Exercise 1

Exercises 1 to 7

11.10.2023

Contents

Task 1: Use the different help systems available for R (i.e., R homepage, built-in R functions)
to find information about:
Command: [. e
ordered Argument for factor oL
a function to create normally distributed random variables
a function that does conditional logistic regression
explain what a vignette is L L L
6.which vignettes are on your R installation available, and access one of them

Cuk W=
W W W W NN

Task 2: Calculate the sum

I

Task 3: Create the following vectors: 5

Task 4: Explain

Task 5: Explain what the following code does: 9
Task 6: 10
1. dim function e e e e e e e e e e 10
2. scale function 10
3. as.matrix e e e 13
Task 7: 14
1. Consider the following objects in R: L o 14
2. Subvector: 14
3. Another Vector e 14
Feedback 15

Task 1: Use the different help systems available for R (i.e., R
homepage, built-in R functions) to find information about:

the command |

the ordered argument for factor

a function to create normally distributed random variables

a function that does conditional logistic regression

what a vignette is

which vignettes are on your R installation available, and access one of them

SO W

1. Command: |

To find information about the commands, you can use the built-in help function by placing a “?” in front of
the command.

A
starte den http Server fir die Hilfe fertig

This will display the documentation for the “[” command, which is used for vectors, matrices, arrays, and
lists.

2. ordered Argument for factor
?factor

Example:

Create a vector of mominal categories
categories <- c("Low", "Medium", "High", "Low", "High", "Medium")

Create a factor with ordered levels
ordered_factor <- factor(categories, ordered = TRUE, levels = c("Low", "Medium", "High"))

Print the factor
print (ordered_factor)

[1] Low Medium High Low High Medium
Levels: Low < Medium < High
In the R example, the “c” is used to create a vector.

¢ stands for “combine” or “concatenate” and is a function in R that is used to create vectors by combining
or concatenating elements together. You can use c to create vectors from individual values, lists, or other
vectors.

3. a function to create normally distributed random variables
?rnorm

Example:

Normal distribution of 100 random numbers with a mean of 50 and standard deviation of 2
random_numbers <- rnorm(n = 30, mean = 50, sd = 2)

print Summary statistics of the gemerated random numbers
summary (random_numbers)

Min. 1st Qu. Median Mean 3rd Qu. Max.
46.56 48.38 49.48 49.98 51.15 55.25

print (random_numbers)
[1] 48.24577 51.11592 49.41490 50.92192 51.16679 48.03495 51.27153 49.22567
[9] 53.54891 47.61231 48.26206 48.89529 47.36885 49.24509 49.73873 49.30899

[17] 51.28013 48.65160 48.29449 50.38639 51.81184 47.97349 48.92368 50.16423
[25] 46.56371 54.61170 51.97656 49.53634 55.24643 50.56292

4. a function that does conditional logistic regression

library(survival)
?clogit

The clogit function in R performs conditional logistic regression, analyzing matched case-control data to
assess the association between an outcome and one or more predictor variables while accounting for the
matching structure.

5. explain what a vignette is

A vignette is a comprehensive, long-form document in R that provides detailed explanations, examples, and
usage instructions for a specific package, tool, or topic, serving as a valuable resource for users to understand
and effectively use the functionality provided.

6.which vignettes are on your R installation available, and access one of them

with the command “browseVignettes()” you can view all your installed Vignettes:

browseVignettes()

Task 2: Calculate the sum

r <- 1.08
n <- 10

for (iteration in 1:4) {
result_sum <- sum(r~(1:n))
result_formula <- (r"(n+1) - 1)/(r - 1) - 1

cat("Iteration", n, ": n =", n, "\n")
cat ("Result (Sum): ", result_sum, "\n")
cat ("Result (Formula):", result_formula, "\n\n")

n <-n + 10

¥

Iteration 10 : n = 10

Result (Sum): 15.64549
Result (Formula): 15.64549
##

Iteration 20 : n = 20

Result (Sum): 49.42292
Result (Formula): 49.42292
##

Iteration 30 : n = 30

Result (Sum): 122.3459
Result (Formula): 122.3459
##

Iteration 40 : n = 40

Result (Sum): 279.781

Result (Formula): 279.781

The cat function in R is used to concatenate and print multiple expressions or strings to the console or a file.

Task 3: Create the following vectors:

x1 <- rep(c(1, 3, 6, 10, 15), c(1, 2, 3, 4, 5))
cat("Vector 1: ", x1, "\n")

Vector 1: 1 3 3 6 6 6 10 10 10 10 15 15 15 15 15

x2 <- seq(0, 1, by = 1/14)
print(x2)

[1] 0.00000000
[7] 0.42857143
[13] 0.85714286

x3 <- seq(0, 1, by
print(x3)

.07142857 0.14285714 0.21428571 0.28571429 0.35714286
.50000000 0.57142857 0.64285714 0.71428571 0.78571429
.92857143 1.00000000

0.05)

O O O

[1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
[16] 0.75 0.80 0.85 0.90 0.95 1.00

x4 <- rep(1l, times = 15)

cat("Vector 4: ", x4, "\n")

Vector 4: 1111111111111 11
5)

x5 <- rep(c(1, 2, 1), times
cat("Vector 5: ", x5, "\n")
Vector 5: 1 21121121121121

x6 <- rep(c(l, 2), each = 7)

cat("Vector 6: ", x6, "\n")

Vector 6: 1 1111112222222

x7 <- cumsum(c(15, 14:1)) #cumsum = cumulative sum

cat("Vector 7: ", x7, "\n")

Vector 7: 15 29 42 54 65 75 84 92 99 105 110 114 117 119 120
x8 <- cumprod(1:15)

x8

[1] 1.000000e+00 2.000000e+00 6.000000e+00 2.400000e+01 1.200000e+02
[6] 7.200000e+02 5.040000e+03 4.032000e+04 3.628800e+05 3.628800e+06
[11] 3.991680e+07 4.790016e+08 6.227021e+09 8.717829e+10 1.307674e+12

x9 <- rev(x7)

cat("Vector 9: ", x9, "\n")

Vector 9: 120 119 117 114 110 105 99 92 84 75 65 54 42 29 15
x10 <- rep(c("a", "b", "c", "d"), times = c(1, 4, 7, 2))
cat("Vector 10: ", x10, "\n")

Vector 10: abbbbcccccccdd

x11 <- factor(x5, ordered=TRUE)
cat("Vector 11: ", x11, "\n")

Vector 11: 1 21121121121121

x12 <- factor(x10, levels = c("a","b","c","d","e"), ordered=TRUE)
cat("Vector 12: ", x12, "\n")

Vector 12: 1 2222333333344
print (x12)

[1] abbbbcccccccdd
Levels: a < b<c<d<e

#x13:
breaks <- c(0, 0.37, 0.55, 0.96, 1)
labels <- c("less", "sufficient", "good", "plenty")

x13 <- cut(x2, breaks = breaks, labels = labels, ordered=TRUE)
cat("Vector 13: ", x13, "\n")

Vector 13: NA 1 1111223333334

print(x13)

[1] <NA> less less less less less
[7] sufficient sufficient good good good good
[13] good good plenty

Levels: less < sufficient < good < plenty

Task 4: Explain

1. Explain the following:

QuestionAnswer

Why The comparison 1L == “1” evaluates to TRUE in R because R performs type coercion in this case.
is 1L ‘L’ indicates that 1L is an integer literal

Why The comparison -2 < FALSE evaluates to TRUE in R because of the way R handles comparisons
is -2 between numeric and logical values. -2 is less than 0 (the numeric representation of FALSE), which
< is why -2 < FALSE evaluates to TRUE.

Why The comparison “one” < 2 evaluates to FALSE in R because you are comparing a character string

is to a numeric value, and such comparisons are not well-defined in R. When comparing a character
“one” string to a numeric value, R typically returns NA (Not Available) because it recognizes that
<2 comparing different data types in this way doesn’t have a clear meaning. In most cases, this results

FALSE in a comparison returning FALSE or NA.

2. What does this code return and why?

a <- c(TRUE, TRUE, TRUE)
b <- c(1, 2, 3)
a& (b -2)

[1] TRUE FALSE TRUE

o The vector a is defined as ¢(TRUE, TRUE, TRUE), which contains three logical TRUE values.
o The vector b is defined as ¢(1, 2, 3), which contains three numeric values.
e The expression b - 2 subtracts 2 from each element of the vector b, resulting in a new vector with the
values (-1, 0, 1).
o The & operator is used to perform element-wise logical AND between the vectors a and (b - 2). It
compares the corresponding elements in both vectors.
— TRUE AND -1 results in TRUE.
— TRUE AND 0 results in FALSE.
— TRUE AND 1 results in TRUE.

3. What is the difference between the following chunks of code? Explain

x <- -7
x >0 & sqrt(x) < 2

Warning in sqrt(x): NaNs wurden erzeugt

[1] FALSE

x <- -7
X > 0 && sqrt(x) < 2

[1] FALSE
Explanation:

e square root of a negative number is not defined in the real numbers. Only if you explicitly declare it as
a complex number, you won’t get a warning.

e The && operator is used for the logical AND operation.

o In the first example, both conditions are evaluated, but the sqrt(x) < 2 part results in NA because the
square root of a negative number is not a real number. The & operator combines the x > 0 result with
the NA, resulting in NA.

e In the second snippet, the x > 0 condition is FALSE because -7 is not greater than 0. Since the first
condition is FALSE, the && operator short-circuits and does not evaluate the sqrt(x) < 2 condition.
The result is FALSE.

So, the key difference is that the & operator performs element-wise comparisons and may return NA, while
the && operator avoids evaluating the second condition if the first condition is FALSE.

Task 5: Explain what the following code does:

set.seed (1)

DAT <- sample(LETTERS[1:7], 15, replace = TRUE)
F1 <- factor(DAT, levels = (LETTERS[1:7]))

F2 <- F1

levels(F2) <- rev(levels(F2))

F3 <- rev(factor(DAT, levels = (LETTERS[1:7])))
F4 <- factor(DAT, levels = rev(LETTERS[1:7]))

F1

##

[1] ADGABEGCFBCCAEE

Levels: ABCDETFG

F2

##

[1] GDAGFCAEBFEEGCC

Levels: GF EDCB A

F3

##

[T EEACCBFCGEBAGDA

Levels: ABCDEFG

F4

##

[1] ADGABEGCFBCCAEE

Levels: GFEDCBA

Explanation:

1.
2.

set.seed(1): This sets the random number generator’s seed to ensure reproducibility.

DAT <- sample(LETTERS[1:7], 15, replace = TRUE): Generating a 15 long vector by randomly
selecting elements from the first 7 uppercase letters of the alphabet (A to G). With replacement (mit
zuriicklegen)

F1 <- factor(DAT, levels = (LETTERSJ1:7])): creating a factor variable F1 from the DAT vector. It
specifies the levels of the factor using the uppercase letters A to G.

F2 <- F1: creating a new factor variable F2 that is a copy of F1.

levels(F2) <- rev(levels(F2)): reversing the order of the levels in the factor F2. Reversed the levels
from G-A

F3 <- rev(factor(DAT, levels = (LETTERS[1:7]))): creating a new factor variable F3 by reversing the
order of the data. The levels are still the same.

F4 <- factor(DAT, levels = rev(LETTERS[1:7])): This line creates a new factor variable F4 directly,
using rev to specify the levels in reverse alphabetical order.

Task 6:

1. dim function

When you apply the dim function to an atomic vector in R, it returns NULL. Atomic vectors are one-
dimensional and do not have dimensions like matrices or arrays. Therefore, the dim function does not provide
dimensions for atomic vectors.

If you assign the dim attribute of a matrix or an array the value NULL, it effectively removes the dimension
attribute, and the object will behave like a one-dimensional vector.

For example, consider a matrix:

mat <- matrix(1:6, nrow = 2)

cat("The dimensions of mat are:", dim(mat), "\n")
The dimensions of mat are: 2 3

cat("If you assign NULL to the dimension attribute:",dim(mat) <- NULL ,mat)

If you assign NULL to the dimension attribute: 1 2 3 4 5 6

In this state, mat is no longer considered a matrix but rather a one-dimensional atomic vector.

2. scale function

set.seed(1234)

Create the mean wector and wvariance-covariance matric
mv <- c(1, 2, 3) #mv := mean vector
sigma <- diag(c(1, 2, 3))

Generate random data using Tnorm
mat <- rnorm(300, mean= mv, sigma)
dim(mat) = c(100,3)

Set row and column names
rownames (mat) <- pasteO("r", 1:100)
colnames(mat) <- pasteO("c", 1:3)

mat

cl c2 c3
ril -0.207065749 2.00000000 3.0000000
r2 2.000000000 3.00000000 1.0000000
r3 3.000000000 1.00000000 4.7356544
rd 1.000000000 -1.25818694 3.0000000
rb 2.554858484 3.00000000 1.0000000
r6 3.000000000 1.00000000 2.0000000
r7 1.000000000 2.00000000 6.9886944
r8 2.000000000 -0.50285779 1.3364728
r9 6.253323530 -1.18003965 2.0000000
r10 -1.345697703 2.00000000 3.0000000
riil 2.000000000 3.00000000 1.0000000
ri12 3.000000000 1.00000000 2.0137857
ri13 1.000000000 -0.68198638 3.0000000

10

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ri4
rlb
rl6
rl7
ril8
ri9
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31
r32
r33
r34
r35
r36
r37
r38
r39
r40
r41
r42
r43
rd4d
r45
r46
rd7
r48
r49
r50
r51
r52
r53
r54
r55
r56
r57
r58
r59
r60
r61
r62
r63
r64
r65
r66
r67

H WNOWNEFE WOF WNOONEF WORFRFR WNOUOUNEFEF WNEFEF WNOONEF WL EFEFWNOFELNEFEF WO, WNOPMNEWN

.858249378
.000000000
.000000000
.000000000
.518167676
.425260040
.000000000
.000000000
.000000000
.906736288
.000000000
.000000000
.000000000
.306644003
.109962171
.000000000
.000000000
.000000000
.045614600
.000000000
.000000000
.000000000
.004840665
.223746105
.000000000
.000000000
.000000000
.128917635
.000000000
.000000000
.000000000
.878482177
.889714506
.000000000
.000000000
.000000000
.977980988
.000000000
.000000000
.000000000
.266413750
.162828320
.000000000
.000000000
.000000000
.831670357
.000000000
.000000000
.000000000
.402264660
.509314103
.000000000
.000000000
.000000000

|
H WNOONF WEFF WNOONEF W PP, WNONDNDEFE W

| |
ON - WO

N+ WFEL, P, WNO

|
o N

.00000000
.00000000
.00000000
.11711842
.53410246
.00000000
.00000000
.00000000
.89899253
.00000000
.00000000
.00000000
.20592817
. 14463537
.00000000
.00000000
.00000000
.43875400
.00000000
.00000000
.00000000
.01697977
.03148568
.00000000
.00000000
.00000000
.21463639
.00000000
.00000000
.00000000
. 75595766
.47617188
.00000000
.00000000
.00000000
.00630009
.00000000
.00000000
.00000000
.41809377
.41792408
.00000000

3.00000000

w k= WN O

.00000000
.21777925
.00000000
.00000000
.00000000
.04488603
.83769048
.00000000
.00000000
.00000000
.12611164

o

o

P WNOONF WWF, WNORFRNF

R WNONMNNMNRE, WEFEEFP,L WNREL,LONRFEL W

WHFEr P WNOPNEFL, WWFE, WNFELDNMNNRFE W

.0000000
.0000000
.6335938
.6334761
.0000000
.0000000
.0000000
.2965731
.0000000
.0000000
.0000000
.2108126
.8466016
.0000000
.0000000
.0000000
.7814019
.0000000
.0000000
.0000000
.8292547
.25682618
.0000000
.0000000
.0000000
.3658818
.0000000
.0000000
.0000000
.4666301
.8300059
.0000000
.0000000
.0000000
. 7446038
.0000000
.0000000
.0000000
.4786385
.8502323
.0000000
.0000000
.0000000
.3952174
.0000000
.0000000
.0000000
.6499921
.5972680
.0000000
.0000000
.0000000
.6168125
.0000000

11

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

X1
X2
X3
X4

x1

##
x2

##
##
##

x3

##
##

x4

##

r68
r69
r70
r71l
r72
r73
r74
r75
r76
r77
r78
r79
r80
r381
r382
r83
r84
r85
r386
r37
r388
r89
r90
r91
r92
r93
ro4
r95
r96
r97
r98
r99

o

o

.118904255
.000000000
.000000000
.000000000
.378768323
.306279753
.000000000
.000000000
.000000000
.896409821
.000000000
.000000000
.000000000
. 724267163
.023655723
.000000000
.000000000
.000000000
.969723399
.000000000
.000000000
.000000000
.192154196
.102297546
.000000000
.000000000
.000000000
.048813842
.000000000
.000000000
.000000000
0.871679887

= W NOPPNFE W

NN R W

N, WRFRrEFE,WNNMNONE, WREL,E WN

r100 0.498741939

<- scale(mat, center =

o

o

NP, WO, WNONNRFEW

ONNPF W, PP, WNONMNNEFEF WNFE WN -

2

<- scale(mat, center
<- scale(mat, center
<- scale(mat, center

(1]

[1]
7]
[13]

(1]
[16]

(1]

O O O

1 3 3 6 6

.00000000
.00000000
.00000000
.94345242
.22664658
.00000000
.00000000
.00000000
.21181926
.00000000
.00000000
.00000000
.47342564
.65658846
.00000000
.00000000
.00000000
.09798214
.00000000
.00000000
.00000000
.89571883
.33036642
.00000000
.00000000
.00000000
.98479049
.00000000
.00000000
.00000000
.33125334
.13860774
.00000000

TRUE,
TRUE,

FALSE,
FALSE,

6 10 10

.00000000 0.07142857 O.
.42857143 0.50000000 O.
.85714286 0.92857143 1.

~N O
o1 O
o O
® O
o o
(el e)
o]

[y

o1 O
[e @)

O =
o o
o O

.20
.95

11111111111

[E

.0000000
.0000000
.5835836
.9468412
.0000000
.0000000
.0000000
.5103920
.0000000
.0000000
.0000000
.1178920
.0015133
.0000000
.0000000
.0000000
.0088331
.0000000
.0000000
.0000000
.0666509
.1346080
.0000000
.0000000
.0000000
. 7564073
.0000000
.0000000
.0000000
.9187503
1211171
.0000000
.0000000

TRUE)

|
o N

NP, WO, WOWNNOONEFE WNRWNO

|
N WOaOaNEFE, WWR~L WNO

w

scale
scale = FALSE)
scale TRUE)
scale = apply(mat, 2, sd))

10 10 15 15 15 15 15

14285714 0.21428571 0.28571429 0.35714286
57142857 0.64285714 0.71428571 0.78571429
00000000

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

1.00

111

12

Explanation:

1.

Generating Random Data:

mat <- rnorm(300, mean = mv, sigma): This line generates random data by sampling 300 values from
a multivariate normal distribution with the specified mean vector mv and covariance matrix sigma.
This creates a 300-element vector.

dim(mat) = ¢(100, 3): This reshapes the 300-element vector into a 100x3 matrix, where each row
represents an observation, and each column corresponds to a variable.

. Setting Row and Column Names:

rownames(mat) <- paste0(“r”, 1:100): This assigns row names to the matrix, where each row is labeled
as “rl,” “r2,” and so on up to “r100.”

colnames(mat) <- paste0(“c”, 1:3): This assigns column names to the matrix, labeling the columns as
“Cl,” “627” a,nd “C3.”

3. as.matrix

The behavior of as.matrix depends on the data types present in the data frame.

If the data frame contains a mix of logical, integer, double, and complex columns.

Order: logical < integer < double < complex.

It determines the common data type for the resulting matrix. Example: There are both integers and
doubles in a data frame. It will result in a double matrix.

If there are only only logical columns, it will be converted to a logical matrix.

If the data frame contains of a mix of logical and integer columns, it will be converted to an integer
matrix, and so on for other combinations of data types. This behavior is consistent with R’s type
coercion rules to ensure a common data type when converting data frames to matrices.

13

Task 7:

1. Consider the following objects in R:

set.seed(1234)
x <- c(1, 3, 4)
y <- sample(1:100, 10)

Cat(llX: Il, X,”\n")

X: 134

Cat(llY: n, y’u\nu)

Y: 28 80 22 9 5 38 16 4 86 90
union_xy <- union(x, y)

cat("union of c and y: ",union_xy ,"\n")

union of c and y: 1 3428 80229 5 38 16 86 90
intersection_xy <- intersect(x, y)

cat("intersection of x and y: ",intersection_xy ,"\n")
intersection of x and y: 4

y_not_in_x <- setdiff(y, x)

cat("Find elements in y but not in x: ",y_not_in_x ,"\n")

Find elements in y but not in x: 28 80 22 9 5 38 16 86 90

elements_in_y <- x %in) y
cat("Check if each element of x is in y:",elements_in_y ,"\n")

Check if each element of x is in y: FALSE FALSE TRUE

2. Subvector:

s <- 1:200
subvector <- s[s %% 7 == 0 & s %% 2 '= 0]
cat("Subvector:",subvector,"\n")

Subvector: 7 21 35 49 63 77 91 105 119 133 147 161 175 189

Explanation: - s %% 7 == 0 checks if each element of s is divisible by 7 - s %% 2 != 0 checks if each element
of s is not divisible by 2 - Combining these two conditions with & (logical AND) ensures that you select
elements that meet both criteria. - s[s %% 7 == 0 & s %% 2 != 0] filters the elements of s that satisfy both
conditions and creates a subvector of s that is divisible by 7 but not divisible by 2.

3. Another Vector

s <- 1:200
s7 <- sls %4 7 == 0]
s2 <- sls %% 2 == 0]

Use set operations to find the subvector

14

subvector <- s7[!(s7 %in% s2)]

Display the subvector
subvector

[1] 7 21 35 49 63 77 91 105 119 133 147 161 175 189
Explanation:

o s7 is created by selecting elements from s that are divisible by 7 using the modulo operator (%%).

e 52 is created by selecting elements from s that are divisible by 2.

o The set operation s7 %in% s2 checks which elements of s7 are also in s2.

o 1(s7 %in% s2) negates the result to find elements in s7 that are not in s2, effectively giving a subvector
that is divisible by 7 but not divisible by 2.

Feedback

(86/100 Points)
Table of content: Good that you made a table of content, but please don’t put too much text in there.

Task 1: If you did not know the function which does conditional logistic regression, how did you find
survival::clogit? You were supposed to use help.search(“Logistic”) or ??Logistic first.
-2

Task 3: x1 <- rep(cumsum(1:5), 1:5) is easier, x7 <- cumsum(15:1) is easier, When creating x13, you should
specify the argument include.lowest = TRUE. This way you won’t have the NA in the output.
-1

Task 4a: we compare here as.character(2) with “one”. It holds “one” > “2” in lexicographic comparison.
-3

Task 6b:

The things you should look at here are:

Be aware of the difference between variance and the standard deviation.

By setting sd = diag(c(1,2,3)), which is a 3x3 matrix, in the rnorm command which creates one dimensional
random variables you set two thirds of all entries to have variance 0. This is why two thirds of the entries are
either 1, 2 or 3, hence normally distributed with mean 1,2 or 3 respectively and variance 0.

Always check if the random matrix you created actually has the values you want it to have. You can check
this by running for example apply(X, 2, mean) and

cov(X) in order to make sure the means of the columns and the covariance matrix is correct.

The solution therefore would be

X <- ¢(rnorm(100, 1, sqrt(1)), rnorm (100, 2, sqrt(2)), rnorm(100, 3, sqrt(3)))

dim(X) <- ¢(100, 3)

Task 6b: Explanation why X3 and X4 differ: With X3 we do not center but we set scale = TRUE, which
means each column is divided by

the root-mean-square, which is defined by \sqrt{\frac{\sum x_i"2}{n-1}}

Since this is at least as large as the standard deviation

when the column is not centered, this explains why the variances are all smaller than 1

For X4 we also did not center, but we divided “manually” by the standard deviation. This is

the reason why the variances are all 1.

-8

15

	Task 1: Use the different help systems available for R (i.e., R homepage, built-in R functions) to find information about:
	1. Command: [
	2. ordered Argument for factor
	3. a function to create normally distributed random variables
	4. a function that does conditional logistic regression
	5. explain what a vignette is
	6.which vignettes are on your R installation available, and access one of them

	Task 2: Calculate the sum
	Task 3: Create the following vectors:
	Task 4: Explain
	1. Explain the following:
	2. What does this code return and why?
	3. What is the difference between the following chunks of code? Explain

	Task 5: Explain what the following code does:
	Task 6:
	1. dim function
	2. scale function
	3. as.matrix

	Task 7:
	1. Consider the following objects in R:
	2. Subvector:
	3. Another Vector

	Feedback

