
Verification
of

Programs and Systems

Georg Weissenbacher
https://www.forsyte.at

Bugs in the news …

Toyota Prius
(New York Times, Feb. 12, 2014)
Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error …

Heathrow Airport
(The Guardian, December 2014)
An unprecedented systems failure
was responsible for the air traf-
fic control chaos […] “In this in-
stance a transition between the
two states caused a failure in the
system which has not been seen
before,” …

2

Bugs in the news …

Toyota Prius
(New York Times, Feb. 12, 2014)
Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error …

Heathrow Airport
(The Guardian, December 2014)
An unprecedented systems failure
was responsible for the air traf-
fic control chaos […] “In this in-
stance a transition between the
two states caused a failure in the
system which has not been seen
before,” …

2

What goes up …

Lufthansa Airbus A321
(Spiegel, March 20, 2015)
Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt –
irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)
The US air safety authority has is-
sued a warning and maintenance
order over a software bug that
causes a complete electric shut-
down of Boeing’s 787 …

3

What goes up …

Lufthansa Airbus A321
(Spiegel, March 20, 2015)
Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt –
irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)
The US air safety authority has is-
sued a warning and maintenance
order over a software bug that
causes a complete electric shut-
down of Boeing’s 787 …

3

Some hardware bugs …

Meltdown and Spectre
(New York Times, January 2018)
Called Meltdown, the first and
most urgent flaw affects nearly
all microprocessors by Intel. The
second, Spectre, affects most
other chips …

Rowhammer Bug
(InfoWorld, March 9, 2015)
…with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.

4

Some hardware bugs …

Meltdown and Spectre
(New York Times, January 2018)
Called Meltdown, the first and
most urgent flaw affects nearly
all microprocessors by Intel. The
second, Spectre, affects most
other chips …

Rowhammer Bug
(InfoWorld, March 9, 2015)
…with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.

4

Quelle: www.edn.com
Oklahoma courd ruled against Toyata in case of
unintended acceleration that lead to death
Expert witness found numerous bugs in software
(including bugs that can cause unintended
acceleration), founds source code of “unreasonable
quality”

5

www.edn.com

Quelle: www.edn.com
Oklahoma courd ruled against Toyata in case of
unintended acceleration that lead to death
Expert witness found numerous bugs in software
(including bugs that can cause unintended
acceleration), founds source code of “unreasonable
quality”

5

www.edn.com

6

“copy on write”

(CVE-2016-5195, published October 2016)
7

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

Write access
to copy

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

Write access
to copy

System creates
writable (“dirty”) copy

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

Write access
to copy

System creates
writable (“dirty”) copy

Access
copy

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Goal: Write to protected systems file
Copy-On-Write (COW) Upon write attempt, system creates copy of

protected memory area

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell System:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

8

Anatomy of “Dirty Copy-On-Write” Attack

Open write-
protected file

Create copy
in memory
(read-only)

co
nc

ur
re

nt
ly

Tell system:
“Don’t expect
immediate access”

Write access
to copy

System creates
writeable (“dirty”) copy

Access to
original ra

ce
co

nd
iti

on

Race Condition rarely happens
Testing isn’t particularly effective
Systematic search (of schedules) is required

9

Another security bug …

Heartbleed Bug
(CNN, April 9, 2014)
A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

10

11

12

Can you see it?

typedef struct {
char* data;
unsigned int len;

} ssl_buffer;

typedef struct {
ssl_buffer buffer;

} SSL;

int tls1_process_heartbeat(SSL *s)
{

char *p=s->buffer.data,*pl;

unsigned short hbtype;
unsigned int payload;
unsigned int padding = 16;

hbtype = *p++;
n2s(p, payload);
pl = p;

if (hbtype == TLS1_HB_REQUEST)
{

unsigned char *buffer, *bp;
int r;

buffer = malloc(1 + 2 +
payload +
padding);

bp = buffer;
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);
bp += payload;
RAND_pseudo_bytes(bp, padding);

r = ssl3_write_bytes
(s,TLS1_RT_HEARTBEAT,
buffer,
3 + payload + padding);

free(buffer);
if (r < 0)

return r;
}

13

Let’s use a tool to find the bug! (Try this at home)

C Bounded Model Checker (Cbmc):
https://www.cprover.org/cbmc
Install command line tool

On Ubuntu: sudo apt install cbmc (version > 5.10):

Run: cbmc --pointer-check heartbleed.c
Output:
** Results:
<builtin-library-malloc> function malloc
[malloc.assertion.1] line 25 max allocation size exceeded: SUCCESS

src/heartbleed.c function tls1_process_heartbeat
[tls1_process_heartbeat.precondition_instance.1] line 54 memcpy
src/dst overlap: SUCCESS
[tls1_process_heartbeat.precondition_instance.2] line 54 memcpy
source region readable: FAILURE
[tls1_process_heartbeat.precondition_instance.3] line 54 memcpy
destination region writeable: SUCCESS

14

https://www.cprover.org/cbmc

Let’s use a tool to find the bug! (Try this at home)

C Bounded Model Checker (Cbmc):
https://www.cprover.org/cbmc
Install command line tool

On Ubuntu: sudo apt install cbmc (version > 5.10):
Run: cbmc --pointer-check heartbleed.c

Output:
** Results:
<builtin-library-malloc> function malloc
[malloc.assertion.1] line 25 max allocation size exceeded: SUCCESS

src/heartbleed.c function tls1_process_heartbeat
[tls1_process_heartbeat.precondition_instance.1] line 54 memcpy
src/dst overlap: SUCCESS
[tls1_process_heartbeat.precondition_instance.2] line 54 memcpy
source region readable: FAILURE
[tls1_process_heartbeat.precondition_instance.3] line 54 memcpy
destination region writeable: SUCCESS

14

https://www.cprover.org/cbmc

Let’s use a tool to find the bug! (Try this at home)

C Bounded Model Checker (Cbmc):
https://www.cprover.org/cbmc
Install command line tool

On Ubuntu: sudo apt install cbmc (version > 5.10):
Run: cbmc --pointer-check heartbleed.c
Output:
** Results:
<builtin-library-malloc> function malloc
[malloc.assertion.1] line 25 max allocation size exceeded: SUCCESS

src/heartbleed.c function tls1_process_heartbeat
[tls1_process_heartbeat.precondition_instance.1] line 54 memcpy
src/dst overlap: SUCCESS
[tls1_process_heartbeat.precondition_instance.2] line 54 memcpy
source region readable: FAILURE
[tls1_process_heartbeat.precondition_instance.3] line 54 memcpy
destination region writeable: SUCCESS

14

https://www.cprover.org/cbmc

Can we always find bugs automatically?

Alan Turing (1912–1954)

15

Turing’s Halting Problem

Turing’s Halting Problem (1936)

Given a description of a program, decide whether the pro-
gram finishes running or continues to run forever.

(undecidable)

16

Turing’s Halting Problem

Proof ingredients:
Program can be encoded as string
Program operations can be simulated by Turing machine
Diagonalization

17

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:

𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0.

But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1

𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0.

But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:

𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0.

But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1

𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0.

But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:
𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0.

But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1
𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0.

But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:
𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0. But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1

𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0.

But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:
𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0. But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1
𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0.

But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Turing’s Halting Problem (Proof Sketch)

Assume ℎ is a computable function

ℎ(𝑖, 𝑥) = { 1 if program 𝑖 halts on input 𝑥
0 otherwise

𝑔(𝑖) = { 0 if ℎ(𝑖, 𝑖) = 0
⊥ otherwise

Assume 𝑒 is program implementing 𝑔 (⊥ amounts to infinite loop)
So 𝑒 with input 𝑖 does not terminate if 𝑖 terminates on input 𝑖

We perform a case split:
𝑔(𝑒) = ℎ(𝑒, 𝑒) = 0. But 𝑒 halts on input 𝑒, thus ℎ(𝑒, 𝑒) = 1
𝑔(𝑒) = ⊥ and ℎ(𝑒, 𝑒) ≠ 0. But 𝑒 doesn’t halt, so ℎ(𝑒, 𝑒) = 0

18

Can we always find bugs automatically?

Kurt Gödel, 1931:
Über formal entscheidbare Sätze
der Principia Mathematica und
verwandter Systeme

Alonzo Church, 1936:
An Unsolvable Problem of
Elementary Number Theory

Mission impossible?

19

Can we always find bugs automatically?

Kurt Gödel, 1931:
Über formal entscheidbare Sätze
der Principia Mathematica und
verwandter Systeme

Alonzo Church, 1936:
An Unsolvable Problem of
Elementary Number Theory

Mission impossible?

19

What can be done?

“Software pioneers” in WW2

Alan Turing Herman Goldstine
J. Robert Oppenheimer

John von Neumann

20

21

An assertion box never requires that any specific calcu-
lations be made, it indicates only that certain relations
are automatically fulfilled whenever C gets to the region
which it occupies.

22

Turing didn’t give up either

23

the programmer is expected to state a number of ob-
servations (“assertions”), which can be checked inde-
pendently of each other

Questionnaire:
Who of you writes programs?
Who knows what assertions are?
Who uses assertions?

24

the programmer is expected to state a number of ob-
servations (“assertions”), which can be checked inde-
pendently of each other

Questionnaire:
Who of you writes programs?
Who knows what assertions are?
Who uses assertions?

24

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?
Check whether it behaves as desired (outputs)
But when are we done?

inputs

outputs✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?

Check whether it behaves as desired (outputs)
But when are we done?

inputs

outputs✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?
Check whether it behaves as desired (outputs)

But when are we done?

inputs outputs

✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?
Check whether it behaves as desired (outputs)
But when are we done?

inputs outputs

✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?
Check whether it behaves as desired (outputs)
But when are we done?

inputs outputs✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

Testing: The State-of-the-Art of Verification

How do we know Assertions hold?
Poke and prod the program with the right inputs

But how do we find those?
Check whether it behaves as desired (outputs)
But when are we done?

inputs outputs✓ ✓

✓

Time for another questionnaire:
Who of you tests systematically?
Which coverage metrics do you know?

25

What are we even testing?

Does the program behave as specified?

Specification
Required ingredients: Formalism, Assertion Language

Program
Required ingredients: Language semantics

26

Assertions and Program Semantics

Robert W. Floyd

Then, by induction on the number of commands executed, one sees that
if a program is entered by a connec(on whose associated proposition
is then true, it will be left (if at all) by a connection whose associ-
ated proposition will be true at the time. By this means, we may
prove certain properties of programs, …

27

Floyd-Hoare Logic: Axioms for Programs

Sir C.A.R. Hoare

Hoare Triples:

{Pre-Condition} Program {Post-Condition}

Assignments:

{𝑄[x/𝑒]} x := 𝑒 {𝑄}

Composition:

{𝑃 } 𝑆 {𝑄} {𝑄} 𝑇 {𝑅}
{𝑃} 𝑆; 𝑇 {𝑅}

Allows us to prove programs correct!

28

Floyd-Hoare Logic: Axioms for Programs

Sir C.A.R. Hoare

Hoare Triples:

{Pre-Condition} Program {Post-Condition}

Assignments:

{𝑄[x/𝑒]} x := 𝑒 {𝑄}

Composition:

{𝑃 } 𝑆 {𝑄} {𝑄} 𝑇 {𝑅}
{𝑃} 𝑆; 𝑇 {𝑅}

Allows us to prove programs correct!

28

Dijkstra’s Predicate Calculus

Edsger W. Dijkstra

What effect does an instruction have
on an assertion?

{x < 10} x := x + 1 {?}

Strongest Postcondition:

sp(x ∶= 𝑒, 𝑃) =
∃x0 . x = 𝑒[x/x0] ∧ 𝑃 [x/x0]

where x0 is the “old” value of x

Example:

sp(x ∶= x + 1, (x < 10)) =
∃(x0 . x = x0 + 1) ∧ (x0 < 10)

29

Dijkstra’s Predicate Calculus

Edsger W. Dijkstra

What effect does an instruction have
on an assertion?

{x < 10} x := x + 1 {?}

Strongest Postcondition:

sp(x ∶= 𝑒, 𝑃) =
∃x0 . x = 𝑒[x/x0] ∧ 𝑃 [x/x0]

where x0 is the “old” value of x
Example:

sp(x ∶= x + 1, (x < 10)) =
∃(x0 . x = x0 + 1) ∧ (x0 < 10)

29

Formalisms for Assertions and Specifications

𝑥 ≥ 10 𝑝 ≠ null

Questionnaire:
In which language are assertions written?
When do assertions have to hold?
If all assertions hold, is the program correct?

30

Limitations of Assertions

If REQ = 1, then
eventually ACK = 1

Questionnaire:
Can this be expressed as an assertion in C or Java?
Can we use testing to find such a violation?
How can this assertion be violated?

31

Temporal Logic

Amir Pnueli

Linear Temporal Logic
Temporal operators

always
eventually

Describes how executions evolve

AG (REQ ⇒ F ACK)

32

Temporal Logic

Amir Pnueli

Linear Temporal Logic
Temporal operators

always
eventually

Describes how executions evolve

AG (REQ ⇒ F ACK)

32

Model Checking

Edmund Clarke
Allen Emerson
Joseph Sifakis

Basic idea:
Assertions in temporal logic
Programs with finite state space
models instead of programs
all reachable states are inspected!
also works for concurrent models

33

T

𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇

𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇

𝑇

𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

T
𝑠 𝑠′

⟨𝑝𝑐 ↦ 2, 𝑥 ↦ 1⟩ ⟨𝑝𝑐 ↦ 3, 𝑥 ↦ 2⟩

𝑇

(𝑇 : operational semantics of program or circuit)

The Model Checking problem:

𝐼

“starting states”

¬𝑃

“bad states”

𝑇 𝑇
𝑇

𝑇

34

State Space Explosion

35

Why explore states one by one?

𝑆′ = 𝑇 (𝑆) def= {𝑠′ | 𝑇 (𝑠, 𝑠′) ∧ 𝑠 ∈ 𝑆}

36

Why explore states one by one?

𝑆

set of states

𝑆′

post-image

𝑇

𝑆′ = 𝑇 (𝑆) def= {𝑠′ | 𝑇 (𝑠, 𝑠′) ∧ 𝑠 ∈ 𝑆}

36

Why explore states one by one?

𝑆

set of states

𝑆′

post-image

𝑇

𝑆′ = 𝑇 (𝑆) def= {𝑠′ | 𝑇 (𝑠, 𝑠′) ∧ 𝑠 ∈ 𝑆}

36

𝐼 𝑅1 𝑅2 𝑅𝑘

𝑇 𝑇 𝑇

¬𝑃

37

How do we efficiently represent sets of states?

Ken McMillan

Basic idea:
use logic to represent states
implementation: SMV model checker

38

Symbolic Model Checking

Logical formulas to represent states

𝐹(

𝑉

)

⏟
program variables,
registers, latches,

signals, …

39

Symbolic Model Checking

Logical formulas to represent states

𝐹(𝑉)⏟
program variables,
registers, latches,

signals, …

39

Symbolic Model Checking

Logical formulas to represent states

(𝑥 > 0) represents {𝑠 | 𝑠(𝑥) > 0}

39

And what about transitions?

Binary Relations!

𝑇 (𝑉 , 𝑉 ′)⏟
target states

40

And what about transitions?

Binary Relations!

(𝑥′ = 𝑥 + 1) represents {⟨𝑠, 𝑠′⟩ | 𝑠′(𝑥) = 𝑠(𝑥) + 1}

40

And what about transitions?

Binary Relations!

(𝑥′ = 𝑥 + 1)⏟⏟⏟⏟⏟
x++

represents {⟨𝑠, 𝑠′⟩ | 𝑠′(𝑥) = 𝑠(𝑥) + 1}

40

𝑅

𝑅′

𝑇

𝑅′

𝑇 −1

𝑅′(𝑉 ′) def= ∃𝑉 .

𝑅

(𝑉) ∧ 𝑇 (𝑉 , 𝑉 ′)
𝑅(𝑉) def= ∃𝑉 ′ . 𝑇 (𝑉 , 𝑉 ′) ∧ 𝑅′(𝑉 ′)

(Note the similarity to strongest postcondition)

41

𝑅 𝑅′

𝑇

𝑅′

𝑇 −1

𝑅′(𝑉 ′) def= ∃𝑉 . 𝑅(𝑉) ∧ 𝑇 (𝑉 , 𝑉 ′)

𝑅(𝑉) def= ∃𝑉 ′ . 𝑇 (𝑉 , 𝑉 ′) ∧ 𝑅′(𝑉 ′)

(Note the similarity to strongest postcondition)

41

𝑅 𝑅′

𝑇

𝑅′

𝑇 −1

𝑅′(𝑉 ′) def= ∃𝑉 . 𝑅(𝑉) ∧ 𝑇 (𝑉 , 𝑉 ′)
𝑅(𝑉) def= ∃𝑉 ′ . 𝑇 (𝑉 , 𝑉 ′) ∧ 𝑅′(𝑉 ′)

(Note the similarity to strongest postcondition)

41

𝑅 𝑅′

𝑇

𝑅′

𝑇 −1

𝑅′(𝑉 ′) def= ∃𝑉 . 𝑅(𝑉) ∧ 𝑇 (𝑉 , 𝑉 ′)
𝑅(𝑉) def= ∃𝑉 ′ . 𝑇 (𝑉 , 𝑉 ′) ∧ 𝑅′(𝑉 ′)

(Note the similarity to strongest postcondition)

41

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T
(transition relation)

42

1: if (x>0) {
2: x = x - 1;
3: } else {
4: x = x + 1;
5: }⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T
(transition relation)

42

1: if (x>0) {
2: x = x - 1;
3: } else {
4: x = x + 1;
5: }

DQ

R

𝑧𝑦

𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

T
(transition relation)

42

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩)

def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)
(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩) def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)

(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)
(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩) def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)

(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)
(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩) def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)

(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩) def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)
(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

1: if (x>0)
2: x = x - 1;
3: else
4: x = x + 1;
5: assert (x≥ 0);⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇 (⟨𝑝𝑐, 𝑥⟩, ⟨𝑝𝑐′, 𝑥′⟩) def=

⋀
⎛⎜⎜⎜⎜
⎝

(𝑝𝑐 = 1) ∧ (𝑥 > 0) ⇒ (𝑝𝑐′ = 2) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 1) ∧ ¬(𝑥 > 0) ⇒ (𝑝𝑐′ = 4) ∧ (𝑥′ = 𝑥)
(𝑝𝑐 = 2) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 − 1)
(𝑝𝑐 = 4) ⇒ (𝑝𝑐′ = 5) ∧ (𝑥′ = 𝑥 + 1)

⎞⎟⎟⎟⎟
⎠

𝑃(𝑉) def= (𝑝𝑐 = 5) ⇒ (𝑥 ≥ 0)
𝐼(𝑉) def= (𝑝𝑐 = 1)

43

DQ

R

𝑧𝑦

𝑥

⏟⏟⏟⏟⏟⏟⏟
𝑇 (𝑉 , 𝑉 ′)

def=

(𝑄′ ⇔ (𝑥 ∧ 𝑄)) ∧ (𝑧 ⇔ (𝑦 ∨ 𝑄))

𝑃(𝑉) def= 𝑧
𝐼(𝑉) def= Q

44

DQ

R

𝑧𝑦

𝑥

⏟⏟⏟⏟⏟⏟⏟
𝑇 (𝑉 , 𝑉 ′)

def=

(𝑄′ ⇔ (𝑥 ∧ 𝑄)) ∧ (𝑧 ⇔ (𝑦 ∨ 𝑄))

𝑃(𝑉) def= 𝑧
𝐼(𝑉) def= Q

44

DQ

R

𝑧𝑦

𝑥

⏟⏟⏟⏟⏟⏟⏟
𝑇 (𝑉 , 𝑉 ′)

def=

(𝑄′ ⇔ (𝑥 ∧ 𝑄)) ∧ (𝑧 ⇔ (𝑦 ∨ 𝑄))

𝑃(𝑉) def= 𝑧
𝐼(𝑉) def= Q

44

45

45

The C Bounded Model Checker (Cbmc)

Daniel Kröning

Checks C programs for assertion violations
Checks only 𝑘 loop iterations
Converts 𝑇 into propositional logic

https://www.cprover.org/cbmc
(and that’s where our journey started)

46

https://www.cprover.org/cbmc

Course Outline

Part 1: Assertions and Testing
Programming and Reasoning with Assertions
Testing and Coverage Metrics
Automated Test-Case Generation

⎫}
⎬}⎭

March

Part 2: Logic and Reasoning
Propositional Logic (and SAT Solvers)
First-Order Logic (and SMT Solvers)
Hoare Logic
Temporal Logic

⎫}}
⎬}}⎭

April

Part 3: Automated Verification
SMV (Symbolic Model Checking)
SPIN (Partial Order Reduction)
Bounded Model Checking of C Programs

⎫}
⎬}⎭

May

47

Lecture, Exercises and Exam

Lectures: Wednesday and Friday, 9:30am-11am
Recordings on LectureTube (see TUWEL)

VU = lecture + exercises
Application of verification and testing tools
Pencil & paper homeworks
Exercises form 50% of the grade

3 exercises (TUWEL)
Assertions/Testing/Coverage:
Released March 22, due April 24
Hoare Logic and BMC:
Released April 24, due May 24
Temporal Logic & Automated Reasoning:
Released May 08, due May 29

Written Exams (in-person):
June 12, 9:00am to 11:00am
end of September/beginning of October

48

