6.0 ECTS/4.5h VU Programm- und Systemverifikation (184.741) 29 September 2023

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Platz (seat)

1.) Consider the following Kripke Structure:

For each formula, give the states of the Kripke structure for which the formula holds. In other words, for each of the states from the set $\{s_0, s_1, s_2\}$, consider the computation trees starting at that state, and for each tree, check whether the given formula holds on it or not.

- (a) **EG** *a* Solution: \emptyset
- (b) **EGF***a* Solution: $\{s_0, s_1, s_2\}$
- (c) $\mathbf{A}(a \wedge \mathbf{X} b)$ Solution: $\{s_0\}$
- (d) $\mathbf{A}(a \mathbf{U} b)$ Solution: $\{s_0, s_1, s_2\}$
- (e) E(b U a) Solution: $\{s_0, s_1, s_2\}$
- (f) $(\mathbf{AX} a) \lor (\mathbf{AX} b)$ Solution: $\{s_0, s_2\}$
- **2.)** Consider the following Kripke structure with initial state s_0 :

Use the tableaux algorithm from the lecture to compute the sets of states in which the formula EG(EX a) (and its subformulas) hold.

- For every subformula, compute the states for which it holds!
- For fixpoints, list every step of the computation!

Solution: $\{s_1\}$. We use the tableaux algorithm:

- States that satisfy $a: \{s_0, s_2\}$.
- States that satisfy **EX** a: these are the states with some successor satisfying a, that is, $\{s_1, s_2\}$.
- States that satisfy **EG EX** *a*: these are the states where some path completely contained within states satisfying **EX** *a* start. We compute a fixpoint, starting with $\{s_1, s_2\}$. In each step, we remove elements whithout a successor in the set.

 s_1 has itself as a successor, but s_2 does not have a successor within $\{s_1, s_2\}$. Hence, we remove s_2 from the set of states and we are left with $\{s_1\}$.

Now, s_1 is the only element in the set and it has itself as a successor, so we have reached a fixpoint at $\{s_1\}$.

3.) Consider the following formula in propositional logic; is it satisfiable?

1	2	3	4	5	6	\sum
/18	/10	/10	/09	/06	/07	/60

- If yes, provide all satisfying assignments and explain how you arrived at that number.
- If not, provide the CDCL steps leading to that conclusion. In particular, you must provide the propagated literals and reason clauses leading to each conflict, and the clauses learned from such conflicts.

$$\begin{array}{l} (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3) \land \\ (\neg x_3 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (x_4 \lor x_5) \land \\ (\neg x_5 \lor \neg x_6) \land (x_5 \lor x_6) \land (\neg x_6 \lor \neg x_7) \land (x_6 \lor x_7) \land \\ (\neg x_1 \lor \neg x_6 \lor x_7) \land (\neg x_1 \lor \neg x_7 \lor x_6) \land (\neg x_6 \lor \neg x_7 \lor x_1) \land (x_1 \lor x_6 \lor x_7) \end{array}$$

Solution: A satisfying assignment μ must satisfy either x_1 or $\neg x_1$.

- If μ satisfies x_1 , then by unit propagation we conclude that:
 - $-\mu$ satisfies $\neg x_2$, because otherwise μ cannot satisfy the clause $\neg x_1 \lor \neg x_2$.
 - $-\mu$ satisfies x_3 , because otherwise μ cannot satisfy the clause $x_2 \vee x_3$.
 - $-\mu$ satisfies $\neg x_4$, because otherwise μ cannot satisfy the clause $\neg x_3 \lor \neg x_4$.
 - $-\mu$ satisfies x_5 , because otherwise μ cannot satisfy the clause $x_4 \vee x_5$.
 - $-\mu$ satisfies $\neg x_6$, because otherwise μ cannot satisfy the clause $\neg x_5 \vee \neg x_6$.
 - μ satisfies x_7 , because otherwise μ cannot satisfy the clause $x_6 \vee x_7$.

However, then μ falsifies the clause $\neg x_1 \lor \neg x_7 \lor x_6$. Therefore, there is no satisfying assignment that also satisfies x_1 .

- If μ satisfies $\neg x_1$, then by unit propagation we conclude that:
 - μ satisfies x_2 , because otherwise μ cannot satisfy the clause $x_1 \vee x_2$.
 - $-\mu$ satisfies $\neg x_3$, because otherwise μ cannot satisfy the clause $\neg x_2 \vee \neg x_3$.
 - $-\mu$ satisfies x_4 , because otherwise μ cannot satisfy the clause $x_3 \vee x_4$.
 - μ satisfies $\neg x_5$, because otherwise μ cannot satisfy the clause $\neg x_4 \lor \neg x_5$.
 - $-\mu$ satisfies x_6 , because otherwise μ cannot satisfy the clause $x_5 \vee x_6$.
 - μ satisfies $\neg x_7$, because otherwise μ cannot satisfy the clause $\neg x_6 \vee \neg x_7$.

We then conclude that, if there is a satisfying assignment that also satisfies $\neg x_1$, then it must be unique assignment satisfying $\neg x_1, x_2, \neg x_3, x_4, \neg x_5, x_6, \neg x_7$. This assignment does indeed satisfy each clause in the formula. Hence, there is exactly one satisfying assignment that also satisfies $\neg x_1$.

In total, there is exactly one satisfying assignment.

- **4.)** Consider the following formulas in Equality Logic with Uninterpreted Functions (EUF); are they satisfiable?
 - If yes, provide a satisfying interpretation.
 - If not,
 - (a) encode the formula as an equisatisfiable formula in equality logic without uninterpreted functions, and
 - (b) give the reasoning based on equivalence classes that leads to this conclusion.
 - (a) $(g = h) \land (a = b) \land (a = c) \land (e \neq i) \land (d = e) \land (f = e) \land (h = i) \land (z(c) \neq z(i)) \land (a = i)$ Solution: This formula is unsatisfiable. Let us first encode it without uninterpreted functions. We define z_x as z(x):

$$(g=h) \land (a=b) \land (a=c) \land (e \neq i) \land (d=e) \land (f=e) \land (h=i) \land (z_c \neq z_i) \land (a=i)$$

We then obtain the following equivalence classes:

$$\{a, b, c, i, g, h\}$$
 $\{d, e, f\}$ $\{z_c\}$ $\{z_i\}$

We must also include the functional constraint $c = i \rightarrow z_c = z_i$. Since c and i are in the same equivalence class, we can then add the atom $z_c = z_i$, so the final equivalence classes are:

$$\{a, b, c, i, g, h\}$$
 $\{d, e, f\}$ $\{z_c, z_i\}$

We now check that for each disequality $x \neq y$ variables x, y are in different equivalence classes. This holds for $e \neq i$, but it does not hold for $z_c \neq z_i$, so the formula is unsatisfiable.

(b) $(g = h) \land (a = b) \land (a = c) \land (e \neq i) \land (d = e) \land (f = e) \land (h = i) \land (z(b) \neq z(f))$ Solution: This formula is satisfiable. For example, the interpretation I with domain 1, 2, 3 given by

$$I(a) = I(b) = I(c) = 1 \quad I(d) = I(e) = I(f) = 2 \quad I(g) = I(h) = I(i) = 3 \quad I(z) = x \mapsto x$$

satisfies the formula.

(c) $(a = b) \land (d = e) \land (c = b) \land (e = f) \land (z(a) = z(d)) \land (z(c) \neq z(f))$ Solution: This formula is unsatisfiable. Let us first encode it without uninterpreted functions. We define z_x as z(x):

$$(a = b) \land (d = e) \land (c = b) \land (e = f) \land (z_a = z_d) \land (z_c \neq z_f)$$

We then obtain the following equivalence classes:

$$\{a, b, c\}$$
 $\{d, e, f\}$ $\{z_a, z_d\}$ $\{z_c\}$ $\{z_f\}$

We must also include the following functional constraints:

$$\begin{aligned} (a=c) \rightarrow (z_a=z_c) & (a=d) \rightarrow (z_a=z_d) & (a=f) \rightarrow (z_a=z_f) \\ (c=d) \rightarrow (z_c=z_d) & (c=f) \rightarrow (z_c=z_f) & (d=f) \rightarrow (z_d=z_f) \end{aligned}$$

Since a and c are in the same equivalence class, the atom $z_a = z_c$ can be added. Similarly, the atom $z_d = z_f$ can be added because d and f are in the same equivalence class. The final equivalence classes are:

$$\{a, b, c\}$$
 $\{d, e, f\}$ $\{z_a, z_c, z_d, z_f\}$

We now check that for each disequality $x \neq y$ variables x, y are in different equivalence classes. This does not hold for $z_c \neq z_f$, so the formula is unsatisfiable.

5.) The unquantified equality logic formula $(a = b) \land (c = d) \land (f(a) \neq f(c))$ logically implies the formula $d \neq b$.

Solution: True. The question is equivalent to whether $(a = b) \land (c = d) \land (f(a) \neq f(c)) \land (d = b)$ is unsatisfiable, which it is.

6.) The LTL formula $a \wedge \mathbf{G} (a \to \mathbf{X} \mathbf{X} a)$ is logically equivalent to the LTL formula $\mathbf{G} a$. Solution: False. Consider the Kripke structure

This Krikpe structure falsifies $\mathbf{G} a$ but satisfies $a \wedge \mathbf{G} (a \rightarrow \mathbf{X} \mathbf{X} a)$

7.) The CTL formula **AG AG** *a* is logically equivalent to the LTL formula **EG AG** *a*.

Solution: True. Let us first check that $\varphi = \mathbf{AG} \mathbf{AG} a$ implies $\psi = \mathbf{EG} \mathbf{AG} a$. Given a Kripke structure K that satisfies φ , let s be an arbitrary initial state, and a path π based on s. Then, the path π satisfies $\mathbf{G} \mathbf{AG} a$, and the existence of such a π shows that the state s also satisfies ψ . Since s was an arbitrary initial state, then K satisfies ψ .

Now let us check that ψ implies φ . Given any Kripke structure K satisfying ψ , we consider an arbitrary initial state s. Because K satisfies ψ , we know that there is some path σ based on s that satisfies **GAG** a. In particular, the state s satisfies **AG** a. Now, let π be an arbitrary path based on s, and let $i \ge 0$ be arbitrary. We show that π_i satisfies **AG** a. To do that, let θ be an arbitrary path based on π_i . Then, we can construct a path τ with $\tau_j = \pi_j$ for j < iand $\tau_j = \theta_{j-i}$ for $j \ge i$. The path τ is based on s, so it satisfies **G** a. Hence, the path θ also satisfies **G** a.

Since θ was arbitrary, we have shown that the state π_i satisfies **AG** *a*. Since *i* was arbitrary too, we have shown that π satisfies **GAG** *a*. Since π was arbitrary, we have shown that *s* satisfies φ . And since *s* was an arbitrary initial state of *K*, we have shown that *K* satisfies φ .

- 8.) There are formulas that can be represented as a BDD but not as a CNF formula. Solution: False. All BDDs can be represented as a propositional formula, and all propositional formulas can be represented as a CNF formula.
- 9.) For any formula in unquantified equality logic, if there is an interpretation (that satisfies the formula) with an infinite domain, there is also an interpretation with a finite domain.Solution: True, because we can convert a formula in unquantified equality logic to a formula
- **10.)** The equivalence logic formula $(a = b) \land (e = f) \land (c \neq b) \land (c = d) \land (z(a) = z(f)) \land (z(b) = z(c))$ is satisfiable.

Solution: True. The interpretation I with domain $\{1, 2\}$ and

in unquantified equality logic without function symbols.

$$I(a) = I(b) = I(e) = I(f) = 1$$
 $I(c) = I(d) = 2$ $I(z) = x \mapsto 1$

satisfies this formula.