
APPENDIX

The Basics of Regression

This appendix explains the basics of multiple regression analysis, using an
example to illustrate its application in economics.' Multiple regression is a sta-
tistical procedure for quantifying economic relationships and testing hypothe-
ses about them.

In a linear regression, the relationships are of the following form:

(A.1)

Equation (A.1) relates a dependent variable Y to several independent (or
explanatory) variables, Xl' X2, ... For example, in an equation with two indepen-
dent variables, Y might be the demand for a good, X, its price, and X2 income.
The equation also includes an error term e that represents the collective influence
of any omitted variables that may also affect Y (for example, prices of other
goods, the weather, unexplainable shifts in consumers" tastes, etc.). Data are
available for Y and the Xs, but the error term is assumed to be unobservable.

Note that equation (A.l) must be linear in the-parameters, but it need not be
linear in the variables. For example, if equation (A. I) represented a demand
function, Y might be the logarithm of quantity (log Q), Xl the logarithm of price
(log P), and X2 the logarithm of income (log I):

(A.2)

Our objective is to obtain estimates of the parameters bQt bl' ... , bk that pro-
vide a "best fit" to the data. We explain how this is done below.

AN EXAMPLE
Suppose we wish to explain and then forecast quarterly automobile sales in the
United States. Let's start with a simplified case in which sales S (in billions of
dollars) is the dependent variable that will be explained. The only explanatory
variable is the price of new automobiles P (measured by a new car price index
scaled so that 1967 = 100). We could write this simple model as

(A.3)

lFor a textbook treatment of applied econometrics, it's hard to think of a better reference than
R. S. Pindyck and D. 1. Rubinfeld, Econometric Models and Economic Forecasts, 4th ed. (New York:
McGraw-Hill,1998).

@ multiple regression analysis
Statistical procedure for quan-
tifying economic relationships
and testing hypotheses about
them.

.•linear regression Model
specifying a linear relationship
between a dependent vari-
able and several independent
(or explanatory) variables and
an error term.
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•least-squares criterion
Criterion of "best fit" used to
choose values for regression
parameters, usually by mini-
mizing the sum of squared
residuals between the actual
values of the dependent vari-
able and the fitted values.

In equation (A3), bo and b1 are the parameters to be determined from the
data, and e is the random error term. The parameter bo is the intercept, while b1
is the slope: It measures the effect of a change in the new car price index on
automobile sales.

If there is no error term, the relationship between Sand P would be a
straight line that describes the systematic relationship between the two vari-
ables. However, because not all the actual observations fall on the line, the error
term e is required to account for omitted factors.

ESTIMATION
In order to choose values for the regression parameters, we need a criterion for
a "best fit." The criterion most often used is to minimize the sum of squared resid-
uals between the actual values of Y and the fitted values for Y obtained after
equation (AI) has been estimated. This is called the least-squares criterion.
If w~ denote the estimated parameters (or coefficients) for the model in (AI) by
ho, hI! ... , hk' then the fitted values for Yare given by

A A A A

Y = bo + b1X1 + ... + bkXk (A.4)

Figure Al illustrates this for our example, in which there is a single inde-
pendent variable. The data are shown as a scatter plot of points with sales on
the vertical axis and price on the horizontal. The fitted regression line is drawn
through the data points. The fitted value for sales associated with any particular
value for the price values Pi is given by Si = bo + bl~ (at point B).

For each data point, the regression residual is the difference between the
actual and fitted value of the dependent variable. The residual, ei, associated
with data point A in the figure, is given by ei = Si- Si. The parameter values are
chosen so that when all the residuals are squared and then added, the resulting
sum is minimized. In this way, positive errors and negative errors are treated
symmetrically; large errors are given a more-than-proportional weight.
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Figure A.l Least Squares

The regression line is chosen to minimize the sum of squared residuals. The residual
associated with price P; is given by line AB.
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As we will see shortly, this criterion lets us do some simple statistical tests to
help interpret the regression.

As an example of estimation, let's return to the two-variable model of auto
sales given by equation (A.3). The result of fitting this equation using the least-
squares criterion is

5 = -25.5 + 0.57P (A.5)

In equation (A.5), the intercept -225.5 indicates that if the price index were zero,
sales would be $ - 225.5 billion. The slope parameter indicates that a I-unit increase
in the price index for new cars leads to a $0.57 billion increase in auto sales. This
rather surprising result-an upward-sloping demand curve-is inconsistent with
economic theory and should make us question the validity of our model.

Let's expand the model to consider the possible effects of two additional
explanatory variables: personal income 1 (in billions of dollars) and the rate of
interest R (the three-month Treasury bill rate). The estimated regression when
there are three explanatory variables is

5 = 51.1 - 0.42P + 0.0461 - 0.84R (A.6)

The importance of including all relevant variables in the model is suggested
by the change in the regression results after the income and interest rate vari-
ables are added. Note that the coefficient of the P variable has changed sub-
stantially, from 0.57 to -0.42. The coefficient -0.42 measures the effect of an
increase in price on sales, with the effect of interest rates and income held constant.
The negative price coefficient is consistent with a downward-sloping demand
curve. Clearly, the failure to control for interest rates and income leads to the
false conclusion that sales and price are positively related.

The income coefficient, 0.046, tells us that for every $1 billion increase in per-
sonal income in the United States, automobile sales are likely to increase by $46
million (or $0.046 billion). The interest rate coefficient reflects the fact that for
everyone percentage point increase in the rate of interest, automobile sales are
likely to fall by $840 million. Clearly, automobile sales are very sensitive to the
cost of borrowing.

STATISTICAL TESTS
Our estimates of the true (but unknown) parameters are numbers that depend
on the set of observations that we started with-that is, with our sample. With
a different sample we would obtain different estimates.I If we continue to col-
lect more and more samples and generate additional estimates, the estimates of
each parameter will follow a probability distribution. This distribution can be
summarized by a mean and a measure of dispersion around that mean, a stan-
dard deviation that we refer to as the standard error of the coefficient.

Least-squares has several desirable properties. First, it is unbiased. Intuitively,
this means that if we could run our regression over and over again with differ-
ent samples, the average of the many estimates that we obtained for each coef-
ficient would equal the true parameter. Second, least-squares is consistent. In
other words, if our sample were very large, we would obtain estimates that
came very close to the true parameters.

In econometric work, we often assume that the error term, and therefore the
estimated parameters, are normally distributed. The normal distribution has

2The least-squares formula that generates these estimates is called the least-squares estimator, and its
values vary from sample to sample.

APPENDIX • 689

•sample Set of observa-
tions for study, drawn from a
larger universe.
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the property that the area within 1.96 standard errors of its mean is equal to
95 percent of the total area. With this information, we can ask the following
question: Can we construct an interval around b such that there is a 95-percent
probability that the true parameter lies within that interval? The answer is yes,
and this 95-percent confidence interval is given by

~ ~
b ±1.96 (standard error of b) (A.7)

Thus, when working with an estimated regression equation, we must not only
look at the point estimates but also examine the standard errors of the coeffi-
cients to determine bounds for the true parameters.I

If a 95-percent confidence interval contains 0, then the true parameter b may
actually be zero (even if our estimate is not). This result implies that the corre-
sponding independent variable may not really affect the dependent variable,
even if we thought it did. We can test the hypothesis that a true parameter is
actually equal to 0 by looking at its t-statistic, which is defined as

t = b ~
Standard error of b

(A.8)

If the r-statistic is less than 1.96 in magnitude, the 95-percent confidence inter-
val around b must include O. This means that we cannot reject the hypothesis
that the true parameter b equals O. We therefore say that our estimate, whatever
it may be, is not statistically significant. Conversely, if the t-statistic is greater
than 1.96in absolute value, we reject the hypothesis that b = 0 and call our esti-
mate statistically significant.

Equation (A.9) shows the multiple regression for the auto sales model (equa-
tion A.6) with a set of standard errors and t-statistics added:

S = 51.1
(9.4)

t = 5.44

+ 0.0461
(0.006)
7.67

(A.9)
- 0.42P

(0.13)
-3.23

- 0.84R
(0.32)

-2.63

The standard error of each estimated parameter is given in parentheses just
below the estimate, and the corresponding t-statistics appear below that.

Let's begin by considering the price variable. The standard error of 0.13 is
small relative to the coefficient -0.42. In fact, we can be 95 percent certain
that the true value of the price coefficient is on the interval given by -0.42
plus or minus 1.96 standard deviations (i.e., -0.42 plus or minus [1.96][0.13]=
-0.42 ± 0.25). This puts the true value of the coefficient between -0.17 and
-0.67. Because this range does not include zero, the effect of price is both sig-
nificantly different from zero and' negative. We can also arrive at this result
from the t-statistic. The t of -3.23 reported in equation (A.9) for the price
variable is equal to -0.42 divided by 0.13. Because this t-statistic exceeds
1.96 in absolute value, we conclude that price is a significant determinant of
auto sales.

Note that the income and interest rate variables are also significantly dif-
ferent from zero. The regression results tell us that an increase in income is
likely to have a statistically significant positive effect on auto sales, whereas

3When there are fewer than 100 observations, we multiply the standard error by a number somewhat
larger than 1.96.



an increase in interest rates will have a statistically significant negative
effect.

GOODNESS OF FIT
Reported regression results usually contain information that tells us how
closely the regression line fits the data. One statistic, the standard error of the
regression (SER), is an estimate of the standard deviation of the regression
error term e. Whenever all the data points lie on the regression line, the SER is
zero. Other things being equal, the larger the standard error of the regression,
the poorer the fit of the data to the regression line. To decide whether the SERis
large or small, we compare it in magnitude with the mean of the dependent
variable. This comparison provides a measure of the relative size of the SER, a
more meaningful statistic than its absolute size.

R-squared (R2) the percentage of the variation in the dependent variable
that is accounted for by all the explanatory variables, measures the overall
goodness-of-fit of the multiple regression equation.f Its value ranges from 0 to
1. An R2 of 0 means that the independent variables explain none of the varia-
tion of the dependent variable; an R2 of 1 means that the independent variables
explain the variation perfectly. The R2 for the sales equation (A.9) is 0.94. This
tells us that the three independent variables explain 94 percent of the variation
in sales.

Note that a high R2 does not by itself mean that the variables actually
included in the model are the appropriate ones. First, the R2 varies with the
types of data being studied. Time series data with substantial upward growth
usually generate much higher R2s than do cross-section data. Second, the
underlying economic theory provides a vital check. If a regression of auto sales
on the price of wheat happened to yield a high R2, we would question the
model's reliability. Why? Because our theory tells us that changes in the price of
wheat have little or no effect on automobile sales.

The overall reliability of a regression result depends on the formulation of
the model. When studying an estimated regression, we should consider things
that might make the reported results suspicious. First, have variables that
should appear in the relationship been omitted? That is, is the specification of
the equation wrong? Second, is the functional form of the equation correct? For
instance, should variables be in logarithms? Third, is there another relationship
that relates one of the explanatory variables (say X) to the dependent variable·
Y?If so, X and Yare jointly determined, and we must deal with a two-equation
model, not one with a single equation. Finally, does adding or removing one or
two data points result in a major change in the estimated coefficients-i.e., is
the equation robust? If not, we should be very careful not to overstate the
importance or reliability of the results.

ECONOMIC FORECASTING
A forecast is a prediction about the values of the dependent variable, given
information about the explanatory variables. Often, we use regression models
to generate ex ante forecasts, in which we predict values of the dependent vari-
able beyond the time period over which the model has been estimated. If
we know the values of the explanatory variables, the forecast is unconditional;

4The variation in Y is the sum of the squared deviations of Y from its mean. R2 and SERprovide
similar information about goodness of fit, because R2 = 1- SER2/Variance (Y).
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•standard error of the
regression Estimate of the
standard deviation of the
regression error.

•R-squared (R'!) Percentage
of the variation in the depend-
ent variable that is accounted
for by all the explanatory
variables.
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if they must be predicted as well, the forecast is conditional on these predic-
tions. Sometimes ex post forecasts, in which we predict what the value of the
dependent variable would have been if the values of the independent variables
had been different, can be useful. An ex post forecast has a forecast period such
that all values of the dependent and explanatory variables are known. Thus ex
post forecasts can be checked against existing data and provide a direct means
of evaluating a model.

For example, reconsider the auto sales regression discussed above. In gen-
eral, the forecasted value for auto sales is given by

5 = ho + hIP + h21 + h3R + e (A.IO)

where e is our prediction for the error term. Without additional information,
we usually take e to be zero.

Then, to calculate the forecast we use the estimated sales equation:

5 = 51.1 - 0.42P + 0.0461 - 0.84R (A.H)

We can use (A.ll) to predict sales when, for example, P = 100,1= $1 trillion, and
R = 8 percent. Then,

5 = 51.1- 0.42(100)+ 0.046(1000billion) - 0.84(8%)= $48.4billion

Note that $48.4billion is an ex post forecast for a time when P = 100,I = $1 trillion,
and R = 8 percent.

To determine the reliability of ex ante and ex post forecasts, we use the
standard error of forecast (SEF). The SEF measures the standard deviation of the
forecast error within a sample in which the explanatory variables are known
with certainty. Two sources of error are implicit in the SEE The first is the error
term itself, because e may not equal 0 in the forecast period. The second source
arises because the estimated parameters of the regression model may not be
exactly equal to the true parameters.

As an application, consider the SEF of $7.0 billion associated with equation
(A.ll). If the sample size is large enough, the probability is roughly 95 percent
that the predicted sales will be within 1.96 standard errors of the forecasted
value. In this case, the 95-percent confidence interval is $48.4billion ±$14.0bil-
lion, i.e., from $34.4billion to $62.4billion.

Now suppose we wish to forecast automobile sales for some date in the
future, such as 2007.Todo so, the forecast must be conditional because we need
to predict the values for the independent variables before calculating the fore-
cast for automobile sales, Assume, for example, thatour predictions of these
variables are as follqws: P = 200, I = $5 trillion, and R = 10 percent. Then, the
forecast is given by P =51.1 - 0.42(200)+ 0.046(5000billion) - 0.84(10)= $188.7
billion. Here $188.7billion is an ex ante conditional forecast.

Because we are predicting the future, and because the explanatory variables
do not lie close to the means of the variables throughout our period of study,
the SEFis equal to $8.2billion, which is somewhat greater than the SEFthat we
calculated previously.f The 95-percent confidence interval associated with our
forecast is the interval from $172.3billion to $205.1billion.

SFor more on SEF, see Pindyck and Rubinfeld, Econometric Models and Economic Forecasts, ch. 8.



_ The Demand for Coal
Suppose we want to estimate the demand for bituminous coal (given by sales in
tons per year, COAL) and then use the relationship to forecast future coal sales.
We would expect the quantity demanded to depend on the price of coal (given
by the Producer Price Index for coal, PCOAL) and on the price of a close substi-
tute for coal (given by the Producer Price Index for natural gas, PGAS). Because
coal is used to produce steel and electricity, we would also expect the level of
steel production (given by the Federal Reserve Board Index of iron and steel pro-
duction, FIS) and electricity production (given by the Federal Reserve Board
Index of electric utility production, FEU) to be important demand determinants.

Our model of coal demand is therefore given by the following equation:

COAL = bo + b, PCOAL + b2 PGAS + b3 FIS + b4 FEU + e

From our theory, we would expect b1 to be negative because the demand curve
for coal is downward sloping. We would also expect b2 to be positive because a
higher price of natural gas should lead industrial consumers of energy to substi-
tute coal for natural gas. Finally, we would expect both b3 and b4 to be positive
because the greater the production of steel and electricity, the greater the demand
for coal.

This model was estimated using monthly time-series data covering eight
years. The results (with t-statistics in parentheses) are

COAL = 12,262 + 92.34 FIS + 118.57 FEU - 48.90 PCOAL + 118.91PGAS
(3.51) (6.46) (7.14) (-3.82) (3.18)

R2 = 0.692 SER = 120,000

All the estimated coefficients have the signs that economic theory would predict.
Each coefficient is also statistically significantly different from zero because the
t-statistics are all greater than 1.96 in absolute value. The R2 of 0.692 says that the
model explains more than two-thirds of the variation in coal sales. The standard
error of the regression SERis equal to 120,000tons of coal. Because the mean level of
coal production was 3.9 million tons, SERrepresents approximately 3 percent of the
mean value of the dependent variable. This suggests a reasonably good model fit.

Now suppose we want to use the estimated coal demand equation to forecast
coal sales up to one year into the future. To do so, we substitute values for each of
the explanatory variables for the 12-month forecasting period into the estimated
equation. We also estimate the standard error of forecast (the estimate is 0.17 mil-
lion tons) and use it to calculate 95-percent confidence intervals for the forecasted
values of coal demand. Some representative forecasts and confidence intervals
are given in Table A.I.

TABLE A.1 Forecasting Coal Demand

Forecast
Confidence

Interval

1-month forecast (tons)

6-month forecast (tons)

12-month forecast (tons)

5.2 million 4.9-5.5 million

4.4-5.0 million

4.7-5.3 million

4.7 million

5.0 million
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SUMMARY
1. Multiple regression is a statistical procedure for quan-

tifying economic relationships and testing hypotheses
about them.

2. The linear regression model, which relates one depen-
dent variable to one or more independent variables, is
usually estimated by choosing the intercept and slope
parameters that minimize the sum of the squared
residuals between the actual and predicted values of
the dependent variable.

3. In a multiple-regression model, each slope coefficient
measures the effect on the dependent variable of a change

in the corresponding independent variable, holding the
effects of all other independent variables constant.

4. A r-test can be used to test the hypothesis that a partic-
ular slope coefficient is different from zero.

5. The overall fit of the regression equation can be evalu-
ated using the standard error of the regression (SER)
(a value close to zero means a good fit) or R2 (a value
close to one means a good fit).

6. Regression models can be used to forecast future val-
ues of the dependent variable. The standard error of
forecast (SEF) measures the accuracy of the forecast.


