## for(syte

# Formal Semantics of Programming Languages 

Florian Zuleger<br>SS 2014

## Group Axioms - informal

( $\mathrm{G}, \cdot \mathrm{e}$ e) is a group, if

- . is a binary relation on $G$,
- $e$ is a special element of $G$ called the neutral element,
- $x \cdot e=x$ and $e \cdot x=x$ for all $x \in G$,
- for all $x \in G$ there is a $y \in G$ such that $x \cdot y=e$ and $y \cdot x=e$ called the inverse element, and
- . is associative, i.e., $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, z \in G$.


## Group Axioms - in First Order Logic

Signature ( $\cdot, \mathrm{e}$ ),

- where the function - has arity 2 ,
- and the function e has arity 0 (i.e., a constant).

Axioms:
G1: $\forall x . x \cdot e=x \wedge e \cdot x=x$
G2: $\forall x . \exists \mathrm{y} . \mathrm{x} \cdot \mathrm{y}=\mathrm{e} \wedge \mathrm{y} \cdot \mathrm{x}=\mathrm{e}$
G3: $\forall \mathrm{x} . \forall \mathrm{y} . \forall \mathrm{z} . \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}$
All models that simultaneously satisfy G1, G2 and G3 are called groups.

## Examples

$(\mathbb{Z},+, 0)$
$(\mathbb{Z}, \cdot, 1)$ ?
$(\mathbb{Q}, ; 1)$
$(\mathbb{R}, \cdot, 1)$
$(\mathbb{Z} / n \mathbb{Z},+, 0)$ (the so-called cyclic group)
(C unsigned integers,+,0)
(Sym $n, \circ$, id) (the permutations of $n$ elements)

## Weaker Group Axioms

Signature ( $\cdot, \mathrm{e}$ ),

- where - has arity 2 ,
- and e has arity 0 .

Axioms:
W1: $\forall \mathrm{x} . \mathrm{x} \cdot \mathrm{e}=\mathrm{x}$
W2: $\forall \mathrm{x} . \exists \mathrm{y} . \mathrm{x} \cdot \mathrm{y}=\mathrm{e}$
G3: $\forall \mathrm{x} . \forall \mathrm{y} . \forall \mathrm{z} . \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}$
However, W1, W2 and G3 imply G1 and G2 (see next slides)! (Recall the definition of implication: all models of W1, W2 and G3 satisfy G1 and G2)

## W1, W2 and G3 imply G2 - Informal

Let $G$ be some group.
Let x be some element of G .
By W2 there is a $y$ such that $x y=e$.
By W1 we have $(y(x y)) x=(y e) x=y x\left({ }^{*}\right)$.
By W2 there is a $z$ such that $(x y) z=e(\#)$.
Multiply $z$ from the right on both sides of $\left(^{*}\right)$ :
$((y(x y)) x) z=(y x) z$.
From (\#) and associativity (G3) we get: (yx)e=e.
From W2 we get $y x=e$.
Because $x$ was chosen arbitrary this holds for all elements of G .

## W1, G2 and G3 imply G1 - Informal

Let G be some group.
Let x be some element of G .
By G2 there is a $y$ such that $x y=e$ and $y x=e$.
Thus we have ex $=(x y) x=x(y x)=x e ~ u s i n g$ associativity (G3).
By W1 we have ex = $x e=x$.
Because x was chosen arbitrary this holds for all elements of G .

## Questions

- Is this proof correct, i.e., is every model of W1, W2 and G3 also a model of G1, G2 and G3?
- How can we verify the correctness of the proof?
- Can the proof be automated?
- Can proofs always be automated (i.e., are valid sentences decidable)?
$\rightarrow$ We define a proof calculus for FOL and prove its soundness and completeness.
$\rightarrow$ We establish the undecidability of FOL.


## Refutation Calculus

$$
\begin{aligned}
& \mathrm{N} 1 \frac{\models \neg \mathrm{~F}}{\nLeftarrow \mathrm{~F}} \quad \mathrm{~N} 2 \frac{\nLeftarrow \neg \mathrm{~F}}{\neq \mathrm{F}} \quad \mathrm{~F} 1 \frac{\vDash \forall \mathrm{x} . \mathrm{F}(\mathrm{x})}{\models \mathrm{F}(\mathrm{t})} \quad \mathrm{F} 2 \frac{\not \models \forall \mathrm{x} . \mathrm{F}(\mathrm{x})}{\nLeftarrow \mathrm{F}(\mathrm{c})} \quad \begin{array}{l}
\mathrm{c} \text { is a fresh } \\
\text { constant }
\end{array} \\
& \mathrm{A} 1 \frac{\models \mathrm{~F} \wedge \mathrm{G}}{\models \mathrm{~F}} \mathrm{~A} 2 \frac{\not \models \mathrm{~F} \wedge \mathrm{G}}{\not \models \mathrm{~F} \mid \not \models \mathrm{G}} \mathrm{E} 2 \frac{\not \models \exists \mathrm{x} . \mathrm{F}(\mathrm{x})}{\not \models \mathrm{F}(\mathrm{t})} \mathrm{E} 1 \frac{\vDash \exists \mathrm{x} . \mathrm{F}(\mathrm{x})}{\models \mathrm{F}(\mathrm{c})} \quad \begin{array}{l}
\mathrm{c} \text { is a fresh } \\
\text { constant }
\end{array} \\
& \text { Ff } \\
& \mathrm{O} 1 \frac{\not \models \mathrm{~F} \vee \mathrm{G}}{\not \models \mathrm{~F}} \quad \mathrm{O} 2 \stackrel{\vDash \mathrm{~F} \vee \mathrm{G}}{\vDash \mathrm{~F} \mid \vDash \mathrm{G}} \\
& \operatorname{Id} \underset{F t=t}{ } \quad \mathrm{~S} 1 \frac{\vDash \mathrm{~F}(\mathrm{t}) \quad \vDash \mathrm{s}=\mathrm{t}}{\vDash \mathrm{~F}(\mathrm{~s})} \\
& \not \neq G \\
& \vDash P\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& \neq P\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& \text { Cf } \\
& \text { Goal: Proof for a valid sentence } F \\
& \text { Idea: Assume } \neq F \mathrm{~F} \text { and find a contradiction } \\
& \text { in every branch of the proof }
\end{aligned}
$$

## Examples

- $\mathrm{F} \vee \neg \mathrm{F}$
- $(F \vee \neg F) \wedge(G \vee \neg G)$
- $\forall \mathrm{x} . \mathrm{F}(\mathrm{x}) \vee \exists \mathrm{x} . \neg \mathrm{F}(\mathrm{x})$
- $F(a) \wedge \exists x . \neg F(x)$ ?
- W1, G2 and G3 imply G1, i.e.,
$\mathrm{W} 1 \wedge \mathrm{G} 2 \wedge \mathrm{G} 3 \rightarrow \mathrm{G} 1$


## Example Proof

(1) $\vDash F \vee \neg F$
(2) $\not \vDash F$ (from (1) by O2)
(3) $\vDash \neg F$ (from (1) by O2)
(4) $\vDash F($ from (3) by N2)
(5) $\perp$ (from (2) and (4) by C)

## Example Proof

$$
\text { (1) } \not \models(F \vee \neg F) \wedge(G \vee \neg G)
$$

(2) $\neq F \vee \neg F$ (from (1) by $A 2)$
(3) $\not \models \mathrm{F}$ (from (1) by O2)
(4) $\quad \vDash \neg \mathrm{F}$ (from (1) by O2)
(5) $\vDash F($ from (3) by N2)
(6) $\perp$ (from (2) and (4) by C)
(7) $\not \models G \vee \neg \mathrm{G}$ (from (1) by A 2 )
(8) $\not \models \mathrm{G}$ (from (7) by O2)
(9) $\not \equiv \neg \mathrm{G}$ (from (7) by O2)
(10) $\vDash$ G (from (9) by N2)
(11) $\perp$ (from (8) and (10) by C)

## Example Proof

(1) $\vDash \forall \mathrm{x} . \mathrm{F}(\mathrm{x}) \vee \exists \mathrm{x} . \neg \mathrm{F}(\mathrm{x})$
(2) $\forall \forall x . F(x)$ (from (1) by O2)
(3) $\vDash \exists \mathrm{x}$. $\neg \mathrm{F}(\mathrm{x})$ (from (1) by O2)
(4) $\vDash F$ F(c) (from (2) by A2)
(5) $\vDash \neg \mathrm{F}$ (c) (from (3) by E2)
(6) $\vDash F(c)$ (from (5) by N2)
(7) $\perp$ (from (4) and (6) by C)

## Example Proof - Wrong!

(1) $\vDash F(a) \vee \forall x$. $\neg F(x)$
(2) $\neq F(a)$ (from (1) by O2)
(3) $\vDash \forall \mathrm{x}$. $\neg \mathrm{F}(\mathrm{x})$ (from (1) by O2)
(4) $\vDash \neg F(a)$ (from (3) by F2)
(5) $\vDash \mathrm{F}(\mathrm{a})$ (from (4) by N2)
(6) $\perp$ (from (2) and (5) by C)


Note that $\mathrm{F}(\mathrm{a}) \vee \forall \mathrm{x} . \neg \mathrm{F}(\mathrm{x})$ is not valid!

## Example Proof - Correct!

(1) $\forall \mathrm{F}(\mathrm{a}) \vee \forall \mathrm{x} . \neg \mathrm{F}(\mathrm{x})$
(2) $\not \vDash F(a)$ (from (1) by O2)
(3) $\not \models \forall \mathrm{x}$. $\neg \mathrm{F}(\mathrm{x})$ (from (1) by O2)
(4) $\vDash \neg$ F(b) (from (3) by F2)
(5) $\vDash F(b)$ (from (4) by N2)
b is a fresh
constant!
No contradiction can be inferred!
No further rule is applicable!
$\left(M=(D, I)\right.$ with $D=\{A, B\}, a^{\prime}=A, b^{\prime}=B, F^{\prime}=\{B\}$ is a model that falsifies $\mathrm{F}(\mathrm{a}) \vee \forall \mathrm{x} . \neg \mathrm{F}(\mathrm{x})$ )

## W1, G2 and G3 imply G1 - Informal

Let G be some group.
Let x be some element of G .
By G2 there is a $y$ such that $x y=e$ and $y x=e$.
Thus we have ex $=(x y) x=x(y x)=x e ~ u s i n g$ associativity (G3).
By W1 we have ex = $x e=x$.
Because x was chosen arbitrary this holds for all elements of G .

## Group Axioms - in First Order Logic

Signature ( $\cdot, \mathrm{e}$ ),

- where the function - has arity 2 ,
- and the function e has arity 0 (i.e., a constant).

Axioms:
G1: $\forall x . x \cdot e=x \wedge e \cdot x=x$
G2: $\forall x . \exists y \cdot x \cdot y=e \wedge y \cdot x=e$
G3: $\forall \mathrm{x} . \forall \mathrm{y} . \forall \mathrm{z} . \mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}$
All models that simultaneously satisfy G1, G2 and G3 are called groups.

## W1, G2 and G3 imply G1

(1) $\not \models(\mathrm{W} 1 \wedge G 2 \wedge G 3) \rightarrow \mathrm{G} 1$
(2) $\not \models \neg(W 1 \wedge G 2 \wedge G 3) \vee G 1$ (Rewrite of $\rightarrow$ )
(3) $\not \models \neg(\mathrm{W} 1 \wedge \mathrm{G} 2 \wedge \mathrm{G} 3)$ (from (2) by O2)
(4) $\neq \mathrm{G} 1$ (from (2) by O2)
(5) $\vDash \mathrm{W} 1 \wedge \mathrm{G} 2 \wedge \mathrm{G} 3$ (from (3) by N2)
(6) $\vDash \mathrm{W} 1$ (from (5) by A1)
(7) $\vDash$ G2 $\wedge$ G3 (from (5) by A1)
(8) $\vDash$ G2 (from (7) by A1)
(9) $\vDash$ G3 (from (7) by A1)
(10) $\not \vDash \mathrm{c} \cdot \mathrm{e}=\mathrm{c} \wedge \mathrm{e} \cdot \mathrm{c}=\mathrm{c}$ (from (4) by F2)
(11) $\vDash \exists \mathrm{y} \cdot \mathrm{c} \cdot \mathrm{y}=\mathrm{e} \wedge \mathrm{y} \cdot \mathrm{c}=\mathrm{e}$ (from (8) by F1)
(12) $\vDash c \cdot d=e \wedge d \cdot c=e$ (from (10) by E1)
(13) $\vDash c \cdot d=e($ from (11) by A1)
(14) $\vDash \mathrm{d} \cdot \mathrm{c}=\mathrm{e}($ from (11) by A1)

## W1, G2 and G3 imply G1

(15) $\vDash \mathrm{c} \cdot \mathrm{e}=\mathrm{c}($ from (6) by F1)
(16) $\vDash \mathrm{c} \cdot(\mathrm{d} \cdot \mathrm{c})=\mathrm{c}($ from (15) and (16) by S1)
(17) $\vDash \forall y . \forall z . c \cdot(y \cdot z)=(c \cdot y) \cdot z(f r o m(10) b y F 1)$
(18) $\vDash \forall \mathrm{z} . \mathrm{c} \cdot(\mathrm{d} \cdot \mathrm{z})=(\mathrm{c} \cdot \mathrm{d}) \cdot \mathrm{z}($ from (17) by F1)
(19) $\vDash \mathrm{c} \cdot(\mathrm{d} \cdot \mathrm{c})=(\mathrm{c} \cdot \mathrm{d}) \cdot \mathrm{c}($ from (18) by F1)
(20) $\vDash(c \cdot d) \cdot c=c$ (from (16) and (19) by S1)
(21) $\vDash \mathrm{e} \cdot \mathrm{c}=\mathrm{c}$ (from (13) and (20) by S1)
(22) $\forall \mathrm{c} \cdot \mathrm{e}=\mathrm{c}$ (from (10) by A2)
(23) $\perp$ (from (15) and (22) by C) $\quad$ (25) $\perp$ (from (21) and (24) by C)

## Refutation Calculus - Simplified

$$
\begin{aligned}
& \mathrm{N} 1 \frac{\models \neg \mathrm{~F}}{\nLeftarrow \mathrm{~F}} \quad \mathrm{~N} 2 \frac{\nLeftarrow \neg \mathrm{~F}}{\neq \mathrm{F}} \quad \mathrm{~F} 1 \frac{\vDash \forall \mathrm{x} . \mathrm{F}(\mathrm{x})}{\models \mathrm{F}(\mathrm{t})} \quad \mathrm{F} 2 \frac{\not \models \forall \mathrm{x} . \mathrm{F}(\mathrm{x})}{\nLeftarrow \mathrm{F}(\mathrm{c})} \quad \begin{array}{l}
\mathrm{c} \text { is a fresh } \\
\text { constant }
\end{array} \\
& A 1 \frac{\models F \wedge G}{\models F} \quad A 2 \frac{\not \models F \wedge G 1}{\nLeftarrow F \mid \not \models G} \\
& \vDash \text { G }
\end{aligned}
$$

$\vDash P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$


Goal: Proof for a valid sentence F Idea: Assume $\neq F \mathrm{~F}$ and find a contradiction in every branch of the proof

## Simplification

- $\vee$ and $\exists$ can be expressed by $\neg, \wedge$ and $\forall$
- We eliminate function symbols: for every occurrence of $f$ in a predicate $L\left(f\left(t_{1}, \ldots . t, n\right)\right)$ in a formula $F$ we replace this predicate by $\exists x . P_{f}\left(t_{1}, \ldots t_{n}, x\right) \wedge L(x)$
- For the resulting formula $G$ we add functionality axioms $\wedge_{f} I_{f} \rightarrow G$, where $I_{f}$ denotes the formula $\forall x_{1}, \ldots, x_{n} \exists y . P_{f}\left(x_{1}, \ldots, x_{n}, y\right)$ $\wedge \forall z . P_{f}\left(x_{1}, \ldots, x_{n}, z\right) \rightarrow y=z$


## FOL without Equality

We want to consider FOL without equality.
Thankfully we can describe equality by the following axioms (up to equivalence classes):

$$
\begin{array}{ll}
\operatorname{Reflexivity~(R):~} & \forall x . x=x \\
\operatorname{Symmetry}(S): & \forall x, y \cdot x=y \rightarrow y=x \\
\operatorname{Transitivity~(T):~} & \forall x, y, z . x=y \wedge y=z \rightarrow x=z
\end{array}
$$

For every predicate $P$ we define a consistency axiom $E_{P}$ by $\forall \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}} .\left(\mathrm{x}_{1}=\mathrm{y}_{1} \wedge \ldots \wedge \mathrm{x}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}}\right) \rightarrow\left(\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \leftrightarrow \mathrm{P}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)$.

For an FOL formulae $F$ with equality we construct the formula $\wedge_{p} E_{p} \wedge R \wedge S \wedge T \rightarrow F$ in FOL without equality.

## Terminology

- Note that the proof has the shape of a tree.
- We call a line in the proof tree a branch.
- We call a branch that contains a contradiction closed and a branch without a contradiction open.


## Proof Construction Algorithm

First line in the proof tree is $\not \models \mathrm{F}$.
For every line in the proof exactly one rule can be applied!
We apply this rule once for every line in an openbranch of the proof (except for $\vDash \forall x$. $F(x)$ ).
We append the results at the end of every open branch to which the line belongs.
The application of rules is fair: for every line a rule is eventually applied and for $\vDash \forall \mathrm{x}$. $\mathrm{F}(\mathrm{x})$ the rule is infinitely often applied.
Let $c_{1}, c_{2}, \ldots$ be an enumerable sequence of constant symbols that includes all constant symbols from $F$.
We apply the rule for $\vDash \forall x$. $F(x)$ for all constants $c_{1}, c_{2}, \ldots$ in that order and the rule for $\not \models \forall \mathrm{x}$. $\mathrm{F}(\mathrm{x})$ with the smallest constant not in the proof. Either no rule can be applied at some point of time or the algorithm continues forever.

## Soundness

Thm
If all branches are closed, F is a valid.

## Proof (by contradiction)

Let $M$ be a model for which $F$ does not hold, i.e., $M \not \models F$.
We show for every rule using the definition: if the premise of the rule holds for M , then the conclusion also holds for M .
For every branch in the proof we extend M according to the additional constants that appear in the proof.
Every branch is closed, i.e., contains a contradiction.
Thus for every branch we know that $M$ cannot be a model of this branch. Contradiction.

## Structural Induction

Consider some inductively defined structure given by axioms and constructors, e.g.,

Tree ::= Leaf | Branch(Tree,Tree).

To prove a property $\mathrm{P}(\mathrm{T})$ for every tree T :

- Base case ( $\mathrm{T}=$ Leaf):
- prove $\mathrm{P}($ Leaf $)$ is true using known facts
- Induction case ( $\mathrm{T}=\operatorname{Branch}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ ):
- assume the inductive hypothesis: $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true
- prove $\mathrm{P}(\mathrm{T})$ is true using known facts and the inductive hypothesis


## Example

leaves(Leaf) = 1
$\operatorname{leaves}\left(\operatorname{Branch}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)\right)=\operatorname{leaves}\left(\mathrm{T}_{1}\right)+\operatorname{leaves}\left(\mathrm{T}_{2}\right)$
branches(Leaf) $=0$
$\operatorname{branches}\left(\operatorname{Branch}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)\right)=\operatorname{branches}\left(\mathrm{T}_{1}\right)+$ branches $\left(T_{2}\right)+1$
leaves $(T)=$ branches( $T$ ) +1 for every Tree $T$.

## Completeness

## Thm

If at least one branch is open, F is not valid.

## Proof

We choose one (possibly infinite) branch B of the proof tree.
We define a model M as follows:
We set $M=\left\{C_{1}, C_{2}, \ldots\right\}$ and we define the interpretation of $c_{i}$ to be $C_{i}$ and define $\mathrm{M} \vDash \mathrm{P}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n}\right)$ iff $\mathrm{P}\left(\mathrm{c}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n}\right)$ appears on B .
We show by structural induction for every formula $G$ that if $G$ appears on B with $\not \vDash \mathrm{G}$ or $\vDash \mathrm{G}$, we have $\mathrm{M} \neq \mathrm{G}$ or $\mathrm{M} \vDash \mathrm{G}$.
Induction start: By definition of $M$ this holds for all atoms.
Induction step: For G there is exactly one rule applicable, and this rule is applied by the algorithm. The conclusions also appear on B and are structurally smaller so we can apply the induction hypothesis. Using the semantics of FOL we can compose these results to show $M \not \models G$ resp. $\mathrm{M} \not \not \neq \mathrm{G}$.
Because $\vDash \mathrm{F}$ appears on B this establishes $\mathrm{M} \vDash \mathrm{F}$.

## Further Results

Compactness Theorem
A countable set of first-order formulae $S$ is
simultaneously satisfiable iff the conjunction of every finite subset of $S$ is satisfiable.
Proof
Let $F_{1}, F_{2}, \ldots$ be an enumeration of $S$. We apply the above procedure and try to simultaneously prove the validity of every $\neg \mathrm{F}_{\mathrm{i}}$, i.e., we construct one joint proof tree and advance every proof of $\neg \mathrm{F}_{\mathrm{i}}$ in a fair way. Since each finite subset of $S$ is satisfiable at least one branch will stay open. The resulting model will simultaneously satisfy all $F_{i}$.

## Corollaries

## Löwenheim-Skolem Theorem

Every simultaneously satisfiable countable set of FOL sentences has a countable model.

Semi-Decidability of FOL
The above described algorithm provides a semidecision procedure for FOL (i.e., it will find a proof for all valid FOL sentences).

## Undecidability of FOL

## Thm

The language of valid FOL sentences is undecidable.

## Proof Idea

By reduction from the Halting Problem:
There is an FOL sentence $\phi_{\mathrm{M}}$ encoding the run (i.e., the sequence of configurations) of a given Turing machine M on an empty input. $\phi_{\mathrm{M}}$ is valid iff M terminates.

## The Tiling Problem

 (en.wikipedia.org/wiki/Wang_tile)Given a finite set of tiles

is there a tiling of the upper right quadrant such that all colors match (tiles may not be rotated)?

For example,


## Reduction of the Tiling Problem to FOL

Exercise:

- Formal Definition of the Tiling Problem
- Construction of a corresponding FOL formula
- Proof of Reduction: There is a tiling of the upper right quadrant iff the corresponding FOL formula is valid.


## Entrance Test (30min)

- Prove implications, equivalences using the semantics of FOL, give counterexamples (i.e., provide models) in case the stated implications, equivalences do not hold
- Use the refutation calculus to prove valid sentences
- Perform proofs by structural induction
- Model problems formally in FOL (e.g., encoding of bit-vector operations in propositional logic, reducing the Tiling Problem to FOL)

