- 1) (1 point per correct, -1 per incorrect answer; minimum 0 points) Are the following statements true or false?
 - a) An unbounded adversary can break a perfectly secret encryption scheme.
 - **b)** $f(n) = n^{-\frac{1}{n}}$ is negligible.
 - c) DES has longer keys than AES.
 - d) The block-cipher modes of operation ECB, CBC, and CTR are all CPA-secure.
 - e) The block-cipher modes of operation CBC and CTR are CCA-secure.
 - f) A deterministic MAC cannot be secure¹.
 - g) Using a MAC of the sent message, one can prevent replay attacks.
 - h) A hash function takes an arbitrary-length input and produces a fixed-length output.
 - i) The integers with multiplication (\mathbb{Z}, \cdot) form a group.
 - **j)** For every $N, e \in \mathbb{N}$ with $\gcd(e, \phi(N)) = 1$, we have that $x \mapsto [x^e \mod N]$ is a permutation on \mathbb{Z}_N^* .
 - **k)** The discrete logarithm problem is hard in $(\mathbb{Z}_p, +)$, where p is prime.
 - l) To achieve the same security, NIST recommends longer key lengths for private-key encryption schemes than public-key encryption schemes.
- 2) (2+4+3+2 points) Private-key encryption:
 - a) A private-key encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is CCA-secure if for every p.p.t. adversary \mathcal{A} , there exists a negligible function $\varepsilon(\cdot)$ such that $\Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1] \leq 1/2 + \varepsilon(n)$, with $\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n)$ defined as follows:
 - 1. A key $k \leftarrow \mathsf{Gen}(1^n)$ is generated. \mathcal{A} is given 1^n and oracle access to $\mathsf{Enc}_k(\cdot)$ and $\mathsf{Dec}_k(\cdot)$.
 - 2. A outputs a pair of messages m_0, m_1 with $|m_0| = |m_1|$.
 - 3. A bit $b \leftarrow \{0,1\}$ is sampled and the challenge ciphertext $c^* := \mathsf{Enc}_k(m_b)$ is given to \mathcal{A} .
 - 4. \mathcal{A} continues to have access to $\mathsf{Enc}_k(\cdot)$ and $\mathsf{Dec}_k(\cdot)$, but is not allowed to query the latter on c^* .
 - 5. A outputs a bit $b' \in \{0,1\}$. The output of the experiment is 1 iff b' = b.

Which modifications to the definition of CCA-security are necessary to obtain CPA-security?

- b) Define the one-time pad encryption by specifying the key space, the message space, and all 3 algorithms.
- c) Is the one-time pad encryption scheme CPA-secure? Justify your answer.
- d) Name one advantage and one disadvantage of private-key encryption compared to public-key encryption.
- **3)** (3 points) MACs and hash functions:

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudorandom function (PRF) and $H: \{0,1\}^* \to \{0,1\}^n$ a hash function. Show that if H is not collision-resistant, then the following MAC scheme for messages from $\{0,1\}^*$ is not secure¹: $Gen(1^n)$: Return $k \leftarrow \{0,1\}^n$. $Mac_k(m)$: Return $t := F_k(H(m))$. $Vrfy_k(m,t)$: Return 1 iff $F_k(H(m)) = t$.

- 4) (2+4 points) Number theory and RSA:
 - **a)** Compute $[2^{63} \mod 11]$.
 - **b)** Let (N_1, e_1) and (N_2, e_2) be two RSA public keys, where N_1 and N_2 were generated so they share one of their prime factors. Show how to efficiently obtain the corresponding secret keys.
- **5)** (3+5 points) Public-key encryption:
 - a) Consider Elgamal encryption using a standardized group (\mathbb{G}, q, g) :

```
\begin{split} & \mathsf{Gen}(1^n) \text{: Sample } x \leftarrow \mathbb{Z}_q \text{ and return } pk := g^x, \, sk := x. \\ & \mathsf{Enc}_{pk}(m) \text{: Sample } r \leftarrow \mathbb{Z}_q \text{ and return } (c_1, c_2) := (g^r, pk^r \cdot m). \end{split}
```

Show how to decrypt and argue correctness.

b) Let (Gen, Enc, Dec) be as in a) and let (Gen', Enc', Dec') be a CCA-secure private-key encryption scheme with key space G. Show that the following hybrid encryption scheme is not CCA-secure:

```
\frac{\mathsf{Gen}(1^n)\colon \mathsf{Return}\ (pk,sk) \leftarrow \mathsf{Gen}(1^n).}{\overline{\mathsf{Enc}}_{pk}(m)\colon \mathsf{Sample}\ k \leftarrow \mathbb{G}\ \mathsf{and}\ \mathsf{return}\ (c_1,c_2) := \big(\mathsf{Enc}_{pk}(k),\mathsf{Enc}_k'(m)\big).}\overline{\mathsf{Dec}}_{sk}(c_1,c_2)\colon \mathsf{Compute}\ k := \mathsf{Dec}_{sk}(c_1)\ \mathsf{and}\ \mathsf{return}\ m := \mathsf{Dec}_k'(c_2).
```

¹in the sense of existential unforgeability under adaptive chosen-message attacks