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Group Axioms – informal 

(G, ¢, e) is a group, if 

• ¢ is a binary relation on G, 

• e is a special element of G called the neutral 
element, 

• x ¢ e = x and e ¢ x = x for all x 2 G, 

• for all x 2 G there is a y 2 G such that x ¢ y = e and 
y ¢ x = e called the inverse element, and 

• ¢ is associative, i.e., x ¢ (y ¢ z) = (x ¢ y) ¢ z  
 for all x,y,z 2 G. 
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Group Axioms – in First Order Logic 

Signature ( ¢, e),  
• where the function ¢ has arity 2, 
• and the function e has arity 0 (i.e., a constant). 
 
Axioms: 
G1: 8 x. x ¢ e = x Æ e ¢ x = x  
G2: 8 x. 9 y. x ¢ y = e Æ y ¢ x = e 
G3: 8 x. 8 y. 8 z. x ¢ (y ¢ z) = (x ¢ y) ¢ z 

 
All models that simultaneously satisfy G1, G2 and G3 are 
called groups. 
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Examples 

(Z,+,0) 

(Z,¢,1)? 

(Q,¢,1) 

(R,¢,1) 

(Z/nZ, +,0) (the so-called cyclic group) 

(C unsigned integers,+,0) 

(Symn, ±, id) (the permutations of n elements) 
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Weaker Group Axioms 

Signature ( ¢, e),  
• where ¢ has arity 2, 
• and e has arity 0. 
 
Axioms: 
W1: 8 x. x ¢ e = x  
W2: 8 x. 9 y. x ¢ y = e  
G3:  8 x. 8 y. 8 z. x ¢ (y ¢ z) = (x ¢ y) ¢ z 

 
However, W1, W2 and G3 imply G1 and G2 (see next 
slides)! (Recall the definition of implication: all models of 
W1, W2 and G3 satisfy G1 and G2) 
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W1, W2 and G3 imply G2 - Informal 

Let G be some group. 
Let x be some element of G. 
By W2 there is a y such that xy = e. 
By W1 we have (y(xy))x = (ye)x = yx (*). 
By W2 there is a z such that (xy)z = e (#). 
Multiply z from the right on both sides of (*): 
    ((y(xy))x)z = (yx)z. 
From (#) and associativity (G3) we get:  (yx)e = e. 
From W2 we get yx = e. 
Because x was chosen arbitrary this holds for all  
elements of G. 
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W1, G2 and G3 imply G1 - Informal 

Let G be some group. 

Let x be some element of G. 

By G2 there is a y such that xy = e and yx=e. 

Thus we have ex = (xy)x = x(yx) = xe using 
associativity (G3). 

By W1 we have ex = xe = x.  

Because x was chosen arbitrary this holds for all  
elements of G. 
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Questions 

• Is this proof correct, i.e., is every model of W1, 
W2 and G3 also a model of G1, G2 and G3? 

• How can we verify the correctness of the proof? 
• Can the proof be automated? 
• Can proofs always be automated (i.e., are valid 

sentences decidable)? 
 

 ! We define a proof calculus for FOL and prove its 
soundness and completeness.  
! We establish the undecidability of FOL. 
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Refutation Calculus 
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² : F 

² F 

² : F 

² F 

² F Æ G 

² F 
² G 

² F Æ G 

² F | ² G 

² 8 x. F(x) 

² F(t) 

² 8 x. F(x) 

² F(c) 
c is a fresh 
constant 

² 9 x. F(x) 

² F(t) 

² 9 x. F(x) 

² F(c) 
c is a fresh 
constant 

² F Ç G 

² F 
² G 

² F Ç G 

² F | ² G ² t = t ² F(s) 

² F(t) ² s = t 

² F(s) 

² F(t) ² s = t 

? 

² P(c1,c2,…,cn) 

² P(c1,c2,…,cn) Goal: Proof for a valid sentence F 
Idea: Assume ² F and find a contradiction 

in every branch of the proof 

N1 N2 

A1 A2 

O1 O2 

F1 F2 

E2 E1 

C1 

Id S1 

S2 



Examples 

• F Ç : F 

• (F Ç : F) Æ (G Ç : G) 

•  8 x. F(x) Ç 9 x. : F(x) 

• F(a) Æ 9 x. : F(x)? 

• W1, G2 and G3 imply G1, i.e.,  

 W1 Æ G2 Æ G3 ! G1 
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Example Proof 

(1)   ² F Ç : F 

(2)   ² F  (from (1) by O2) 

(3)   ² : F (from (1) by O2) 

(4)   ² F (from (3) by N2) 

(5)   ? (from (2) and (4) by C) 
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Example Proof 

(2)   ² F Ç : F (from (1) by A2) 

(3)   ² F  (from (1) by O2) 

(4)   ² : F (from (1) by O2) 

(5)   ² F (from (3) by N2) 

(6)   ? (from (2) and (4) by C) 
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(7)   ² G Ç : G (from (1) by A2) 

(8)   ² G  (from (7) by O2) 

(9)   ² : G (from (7) by O2) 

(10)  ² G (from (9) by N2) 

(11)  ? (from (8) and (10) by C) 

(1)  ² (F Ç : F) Æ (G Ç : G) 



Example Proof 

(1)   ² 8 x. F(x) Ç 9 x. : F(x) 

(2)   ² 8 x. F(x) (from (1) by O2) 

(3)   ² 9 x. : F(x) (from (1) by O2) 

(4)   ² F(c) (from (2) by A2) 

(5)   ² : F(c) (from (3) by E2) 

(6)   ² F(c) (from (5) by N2) 

(7)   ? (from (4) and (6) by C) 
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Example Proof – Wrong! 

(1)   ² F(a) Ç 8 x. : F(x) 

(2)   ² F(a)  (from (1) by O2) 

(3)   ² 8 x. : F(x) (from (1) by O2) 

(4)   ² : F(a) (from (3) by F2)  

(5)   ² F(a) (from (4) by N2) 

(6)   ? (from (2) and (5) by C) 

 

Note that F(a) Ç 8 x. : F(x) is not valid! 
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a is not a fresh 
constant! 



Example Proof – Correct! 

(1)   ² F(a) Ç 8 x. : F(x) 
(2)   ² F(a)  (from (1) by O2) 
(3)   ² 8 x. : F(x) (from (1) by O2) 
(4)   ² : F(b) (from (3) by F2)  
(5)   ² F(b) (from (4) by N2) 
 
No contradiction can be inferred! 
No further rule is applicable! 
(M = (D,I) with D = {A,B}, aI = A, bI = B, FI = {B} is a 
model that falsifies F(a) Ç 8 x. : F(x) ) 
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b is a fresh 
constant! 



W1, G2 and G3 imply G1 - Informal 

Let G be some group. 

Let x be some element of G. 

By G2 there is a y such that xy = e and yx=e. 

Thus we have ex = (xy)x = x(yx) = xe using 
associativity (G3). 

By W1 we have ex = xe = x.  

Because x was chosen arbitrary this holds for all  
elements of G. 
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Group Axioms – in First Order Logic 

Signature ( ¢, e),  
• where the function ¢ has arity 2, 
• and the function e has arity 0 (i.e., a constant). 
 
Axioms: 
G1: 8 x. x ¢ e = x Æ e ¢ x = x  
G2: 8 x. 9 y. x ¢ y = e Æ y ¢ x = e 
G3: 8 x. 8 y. 8 z. x ¢ (y ¢ z) = (x ¢ y) ¢ z 

 
All models that simultaneously satisfy G1, G2 and G3 are 
called groups. 
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W1, G2 and G3 imply G1 

(1)   ² (W1 Æ G2 Æ G3) ! G1 
(2)   ² : (W1 Æ G2 Æ G3) Ç G1 (Rewrite of !)  
(3)   ² : (W1 Æ G2 Æ G3) (from (2) by O2) 
(4)   ² G1 (from (2) by O2) 
(5)   ² W1 Æ G2 Æ G3 (from (3) by N2) 
(6)   ² W1 (from (5) by A1) 
(7)   ² G2 Æ G3 (from (5) by A1) 
(8)   ² G2 (from (7) by A1) 
(9)   ² G3 (from (7) by A1) 
(10)   ² c ¢ e = c Æ e ¢ c = c (from (4) by F2) 
(11)   ² 9 y. c ¢ y = e Æ y ¢ c = e (from (8) by F1) 
(12)   ² c ¢ d = e Æ d ¢ c = e (from (10) by E1) 
(13)   ² c ¢ d = e (from (11) by A1) 
(14)   ² d ¢ c = e (from (11) by A1) 
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W1, G2 and G3 imply G1 

(15)  ² c ¢ e = c (from (6) by F1) 

(16)  ² c ¢ (d ¢ c) = c (from (15) and (16) by S1) 

(17)  ² 8 y. 8 z. c ¢ (y ¢ z) = (c ¢ y) ¢ z (from (10) by F1) 

(18)  ² 8 z. c ¢ (d ¢ z) = (c ¢ d) ¢ z (from (17) by F1) 

(19)  ² c ¢ (d ¢ c) = (c ¢ d) ¢ c (from (18) by F1) 

(20)  ² (c ¢ d) ¢ c = c (from (16) and (19) by S1) 

(21)  ² e ¢ c = c (from (13) and (20) by S1) 
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(22)  ² c ¢ e = c (from (10) by A2) 

(23)  ? (from (15) and (22) by C) 

(24)  ² e ¢ c = c (from (10) by A2) 

(25)  ? (from (21) and (24) by C) 



Refutation Calculus - Simplified 
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² : F 

² F 

² : F 

² F 

² F Æ G 

² F 
² G 

² F Æ G1 

² F | ² G 

² 8 x. F(x) 

² F(t) 

² 8 x. F(x) 

² F(c) 
c is a fresh 
constant 

? 

² P(c1,c2,…,cn) 

² P(c1,c2,…,cn) Goal: Proof for a valid sentence F 
Idea: Assume ² F and find a contradiction 

in every branch of the proof 

N1 N2 

A1 A2 

F1 F2 

C1 



Simplification 

•  Ç and 9 can be expressed by :, Æ and 8 

• We eliminate function symbols: for every 
occurrence of f in a predicate L(f(t1,…t,n)) in a 
formula F we replace this predicate by  
 9x. Pf(t1,…t,n,x) Æ L(x) 

• For the resulting formula G we add 
functionality axioms Æf If ! G, where If 
denotes the formula 8x1, …, xn9y. Pf(x1,…,xn,y) 
Æ 8z. Pf(x1,…,xn,z) ! y=z 
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FOL without Equality 

We want to consider FOL without equality. 
Thankfully we can describe equality by the following axioms 
(up to equivalence classes): 
 

 Reflexivity (R):    8x. x = x 
 Symmetry (S):     8x,y. x = y ! y = x 
 Transitivity (T):    8x,y,z. x = y Æ y = z ! x = z 
 
 

For every predicate P we define a consistency axiom EP by 
8x1,…,xn,y1,…,yn. (x1=y1Æ…Æxn=yn)!(P(x1,…,xn) ↔P(y1,…,yn)). 
 
For an FOL formulae F with equality we construct the formula 
ÆP EP Æ R Æ S Æ T! F in FOL without equality. 
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Terminology 

• Note that the proof has the shape of a tree.  

• We call a line in the proof tree a branch.  

• We call a branch that contains a contradiction 
closed and a branch without a contradiction 
open. 
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Proof Construction Algorithm 
First line in the proof tree is ² F. 

For every line in the proof exactly one rule can be applied! 

We apply this rule once for every line in an open branch of the proof              
(except for ² 8 x. F(x)).  

We append the results at the end of every open branch to which the 
line belongs. 

The application of rules is fair: for every line a rule is eventually 
applied and for ² 8 x. F(x) the rule is infinitely often applied. 

Let c1, c2, … be an enumerable sequence of constant symbols that 
includes all constant symbols from F. 

We apply the rule for ² 8 x. F(x) for all constants c1, c2, … in that order 
and the rule for ² 8 x. F(x) with the smallest constant not in the proof. 

Either no rule can be applied at some point of time or the algorithm 
continues forever. 
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Soundness 

Thm 
If all branches are closed, F is a valid. 
Proof (by contradiction) 
Let M be a model for which F does not hold, i.e., M ² F. 

We show for every rule using the definition: if the premise of 
the rule holds for M, then the conclusion also holds for M. 
For every branch in the proof we extend M according to the 
additional constants that appear in the proof. 
Every branch is closed, i.e., contains a contradiction.  
Thus for every branch we know that M cannot be a model of 
this branch. Contradiction. 
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Structural Induction 

Consider some inductively defined structure given by 
axioms and constructors, e.g.,     
 Tree ::= Leaf | Branch(Tree,Tree). 
 
To prove a property P(T) for every tree T: 
• Base case (T = Leaf):  

– prove P(Leaf) is true using known facts 

• Induction case (T = Branch(T1,T2)): 
– assume the inductive hypothesis: P(T1) and P(T2) are true 
– prove P(T) is true using known facts and the inductive 

hypothesis 
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Example 

leaves(Leaf) = 1 

leaves(Branch(T1,T2)) = leaves(T1) + leaves(T2) 

 

branches(Leaf) = 0 

branches(Branch(T1,T2)) = branches (T1) + 
branches (T2) + 1 

 

leaves(T) = branches(T) + 1 for every Tree T. 
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Completeness 

Thm 
If at least one branch is open, F is not valid. 
Proof 
We choose one (possibly infinite) branch B of the proof tree.  
We define a model M as follows: 
We set M = {C1, C2, … } and we define the interpretation of ci to be Ci 
and define M ² P(C1,C2,…,Cn) iff P(c1,c2,…,cn) appears on B. 
We show by structural induction for every formula G that if G appears 
on B with ² G or ² G, we have M ² G or M ² G. 
Induction start: By definition of M this holds for all atoms. 
Induction step: For G there is exactly one rule applicable, and this rule 
is applied by the algorithm. The conclusions also appear on B and are 
structurally smaller so we can apply the induction hypothesis.  Using 
the semantics of FOL we can compose these results to show M ² G 
resp. M ² G. 
Because ² F appears on B this establishes M ² F . 
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Further Results 

Compactness Theorem 
A countable set of first-order formulae S is 
simultaneously satisfiable iff the conjunction of 
every finite subset of S is satisfiable. 
Proof 
Let F1, F2, … be an enumeration of S. We apply the 
above procedure and try to simultaneously prove 
the validity of every :Fi, i.e., we construct one joint 
proof tree and advance every proof of :Fi in a fair 
way. Since each finite subset of S is satisfiable at 
least one branch will stay open. The resulting model 
will simultaneously satisfy all Fi.  
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Corollaries 

Löwenheim-Skolem Theorem 

Every simultaneously satisfiable countable set of 
FOL sentences has a countable model. 

 

Semi-Decidability of FOL 

The above described algorithm provides a semi-
decision procedure for FOL (i.e., it will find a 
proof for all valid FOL sentences). 
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Undecidability of FOL 

Thm 

The language of valid FOL sentences is 
undecidable. 

Proof Idea 

By reduction from the Halting Problem: 

There is an FOL sentence ÁM encoding the run 
(i.e., the sequence of configurations) of a given 
Turing machine M on an empty input. ÁM is valid 
iff M terminates. 
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The Tiling Problem 
(en.wikipedia.org/wiki/Wang_tile) 

Given a finite set of tiles 

 

 

 

 

32 

is there a tiling of the 
upper right quadrant such 
that all colors match (tiles 
may not be rotated)? 

For example,  

… 

… 

The Tiling Problem is known to be undecidable! 



Reduction of the Tiling Problem to FOL 

Exercise: 

• Formal Definition of the Tiling Problem 

• Construction of a corresponding FOL formula 

• Proof of Reduction: There is a tiling of the 
upper right quadrant iff the corresponding 
FOL formula is valid. 
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Entrance Test (30min) 

• Prove implications, equivalences using the 
semantics of FOL, give counterexamples (i.e., 
provide models) in case the stated implications, 
equivalences do not hold  

• Use the refutation calculus to prove valid 
sentences 

• Perform proofs by structural induction 

• Model problems formally in FOL (e.g., encoding 
of bit-vector operations in propositional logic, 
reducing the Tiling Problem to FOL) 
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