
ADM-Prüfung vom 30.01.2026

TU Wien
Prüfer: Panholzer

(1) [10 Punkte] Vollständige Induktion

(a) Man formuliere das Beweisprinzip der vollständigen Induktion zunächst all-
gemein für ein Prädikat P (n) in der Sprache der Logik.

Nun betrachten wir eine rekursiv definierte Folge von Vektoren (v⃗0, v⃗1, v⃗2, . . .) im
R2, also v⃗n ∈ R2, für alle n ∈ N, welche durch die Rekursion

v⃗n+1 = A · v⃗n + b⃗, für n ≥ 0, mit A =

(
2 1
1 2

)
und b⃗ =

(
1
−1

)
,

sowie dem Anfangsvektor v⃗0 =

(
0
2

)
eindeutig bestimmt ist.

Ihre Aufgabe ist es, mittels vollständiger Induktion zu zeigen, dass die Folgen-
glieder für alle natürlichen Zahlen n ∈ N durch folgende Formel gegeben sind:

v⃗n = 3n ·
(
1
1

)
+ (n− 1) ·

(
1
−1

)
,

wobei Sie wie folgt vorgehen sollen.

(b) Geben Sie die Induktionsvoraussetzung P (n) an.

(c) Führen Sie den Induktionsanfang P (0) aus.

(d) Stellen Sie die Induktionsbehauptung P (n+ 1) auf.

(e) Führen Sie den Induktionsschritt P (n) ⇒ P (n+ 1) vollständig aus.
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(2) [10 Punkte] Grundaufgaben der Kombinatorik

Wir betrachten im Folgenden immer Funktionen f : {1, . . . , n} → {1, . . . ,m}, also Abbil-
dungen von der n-elementigen Menge {1, . . . , n} in die m-elementige Menge {1, . . . ,m},
für allgemeine n,m ∈ N \ {0}. Das Zählen der nachfolgend angegebenen Abbildungen
lässt sich immer auf in der Lehrveranstaltung kennengelernte kombinatorische Grund-
aufgaben zurückführen. Ihre Aufgabe ist es nun, jeweils eine allgemeine Formel für diese
Anzahlen zu ermitteln. Weiters sollen die Anzahlen für die konkreten Werte n = 3 und
m = 5 bestimmt werden.

(a) Sei A(n,m) die Anzahl aller Funktionen f : {1, . . . , n} → {1, . . . ,m} ohne
weitere Einschränkung.

A(n,m) = |{f : {1, . . . , n} → {1, . . . ,m}}|.

(b) Sei B(n,m) dieAnzahl aller injektiven Funktionen f : {1, . . . , n} → {1, . . . ,m},

B(n,m) = |{f : {1, . . . , n} → {1, . . . ,m} | f(i) ̸= f(j), für i ̸= j}|.

(c) Sei C(n,m) die Anzahl aller streng monoton wachsenden Funktionen f :
{1, . . . , n} → {1, . . . ,m},

C(n,m) = |{f : {1, . . . , n} → {1, . . . ,m} | f(1) < f(2) < · · · < f(n− 1) < f(n)}|.

Hinweis: Jede streng monoton wachsende Funktion f ist durch die Menge der
Bilder {f(1), f(2), . . . , f(n)} eindeutig bestimmt.

(d) SeiD(n,m) dieAnzahl aller monoton wachsenden Funktionen f : {1, . . . , n} →
{1, . . . ,m},

D(n,m) = |{f : {1, . . . , n} → {1, . . . ,m} | f(1) ≤ f(2) ≤ · · · ≤ f(n− 1) ≤ f(n)}|.

Hinweis: Jede monoton wachsende Funktion f ist durch die Multimenge der
Bilder {f(1), f(2), . . . , f(n)} eindeutig bestimmt.

Gefundene Formeln in Tabelle eintragen, nur was hier eingefügt wurde, kann ge-
wertet werden! Sie können aber selbstverständlich allenfalls notwendige Rechnungen / Ne-
benüberlegungen zur Beantwortung der Fragen auf der Rückseite des Blattes durchführen,
diese bleiben aber für die Bewertung unberücksichtigt.

Formel für allgemeine n,m Wert für n = 3 und m = 5
A(n,m) = A(3, 5) =

B(n,m) = B(3, 5) =

C(n,m) = C(3, 5) =

D(n,m) = D(3, 5) =
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(3) [10 Punkte] Lineare Algebra

Wir betrachten zunächst die Menge von Vektoren B = {⃗b1, b⃗2} ⊂ R2, mit

b⃗1 =

(
1
3

)
und b⃗2 =

(
2
4

)
.

(a) Zeigen Sie, dass B eine Basis des Vektorraums V = (R2,+,R) ist.

(b) Wir interessieren uns nun für die in der Vorlesung besprochene Beschreibung des Ko-
ordinatenwechsels in V bei einem Wechsel von der kanonischen Basis E = {e⃗1, e⃗2}
zur Basis B mit Hilfe einer Transformationsmatrix TE,B ∈ R2×2. Bezeichne ΦB(x⃗) ∈
R2 die Koordinaten des Vektors x⃗ ∈ R2 bezüglich der Basis B bzw. ΦE(x⃗) = x⃗ die
Koordinaten bezüglich der kanonischen Basis E, dann muss also gelten, dass man
bei Multiplikation von TE,B mit einem Vektor x⃗ die Koordinaten von x⃗ bezüglich
B erhält:

TE,B · ΦE(x⃗) = TE,B · x⃗ = ΦB(x⃗), für alle x⃗ ∈ R2.

Bestimmen Sie die Transformationsmatrix TE,B.

(c) Weiters bestimme man ΦB

(
−5
5

)
, also die Koordinaten des Vektors

(
−5
5

)
bezüglich

B.

Nun betrachten wir noch eine Menge von Vektoren C = {c⃗1, c⃗2}, mit

c⃗1 =
1

5

(
3
4

)
und c⃗2 =

1

5

(
−4
3

)
.

(d) Zeigen Sie, dass C eine Orthonormalbasis im R2 bildet.

(e) Man bestimme ΦC

(
−5
5

)
, also die Koordinaten von

(
−5
5

)
bezüglich C.
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(4) [10 Punkte] Graphentheorie

(a) Man formuliere das Handschlaglemma für ungerichtete Graphen.

(b) Man formuliere die Eulersche Polyederformel, wobei die Voraussetzungen ange-
geben sowie die auftretenden Größen erklärt werden müssen.

(c) Man definiere für ungerichtete Graphen den Begriff einer offenen Eulerschen
Linie und formuliere anschließend das kennengelernteKriterium, wie man effizient
entscheiden kann, ob ein ungerichteter Graph G eine offene Eulersche Linie besitzt
oder nicht.

(d) Für den nachfolgend angegebenen Graphen H bestimme man eine offene Euler-
sche Linie und weiters illustriere man an Hand von H die Eulersche Polyeder-
formel.

v1

v3

v2

v5v4

e1 e3 e2

e5 e4
e6

H:
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(5) [10 Punkte]

Beantworten Sie die folgenden Fragen bzw. überprüfen Sie die nachstehenden Aussagen
(bitte ankreuzen; es können keine, eine oder auch mehrere Antworten zutreffend sein; für
jede vollständig richtige Antwort gibt es einen Punkt; es werden für falsche Antworten
KEINE Punkte abgezogen). Sie können notwendige Überlegungen zur Beantwortung der
Fragen z.B. auf der Rückseite des Blattes durchführen, es zählen aber ausschließlich die
hier gekreuzten Antworten!

Wie lautet die kartesische Darstellung der komplexen Zahl z = 2
1−i

?
⃝ 1− i ⃝ −1 + i ⃝ 1 + i ⃝ −1− i

Welche der folgenden aussagenlogischen Formeln sind erfüllbar?
⃝ a ∧ ¬a ⊠ a ∨ ¬a ⃝ a ⇒ ¬a ⃝ a ∧ (a ⇒ ¬a)
Welche der folgenden Beziehungen für Mengen gelten?
⃝ A \B ⊆ A∆B ⃝ A ∩B ⊆ A∆B ⃝ A ∪B ⊆ A∆B

Wir betrachten die Äquivalenzrelation R auf Z4 definiert via xRy :⇔ x(x−1) = y(y−1).
Welche der nachfolgend angegebenen Zerlegungen von Z4 = {0, 1, 2, 3}
beschreibt die der Klasseneinteilung von R entsprechende Partition?

⃝
0 1 2 3

• • • •
⃝

0 2 1 3

• • • •
⃝

0 1 2 3

• • • •

Wie lautet das Hasse-Diagramm der Halbordnung ({1, 2, 3, 4}, |),
mit | die Teilbarkeitsrelation auf den ganzen Zahlen?

⃝

4

3

2

1

⃝

4

2 3

1

⃝
2 3 4

1

Wie viele Untergruppen besitzt (Z17,+)?
(Anmerkung: Man beachte, dass 17 eine Primzahl ist.)
⃝ 0 ⃝ 1 ⃝ 2 ⃝ 17

Welche der nachfolgenden Ringe sind nullteilerfrei?
⃝ (Z,+, ·) ⃝ (Z2,+, ·) ⃝ (Z4,+, ·) ⃝ (Z[x],+, ·)
Welche der folgenden algebraischen Strukturen mit 6 Elementen existieren?
⃝ kommutative Gruppe ⃝ nicht-kommutative Gruppe ⃝ Boolesche Algebra

Welche der nachfolgend in Zyklendarstellung angegebenen Permutationen π ∈ S4

erfüllen π2 = id, mit id die identische Abbildung?
⃝ (12)(34) ⃝ (123)(4) ⃝ (1)(23)(4)

Welche der nachfolgend in Zyklendarstellung angegebenen Permutationen π ∈ S4

sind gerade, erfüllen also sgn(π) = 1?
⃝ (12)(34) ⃝ (123)(4) ⃝ (1)(23)(4)
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Anhang: LLM-Lösungen
Modell: Claude – Sonnet 4.5

Achtung: Diese Lösungen wurden mit einem LLM generiert
und sind mit entsprechender Vorsicht zu genießen.

Lösung zu (1) [10 Punkte] Vollständige Induktion

(a) Beweisprinzip der vollständigen Induktion:

In der Sprache der Logik lautet das Beweisprinzip:

[P (0) ∧ ∀n ∈ N : (P (n) ⇒ P (n+ 1))] ⇒ ∀n ∈ N : P (n)

Mit Worten: Wenn das Prädikat P für n = 0 gilt (Induktionsanfang) und wenn aus
der Gültigkeit von P (n) stets die Gültigkeit von P (n+1) folgt (Induktionsschritt),
dann gilt P (n) für alle natürlichen Zahlen n.

(b) Induktionsvoraussetzung P (n):

P (n) : v⃗n = 3n ·
(
1
1

)
+ (n− 1) ·

(
1
−1

)
(c) Induktionsanfang P (0):

Zu zeigen: v⃗0 = 30 ·
(
1
1

)
+ (0− 1) ·

(
1
−1

)
Rechte Seite:

30 ·
(
1
1

)
+ (−1) ·

(
1
−1

)
= 1 ·

(
1
1

)
+

(
−1
1

)
=

(
1
1

)
+

(
−1
1

)
=

(
0
2

)
= v⃗0 ✓

Der Induktionsanfang ist gezeigt.

(d) Induktionsbehauptung P (n+ 1):

P (n+ 1) : v⃗n+1 = 3n+1 ·
(
1
1

)
+ n ·

(
1
−1

)
(e) Induktionsschritt P (n) ⇒ P (n+ 1):

Wir nehmen an, dass P (n) gilt (Induktionsvoraussetzung) und zeigen daraus P (n+
1).
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Nach der Rekursionsformel gilt:

v⃗n+1 = A · v⃗n + b⃗

Setzen wir die Induktionsvoraussetzung ein:

v⃗n+1 = A ·
[
3n ·

(
1
1

)
+ (n− 1) ·

(
1
−1

)]
+

(
1
−1

)
=

(
2 1
1 2

)
·
[
3n ·

(
1
1

)
+ (n− 1) ·

(
1
−1

)]
+

(
1
−1

)
Berechnen wir die einzelnen Matrixprodukte:

(
2 1
1 2

)
·
(
1
1

)
=

(
2 · 1 + 1 · 1
1 · 1 + 2 · 1

)
=

(
3
3

)
= 3 ·

(
1
1

)

(
2 1
1 2

)
·
(

1
−1

)
=

(
2 · 1 + 1 · (−1)
1 · 1 + 2 · (−1)

)
=

(
1
−1

)
Somit:

v⃗n+1 = 3n · 3 ·
(
1
1

)
+ (n− 1) ·

(
1
−1

)
+

(
1
−1

)
= 3n+1 ·

(
1
1

)
+ [(n− 1) + 1] ·

(
1
−1

)
= 3n+1 ·

(
1
1

)
+ n ·

(
1
−1

)
Dies ist genau die Induktionsbehauptung P (n+1). Damit ist der Induktionsschritt
vollständig gezeigt. □
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Lösung zu (2) [10 Punkte] Grundaufgaben der Kom-

binatorik

(a) Anzahl aller Funktionen A(n,m):

Jedes der n Elemente der Definitionsmenge kann auf eines der m Elemente der
Zielmenge abgebildet werden. Für jedes Element gibt es also m Wahlmöglichkeiten.

Formel: A(n,m) = mn

Für n = 3,m = 5: A(3, 5) = 53 = 125

(b) Anzahl injektiver Funktionen B(n,m):

Bei injektiven Funktionen müssen alle Funktionswerte verschieden sein. Dies ent-
spricht der Anzahl der Variationen ohne Wiederholung: Das erste Element hat m
Möglichkeiten, das zweite nur noch m− 1, usw.

Formel: B(n,m) = m!
(m−n)!

für n ≤ m, sonst 0

Für n = 3,m = 5: B(3, 5) = 5!
2!
= 120

2
= 60

(c) Anzahl streng monoton wachsender Funktionen C(n,m):

Laut Hinweis ist jede solche Funktion durch die Menge ihrer Bilder eindeutig be-
stimmt. Wir wählen n verschiedene Elemente aus {1, . . . ,m} und ordnen sie auf-
steigend. Dies entspricht der Anzahl der n-elementigen Teilmengen von {1, . . . ,m}.
Formel: C(n,m) =

(
m
n

)
für n ≤ m, sonst 0

Für n = 3,m = 5: C(3, 5) =
(
5
3

)
= 5!

3!·2! =
120
6·2 = 10

(d) Anzahl monoton wachsender Funktionen D(n,m):

Laut Hinweis ist jede solche Funktion durch die Multimenge ihrer Bilder eindeutig
bestimmt. Wir wählen n Elemente aus {1, . . . ,m} mit Wiederholung und ordnen
sie aufsteigend. Dies entspricht der Kombination mit Wiederholung.

Formel: D(n,m) =
(
m+n−1

n

)
=

(
m+n−1
m−1

)
Für n = 3,m = 5: D(3, 5) =

(
7
3

)
= 7!

3!·4! =
5040
6·24 = 35

Zusammenfassung in Tabellenform:

Formel für allgemeine n,m Wert für n = 3 und m = 5
A(n,m) = mn A(3, 5) = 125

B(n,m) = m!
(m−n)!

B(3, 5) = 60

C(n,m) =
(
m
n

)
C(3, 5) = 10

D(n,m) =
(
m+n−1

n

)
D(3, 5) = 35
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Lösung zu (3) [10 Punkte] Lineare Algebra

(a) Zeigen, dass B eine Basis ist:

B ist genau dann eine Basis des R2, wenn die Vektoren b⃗1 und b⃗2 linear unabhängig
sind.

Wir prüfen die lineare Unabhängigkeit: Die Vektoren sind linear unabhängig, wenn
aus

α · b⃗1 + β · b⃗2 = 0⃗

folgt, dass α = β = 0.

α ·
(
1
3

)
+ β ·

(
2
4

)
=

(
0
0

)
(
α + 2β
3α + 4β

)
=

(
0
0

)
Dies führt zum Gleichungssystem:

α + 2β = 0

3α + 4β = 0

Aus der ersten Gleichung: α = −2β

Einsetzen in die zweite: 3(−2β) + 4β = −6β + 4β = −2β = 0 ⇒ β = 0

Damit auch α = 0.

Die Vektoren sind linear unabhängig. Da wir im R2 genau 2 linear unabhängige
Vektoren haben, bildet B eine Basis. □

(b) Bestimmen der Transformationsmatrix TE,B:

Die Transformationsmatrix TE,B erfüllt TE,B · x⃗ = ΦB(x⃗).

Für die Basisvektoren gilt:

TE,B · b⃗1 = ΦB (⃗b1) =

(
1
0

)
TE,B · b⃗2 = ΦB (⃗b2) =

(
0
1

)

Sei TE,B =

(
a c
b d

)
. Dann:

(
a c
b d

)
·
(
1
3

)
=

(
1
0

)
⇒

{
a+ 3c = 1

b+ 3d = 0(
a c
b d

)
·
(
2
4

)
=

(
0
1

)
⇒

{
2a+ 4c = 0

2b+ 4d = 1
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Aus 2a+ 4c = 0: a = −2c

Einsetzen in a+ 3c = 1: −2c+ 3c = 1 ⇒ c = 1, a = −2

Aus 2b+ 4d = 1: b = 1−4d
2

Einsetzen in b+ 3d = 0: 1−4d
2

+ 3d = 0 ⇒ 1− 4d+ 6d = 0 ⇒ 2d = −1 ⇒ d = −1
2

Damit b =
1−4(− 1

2
)

2
= 3

2

TE,B =

(
−2 1
3
2

−1
2

)

(c) Bestimmen von ΦB

(
−5
5

)
:

ΦB

(
−5
5

)
= TE,B ·

(
−5
5

)
=

(
−2 1
3
2

−1
2

)
·
(
−5
5

)
=

(
−2 · (−5) + 1 · 5

3
2
· (−5) + (−1

2
) · 5

)
=

(
10 + 5
−15

2
− 5

2

)
=

(
15
−10

)

Probe: 15 ·
(
1
3

)
+ (−10) ·

(
2
4

)
=

(
15− 20
45− 40

)
=

(
−5
5

)
✓

(d) Zeigen, dass C eine Orthonormalbasis ist:

Für eine Orthonormalbasis muss gelten:

• ∥c⃗1∥ = 1 und ∥c⃗2∥ = 1 (Normiertheit)

• c⃗1 · c⃗2 = 0 (Orthogonalität)

Berechnen wir die Normen:

∥c⃗1∥ =

∥∥∥∥15
(
3
4

)∥∥∥∥ =
1

5

√
32 + 42 =

1

5

√
9 + 16 =

1

5
· 5 = 1 ✓

∥c⃗2∥ =

∥∥∥∥15
(
−4
3

)∥∥∥∥ =
1

5

√
(−4)2 + 32 =

1

5

√
16 + 9 =

1

5
· 5 = 1 ✓

Berechnen wir das Skalarprodukt:

c⃗1 · c⃗2 =
1

5

(
3
4

)
· 1
5

(
−4
3

)
=

1

25
(3 · (−4) + 4 · 3)

=
1

25
(−12 + 12) = 0 ✓
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Somit ist C eine Orthonormalbasis. □

(e) Bestimmen von ΦC

(
−5
5

)
:

Bei Orthonormalbasen gilt: Die Koordinaten erhält man durch Skalarprodukt mit
den Basisvektoren.

ΦC

(
−5
5

)
=

c⃗1 ·
(
−5
5

)
c⃗2 ·

(
−5
5

)


c⃗1 ·
(
−5
5

)
=

1

5

(
3
4

)
·
(
−5
5

)
=

1

5
(3 · (−5) + 4 · 5) = 1

5
(−15 + 20) =

5

5
= 1

c⃗2 ·
(
−5
5

)
=

1

5

(
−4
3

)
·
(
−5
5

)
=

1

5
((−4) · (−5) + 3 · 5) = 1

5
(20 + 15) =

35

5
= 7

ΦC

(
−5
5

)
=

(
1
7

)
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Lösung zu (4) [10 Punkte] Graphentheorie

(a) Handschlaglemma:

Für einen ungerichteten Graphen G = (V,E) gilt:∑
v∈V

deg(v) = 2 · |E|

Mit Worten: Die Summe aller Knotengrade ist gleich dem Doppelten der Anzahl
der Kanten.

Alternativ: In jedem ungerichteten Graphen ist die Anzahl der Knoten mit unge-
radem Grad gerade.

(b) Eulersche Polyederformel:

Für einen zusammenhängenden planaren Graphen G = (V,E) gilt:

|V | − |E|+ |F | = 2

wobei:

• |V | = Anzahl der Knoten (Ecken)

• |E| = Anzahl der Kanten

• |F | = Anzahl der Flächen (inkl. Außenfläche)

Voraussetzung: Der Graph muss zusammenhängend und planar (in die Ebene
einbettbar ohne Kantenüberschneidungen) sein.

(c) Offene Eulersche Linie:

Definition: Eine offene Eulersche Linie in einem ungerichteten GraphenG = (V,E)
ist ein Kantenzug, der jede Kante genau einmal durchläuft und bei dem Start- und
Endknoten verschieden sind.

Kriterium: Ein zusammenhängender ungerichteter Graph G besitzt genau dann
eine offene Eulersche Linie, wenn er genau zwei Knoten mit ungeradem Grad besitzt.
Diese beiden Knoten sind dann Start- und Endpunkt der offenen Eulerschen Linie.

(d) Für den Graphen H:

Zunächst bestimmen wir die Knotengrade:

• deg(v1) = 3 (Kanten: e1, e2, e3)

• deg(v2) = 3 (Kanten: e4, e5, e6)

• deg(v3) = 2 (Kanten: e1, e5)

• deg(v4) = 2 (Kanten: e3, e4)

• deg(v5) = 2 (Kanten: e2, e6)
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Es gibt genau zwei Knoten mit ungeradem Grad (v1 und v2), daher existiert eine
offene Eulersche Linie von v1 nach v2 (oder umgekehrt).

Offene Eulersche Linie:

v1
e1−→ v3

e5−→ v2
e6−→ v5

e2−→ v1
e3−→ v4

e4−→ v2

oder als Kantenfolge: e1, e5, e6, e2, e3, e4

Eulersche Polyederformel für H:

Der Graph H ist planar und zusammenhängend. Wir bestimmen:

• |V | = 5 (Knoten: v1, v2, v3, v4, v5)

• |E| = 6 (Kanten: e1, e2, e3, e4, e5, e6)

• |F | =? (zu bestimmen)

Aus der Eulerschen Polyederformel:

|V | − |E|+ |F | = 2 ⇒ 5− 6 + |F | = 2 ⇒ |F | = 3

Die drei Flächen sind:

(a) Äußere Fläche (unbegrenzt)

(b) Innere Fläche begrenzt durch v1, v3, v2, v4 (Kanten: e1, e5, e4, e3)

(c) Innere Fläche begrenzt durch v1, v5, v2, v4 (Kanten: e2, e6, e4, e3)

Verifikation: 5− 6 + 3 = 2 ✓
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Lösung zu (5) [10 Punkte] Multiple-Choice-Aufgaben

Frage 1: Komplexe Zahl

Gesucht: kartesische Darstellung von z = 2
1−i

Erweitern mit dem konjugiert Komplexen:

z =
2

1− i
· 1 + i

1 + i
=

2(1 + i)

(1− i)(1 + i)
=

2(1 + i)

1− i2

=
2(1 + i)

1− (−1)
=

2(1 + i)

2
= 1 + i

Antwort: ⊠ 1 + i

Frage 2: Erfüllbarkeit aussagenlogischer Formeln

• a ∧ ¬a: Immer falsch (Kontradiktion) ⇒ nicht erfüllbar

• a ∨ ¬a: Immer wahr (Tautologie) ⇒ erfüllbar ✓

• a ⇒ ¬a ≡ ¬a ∨ ¬a ≡ ¬a: Erfüllbar für a = falsch ✓

• a ∧ (a ⇒ ¬a) ≡ a ∧ ¬a: Kontradiktion ⇒ nicht erfüllbar

Antwort: ⊠ a ∨ ¬a und ⊠ a ⇒ ¬a

Frage 3: Mengenbeziehungen

Sei A∆B = (A \B) ∪ (B \ A) die symmetrische Differenz.

• A \B ⊆ A∆B: Ja, da A \B ⊆ (A \B) ∪ (B \ A) ✓

• A ∩B ⊆ A∆B: Nein, denn A ∩B und A∆B sind disjunkt

• A ∪B ⊆ A∆B: Nein, A ∪B = (A ∩B) ∪ A∆B, also A∆B ⊆ A ∪B

Antwort: ⊠ A \B ⊆ A∆B

Frage 4: Äquivalenzrelation

Berechnen wir x(x− 1) für alle x ∈ Z4:

• 0(0− 1) = 0 · 3 = 0

• 1(1− 1) = 1 · 0 = 0

• 2(2− 1) = 2 · 1 = 2

• 3(3− 1) = 3 · 2 = 6 = 2

Also: 0R1 und 2R3
Die Äquivalenzklassen sind: {0, 1} und {2, 3}
Antwort: ⊠ dritte Partition (mit {0, 1} und {2, 3})
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Frage 5: Hasse-Diagramm

Teilbarkeitsrelation auf {1, 2, 3, 4}:
• 1|1, 1|2, 1|3, 1|4 (1 teilt alle)

• 2|2, 2|4

• 3|3

• 4|4
Das Hasse-Diagramm zeigt:

• 1 unten (teilt alle anderen)

• 2 und 3 auf mittlerer Ebene (beide nur von 1 teilbar)

• 4 über 2 (da 2|4)
Antwort: ⊠ mittleres Diagramm

Frage 6: Untergruppen von (Z17,+)

Da 17 eine Primzahl ist, ist (Z17,+) eine zyklische Gruppe der Ordnung 17.
Eine zyklische Gruppe der Ordnung n hat für jeden Teiler d von n genau eine Unter-

gruppe der Ordnung d.
Die Teiler von 17 sind: 1 und 17.
Also gibt es genau 2 Untergruppen:

• {0} (triviale Untergruppe, Ordnung 1)

• Z17 (gesamte Gruppe, Ordnung 17)

Antwort: ⊠ 2

Frage 7: Nullteilerfreie Ringe

• (Z,+, ·): Nullteilerfrei ✓ (Integritätsbereich)

• (Z2,+, ·): Nullteilerfrei ✓ (Körper, da 2 prim)

• (Z4,+, ·): Nicht nullteilerfrei, da 2 · 2 = 4 = 0

• (Z[x],+, ·): Nullteilerfrei ✓ (Polynomring über Integritätsbereich)

Antwort: ⊠ (Z,+, ·), ⊠ (Z2,+, ·), ⊠ (Z[x],+, ·)

Frage 8: Algebraische Strukturen mit 6 Elementen

• Kommutative Gruppe: Ja, z.B. (Z6,+) oder (Z2 × Z3,+) ✓

• Nicht-kommutative Gruppe: Ja, die symmetrische Gruppe S3 hat 6 Elemente und
ist nicht-kommutativ ✓

• Boolesche Algebra: Nein, Boolesche Algebren haben 2n Elemente für n ≥ 1, also 2,
4, 8, 16, ... aber nicht 6

Antwort: ⊠ kommutative Gruppe, ⊠ nicht-kommutative Gruppe
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Frage 9: Permutationen mit π2 = id

• (12)(34): (12)(34) ◦ (12)(34) = id ✓

• (123)(4) = (123): (123) ◦ (123) = (132) ̸= id

• (1)(23)(4) = (23): (23) ◦ (23) = id ✓

Antwort: ⊠ (12)(34), ⊠ (1)(23)(4)

Frage 10: Gerade Permutationen

Das Signum einer Permutation ist (−1)k, wobei k die Anzahl der Transpositionen ist.

• (12)(34): Zwei Transpositionen ⇒ sgn = (−1)2 = 1 ✓ (gerade)

• (123): Ein 3-Zyklus = zwei Transpositionen (12)(23) ⇒ sgn = (−1)2 = 1✓ (gerade)

• (23): Eine Transposition ⇒ sgn = (−1)1 = −1 (ungerade)

Antwort: ⊠ (12)(34), ⊠ (123)(4)
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