function use same RTL block

 Loops into blocks in RTL hierarchy with control path
— nested-loops -> hierarchy of RTL modules

ACA 26

Vivado-HLS: Implementation Aspects (2)

 Loops are kept rolled by default
— RTL logic (as component) for one iteration of loop
— all iterations scheduled in sequence using the same logic

* Arrays synthesize to Block-RAM by default

— Arrays in I/O ports as external block-RAMs
— FIFOs, HW Registers, Distributed RAM also possible

ACA 27

Synthesis

7] Synthesis(solution1)(fir_csynth.rpt) £3

Target device: xc7vxd485t-fig1157-1

SyntheSIS reportS: Performance Estimates
* Estimated Timing - Timing (s

- Summary
[] ih i Clock Target Estimated Uncertainty
Ut|||zat|0n ap_clk 10.00 8.035 1.25
(] LOO p/M Od u |e : - Latency (clock cycles)
- Summary

- iteration latency o .
- initiation interval

45 45 45 45none
- Detail

+ Instance

+ Loop

Utilization Estimates

- Summary

Name BRAM_18K DSP48E FF LUT URAM
DSP - - - - -
Expression - 3 0 85
FIFO
Instance . . - -
Memory 0o - 64 6 0
Multiplexer - - - m
Register . . 144 .
Total 0 3 208 202 0
Available 2060 2800607200303600 0

Utilization (%) 0 -0 ~0 ~0 0

ACA 28

Analysis

Re ports;) Synthesisisolution®){dct_csynthrpt) (i Schedule Viewer{solutiond) 13

« Data Dependencies within Modules -

 Various Latencies such as: H |
— Loop iteration latency

» DCT_Outer_Loop

— Loop initiation interval o, e
k(+)
add_In61_1(+)

» DCT_Inner_Loop

(=]
T
T
T

E -

- DCT_Outer_

=

;

ner_Loop

n_0(phi_mux)
tmp_0(phi_mux)
iemp_In57(icmp)
n(+)

add_In58(+)
add_In59(+)

dct_coeff_table_load|

sre_load(read)

mul_In59(*)

tmp(+)
add_lné1(+)

dst_addr_write_In&1(

Schedule Viewer | Resource Viewer

1 Pranartiee | & Warnines | *= NGz | [h © Sriirca ©2

ACA 29

Optimization

« Strategies:
- Instruct a task to execute pipelined
- Specify latency for completion of funcs/loops
- Specify limit on number of resources used
- Select a specific /O protocol for optimal integration
- Efficient structuring of data items

ACA 30

Directives

Type

Kemel Optimization « pragma HLS allocation

« pragma HLS expression_balance
« pragma HLS latency

« pragma HLS reset

« pragma HLS resource

« pragma HLS top

Function Inlining « pragma HLS inline
« pragma HLS function_instantiate

Interface Synthesis - pragma HLS interface
« pragma HLS protocol

Task-level Pipeline - pragma HLS dataflow
« pragma HLS stream

Pipeline « pragma HLS pipeline
« pragma HLS occurrence

Loop Unrolling « pragma HLS unroll
« pragma HLS dependence

Loop Optimization - pragma HLS loop_flatten
« pragma HLS loop_merge
« pragma HLS loop_tripcount

Array Optimization « pragma HLS array_map
« pragma HLS array_partition
« pragma HLS array_reshape

Structure Packing « pragma HLS data_pack

https://download.amd.com/docnav/documents/aem/xilinx2019_1-ug1253-sdx-pragma-

reference.pdf?utm_source=chatgpt.com
ACA 31

M2.1 Lab tasks

Finite Impulse Response (Getting started)

* Intro to Vivado HLS tool
» Synthesize an initial solution for FIR filter (C func)
« Steps:

— Set up an HLS project

— Source code for FIR filter in C

— Validate the C source

— Create and synthesize a solution

— Analyze the synthesized HW

— Package the RTL as IP

ACA 33

HLS of a DCT Filter

* Discrete Cosine Transform (DCT) is heavily used in
signal-processing applications
« Steps:
— Start off with an initial C-level implementation
— Analyze the performance bottlenecks
— Optimize via directives to improve performance
— Package the final generated IP

ACA 34

Module 3: Acceleration of embedded AES Cryptography

with HLS

M3.1 Background

Advanced Encryption Standard (AES)

» Essentially a symmetric data-processing algorithm
— Block Cipher AES-128 (128-bit blocks)
— requires add. Block Mode of Operation (BCMO)

to en-/decrypt messages of multiples blocks

* In general compute-intensive
— High optimization potential for HLS
» Regular data-flow oriented nature
« Symmetry allows usage of same hardware for both directions
* Please don’t do this in HLS in the real life! -> Side-Channels

ACA 37

AES-128

key [127:0]
block [127:0]
+ 128-bit 10 and key. Input mapped to state KeyExpansion
» KeyExpansion: Generate individual key for each round 2 2 BN Blo 2 S
S > S8 > S > Sl >
« AddRoundKey: state is XORed with round key o|¢ o|g o|g o|g
* SubBytes: Each state byte’s value is substituted by a mapped value
(can be a LUT or calculated) (non-linear)
+ ShiftRows: Shifting rows of state matrix Py v v o n
N4 o ‘é’ C | v o é’ C |l o ‘é’ N
« MixColumns: Mixing operation on columns of state matrix 2 2|3 § 2 2| 3 § 2 2|3 ¢
» 3> a2 T 5 3 d X 9| 3rPa B 3
-> computationally heavy 2 2 E9 & 2 £ 9 2 2 £ 2
gl S| o S| o o
< < < <
AES 128 Block Cipher
A 4

xblock [127:0]

38

Encrypting a message: Straight-forward

 Consider message m with n 128-bit blocks of information
of which some bear the same information, i.e. their 128-bit
value is equal

R
* Block-by-block transformation with AES128 would yield

oc Block Cipher encrypted but recurring encrypted blocks.

block 1 [127:0]

block n [127:0]

—> Very bad!

xblock 0 [127:0]
xblock 1 [127:0]

xblock n [127:0]

ACA 39

Encrypting a message: Straight-forward

T

AES 128
block 0 [127:0] Block Cipher
block 1 [127:0]

block n [127:0]

xblock 0 [127:0]
xblock 1 [127:0]

xblock n [127:0]

Original image Using ECB allows patterns to Modes other than ECB resuit
be easily discerned in pseudo-randomness

Comparison between original, ECB and otherwise encrypted messages
https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Tux_encrypted_
ecb.png/196px-Tux_encrypted_ecb.png

ACA

40

Encrypting a message: BCMO

i : AES 128

Block Cipher

T

| : AES 128

block 0 [127:0] Block Cipher
block 1 [127:0]

() D

block 1 [127 0]

block n [127:0] xblock O [127:0]

h 4

xblock n [127:0]

Block Cipher Mode of Operation (BCMO) enables Block Ciphers (like AES128) to be used on multi-block
messages. Here: Counter (CTR) + Initiation Vector (1V)

ACA 41

M3.2 Task 1: AES-SW

Task 1: Pure Software implementation

cpu
rv32imac « Decrypting a message m, containing a secret ASCIl-based picture.
ISS
_— TLM interrupt * m can be resembled by a 46x192 byte = 46x(12x128) bit matrix.
bus signals

= * m, private key (AES key) and public key (IV) are provided

Task: Application Profiling the AES software library as a software
implementation on EDAduino. #cycles spent for this solution?

ELF -)l memory

ACA 43

M3.2 Task 2: AES-HA

Extended Design Flow: AES-CTR to AES-HA

1) AES-CTR (AES128 w/ CTR BCMO) as C software library
2) Vivado-HLS builds RTL (normally we would export

to a Xilinx FPGA design suite)

3) Verilator builds cycle-accurate SystemC model from RTL

-> Tests at each design stage

ACA

CTest I

RTL Test I

’I C Simulation

C/RTL Co
/ le

Simulation

C Synthesis

e

A 4

(Test Bench)

aes test (verilog)

uolne}
-uswa|dwy

—P{ CSynthesis

—I‘} aes-ha (verilog)

Vivado-HLS

—

vrtar_{o— R —

aes-ha
(systemc)

45

Extended Design Flow: AES-CTR to AES-HA

1) AES-CTR (AES128 w/ CTR BCMO) as C software library
2) Vivado-HLS builds RTL (normally we would export to

a Xilinx FPGA design suite)
3) Verilator builds cycle-accurate SystemC
models from RTL

-> Tests at each design stage

etiss

etiss-sc
axi-tlm

vpvper

>CC sources

systemc (systemc)

Verilator aes-ha (verilog)

~ edaduino

aes-ha drv

application edaduino
software chip support

CMake Configuration

CMake Configuration

v

>

Host C++ Compiler

RV32 Cross Compiler

edaduino N sgitrvgvitre
executable binary (ELF)
virtual prototype target software

ACA

46

Task 2: HLS AES-SW to AES-HA

Rules:

1) Do not change nor introduce additional
directives to the top function aes_ha. c,

2) the design is implemented for the Xilinx
SubBytes FPGA chip xc7s15-ftgb196-2,

3) no resource usage shall exceed 100%,
4) a maximum latency of 500 clock cycles,

) 1 -)
1 CAES,init,ctLiv KeyExpansion I
9
1

Cipher 9

2 8
(AES_CTR_Xcrypt_buffer -+ conv_stateTold)

and
Task: Generate and optimize a hardware accelerated 5) the solution must pass the Vivado-HLS

ACA 47

M3.3 Task 3: AES-HW Integration

EDAduino AES-HA Integration (Basic)

Transactor provides memory-mapped registers for CPU

TLM2AXI-Lite AES-HA

and routes data flow AES-HA (VRTL) and registers s

memory

. write data channel G [127 0]
* Key, IV, readable and writeable by CPU e

I?rIID_,";\Ad;iSo 'ﬁ write response channel
* |V updated by CTR after each AES-HA run 5

* Interrupt gen. by FSM signals to CPU

FSM
+

Logic

read data channel

clock gen

to plic 4=

from reset i}

ACA 49

Task 3: HA No DMA Implementation

« No Direct Memory Access from aes-ha
« AXI-lite target port for control

cpu « Same AXl-lite target port for I/O
rv32imac Driver library generated by Vivado-HLS
ISS
v | nterrupt « CPU hasto ...
bus signals

B — read message from memory
— write input register

— Issue start command

— synchronize (wait)

— read output register

— write to memory

ELF -)l memory

Task: Integrate, drive and evaluate the hardware accelerated
cryptography on EDAduino. #cycles spent for this solution?

ACA 50

EDAduino AES-HA Integration (DMA)

AES-HA with AXI4-M (Initiator) port for

direct memory access of AES-HA

* Key, IV, readable and writeable by CPU

 Message length, Input address and output
address writeable

* |V updated by CTR after each AES-HA run

* |Interrupt gen. by FSM signals to CPU

 No CPU memory operations for /0

ACA

EDAduino
TLM BUS
(as target)

to plic
from reset

EDAduino
TLM BUS
(as
initiator)

TLM-to-AXI-lite AES-HA
Transactor (XAes_ha)

write address channel .

write data channel registers

write response channel

read address channel

read data channel ‘ in [310] ‘

clock gen ‘ out [31:0] ‘

<= | length [31:0] |

AXl-to-TLM
Transactor

write address channel QG

write data channel

' E write response channel
read address channel
read data channel

51

Task 3: HA with DMA Implementation

cpu
rv32imac

ISS
TLM

TLM
bus

interrupt
signals

e

ELF -PI-En;emory

*Direct Memory Access from aes-ha
*AXI-lite target port for control

*AXI-M initiator port for I/O
*Driver library generated by Vivado-HLS

CPU has to ...
— write message address to input register
— write output destination address
— issue start command
— synchronize (wait)

Task: Integrate, drive and evaluate the hardware
accelerated cryptography on EDAduino. #cycles
spent for this solution?

ACA 52

Reference: Decrypted Message

192

ACA 53

 Solution Slides provided for the 3 modules
* Knowledge of Vivado HLS tool and most common directives
e Exam from last WS24 in HLS to practice (in a zip folder on TUWEL)

(similar expectations in 90mins)

ACA 54

The registration for the second lab exam is already open!

Working on your own

Options for Accessing the Lab Material

Lab Access:
* TILab accounts are generated by now and should be available next week (Room 4)
* Access with your student card (https://www.tilab.tuwien.ac.at/howto.shtml)

Virtual Machine:

e Using the TlLab account, a virtual machine containing all sources and dependencies can be
downloaded

Source Files on gitlab:

« A TUWEL assignment was opened asking for gitlab IDs. We will use this to give you access to the
material

Lab Manual will be uploaded to TUWEL

ACA 57

Warning: This lab has been reworked
recently. So you might encounter Bugs.
Please report them!!!

2nd Warning

Warning: The VM has been recently created and is giant (119GB
uncompressed) and 52 GB compressed!

If you want to use it, test it ASAP!
Decompressing will take ages if you don’ t find a tool with xz algorithm
(USE LINUX A7)

Thank you for your attention!

	Folie 1
	Folie 2: High-Level Synthesis Lab Structure
	Folie 3: Module 1: Hello World! On a Virtual Prototype
	Folie 4: Module 1.1: Background
	Folie 5: Why Virtual Prototyping?
	Folie 6: EdaDuino - SoC (M1)
	Folie 7: EdaDuino - SoC (M3)
	Folie 8: EdaDuino - Toolchain / Build System
	Folie 9: EdaDuino - Toolchain / Build System
	Folie 10: EdaDuino - Toolchain / Build System
	Folie 11: EdaDuino - Virtual Platform
	Folie 12: M1.2 Task: Utilizing UART Interrupt
	Folie 13: Polling vs. Interrupt-driven Hardware synchronization
	Folie 14: The System
	Folie 15: C Driver Library
	Folie 16: The Task
	Folie 17: Learning Goals?
	Folie 18: Module 2: High Level Synthesis with Vivado-HLS
	Folie 19: High Level Synthesis (HLS)
	Folie 20: Example
	Folie 21: Learning Goals?
	Folie 22: HLS Benefits
	Folie 23: HLS Limitations
	Folie 24: HLS abstract tool view
	Folie 25: Vivado HLS Flow
	Folie 26: Vivado-HLS: Implementation Aspects (1)
	Folie 27: Vivado-HLS: Implementation Aspects (2)
	Folie 28: Synthesis
	Folie 29: Analysis
	Folie 30: Optimization
	Folie 31: Directives
	Folie 32: M2.1 Lab tasks
	Folie 33: Finite Impulse Response (Getting started)
	Folie 34: HLS of a DCT Filter
	Folie 35: Module 3: Acceleration of embedded AES Cryptography with HLS
	Folie 36: M3.1 Background
	Folie 37: Advanced Encryption Standard (AES)
	Folie 38: AES-128
	Folie 39: Encrypting a message: Straight-forward
	Folie 40: Encrypting a message: Straight-forward
	Folie 41: Encrypting a message: BCMO
	Folie 42: M3.2 Task 1: AES-SW
	Folie 43: Task 1: Pure Software implementation
	Folie 44: M3.2 Task 2: AES-HA
	Folie 45: Extended Design Flow: AES-CTR to AES-HA
	Folie 46: Extended Design Flow: AES-CTR to AES-HA
	Folie 47: Task 2: HLS AES-SW to AES-HA
	Folie 48: M3.3 Task 3: AES-HW Integration
	Folie 49: EDAduino AES-HA Integration (Basic)
	Folie 50: Task 3: HA No DMA Implementation
	Folie 51: EDAduino AES-HA Integration (DMA)
	Folie 52: Task 3: HA with DMA Implementation
	Folie 53: Reference: Decrypted Message
	Folie 54: Exam Preperation
	Folie 55: INFO
	Folie 56: Working on your own
	Folie 57: Options for Accessing the Lab Material
	Folie 58: Warning
	Folie 59: 2nd Warning
	Folie 60: Thank you for your attention!

