
GP-GPUs, TPUs, NPUs

Advanced Computer Architecture

Daniel Mueller-Gritschneder

Content

• Motivation: Era of Deep Learning

• GP GPUs

• TPUs / NPUs

2V1.0 ACA

Motivation: Era of Deep Learning

Use of Data-level Parallelism (DLP)

ML Plattforms are Heterogeneous

Cloud

Datacenter:
Multi-Servers
with Multi-GPUs

Desktop/Workstation
/Fog:
PC with GPU

Edge/Mobile:
Mobile Phone
Raspberry PI
Embedded GPU
Specialized SoCs

Extreme Edge / TinyML:
MCU
Specialized low-power SoC

• Large computing continuum with possibly connectivity:

Hundreds of CPUs
Hundreds of GBs of DRAM
Several GPUs with
Tens of GB of DRAM
Several TB of Storage

2-128 CPUs
Tens of GBs of DRAM
1-2 GPUs with Tens of GB of DRAM
A few TB of Storage

1-4 CPUs
1-4 GBs of DRAM
1 GPUs with a few GB of DRAM
Specialized Accelerators
Tens to Hundreds of GB of Storage

1 CPU
Hundreds of kB to a few MB of
embedded SRAM
Low-power Acceleration / Co-proccesors
A few MB of Storage, e.g. embedded Flash

Embedded Machine Learning / Edge AICloud ML Desktop ML
4V1.0 ACA

Deep Learning Models are Heterogeneous

• In type: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph
Neural Networks, Recursive Neural Networks

• In computing demand: often measured in MAC operations

• In size: often measured in number of parameters

• Examples:

• Large Language Models (LLMs) -produces human-like text
• GPT-4: 170 trillion (10e12) parameters

• GPT-3: 175 billion (10e9) parameters

• ResNet18 – 11 million (10e6) parameters – Image classification e.g. for
autonomous driving

• Keyword Spotting (KWS): 16k-300k (10e3) parameters – Detects keyword in an
audio stream, e.g. for Audio wakeup (TinyML)

5V1.0 ACA

Embedded ML Applications

• Data is generated at the edge by several sensors.

• ML application is executed on an embedded device “close to” the sensor.

• Examples:

• Autonomous driving based on HD camera, Lidar and radar

• Wearable human activity tracking using Gyros, accelerometers

• Visual wake up from camera

• Audio wake up (keyword spotting) from microphone

• Gesture recognition from radar sensor

• Layered computation:

• Example Layer: Fully-connected

• Weights: W

• Activations: a

• Activation function: f l

• Typical activation functions: ReLU, tanh, softmax

ANN Architectures

𝑎𝑙 = 𝑓𝑙(𝑎𝑙−1))

𝑎𝐿 = 𝑓𝐿(𝑓𝐿−1 …𝑓1 𝑥 …)

Layer 1 Layer L𝑥 𝑎1𝑎𝐿−1 𝑎𝐿

𝑎𝑙 = 𝑓𝑙(𝑊𝑎𝑙−1) + 𝑏𝑙−1)

Design of Neural Network Architecture
& Automated Network Architecture Search

• Design of the ANN model architecture must consider target system
• ROM/RAM Memory resources (weights, activations)

• Computational power: Operations (Support for nonlinear operations)

• Acceleration features (type of layers, layer configurations)

• Network Architecture Search (NAS)
• Algorithms that systematically explore different ANN model architectures in an automatic

way

• Computationally very expensive (training of many candidates to evaluate the accuracy)

Training

• Training of the ANN model is done on a powerful machine (GPU)

• Trained model is deployed on the embedded device

• Embedded device executes the trained model (inference task)

• Training:

• Selection of the hyperparameters

• Optimization of the trainable parameters of the ANN model

• Using usually a backpropagation algorithm

•

•

Preprocesse
d Dataset

Training

ANN Model
Architecture

Flow(2/2)

• Deployment Stage

Trained NN
Model

Model Optimization
(Quantization & Pruning)

Quantization-aware
Training (QAT)

Quantized Trained NN
Model

ML Code Generator /Compiler Framework

NN Code/File

Target Compiler

Binary

Preprocessing
Code

Preprocessed
Dataset

NN Kernels Lib. +
(Interpreter)

Quantization

• Model are usually trained with floating-point (FP) precision (float, double).

• Inference (execution of trained model on embedded device)
• Full precision (FP) computation (multiplication, addition) expensive

• HW Floating Point Units expensive (area, energy)

• For inference the model is transferred to a quantized variant

• Integer computations (less expensive)

• Many challenges: Rounding, Overflow, Rescaling, Shifting

• Simple Example (8bit integer [-127 … 128]):

𝑧𝑙 =
1.4 150.5
8.3 2.6

𝑎𝑙−1 +
3.7
2.4

𝑧𝑙 =
1 128
8 3

𝑎𝑙−1 +
4
2

Quantization

Quantization Formats

•Many possible formats:

• Integer formats for weights/activations usually given by bit-width: x-bit

• On many embedded processors (byte-type quantization simplest 8bit, 16bit)
• Byte /uint8 (8bit) quantization range: [0 … 255]

• Accumulation variables usually larger size

• Sub-byte integer quantization <8bit

• Binary quantization w in {0,1}

• Ternary quantization w in {-1,0,1}

• Also reduced-precision floating-point possible (many formats)

Pruning

• Unstructured pruning: Small weight values are set to zero

• Skip computation with zero values (might require additional logic in program)

• Simple example:

• Structured pruning: A column, row, kernel is removed from the operator

• Operator is modified

• Example:

𝑧𝑙 =
155 1 8
17 38 234
5 12 3

𝑎𝑙−1 +
66
7
7

𝑧𝑙 =
155 0 8
17 38 234
0 12 0

𝑎𝑙−1 +
66
0
7

Unstructured
Pruning

𝑧∗𝑙 =
155 1 8
17 38 234

𝑎𝑙−1 +
66
7

𝑧𝑙 =
155 1 8
17 38 234
5 12 3

𝑎𝑙−1 +
66
7
7

Structured
Pruning 𝑧𝑙 =

155 1 8
17 38 234
0 0 0

𝑎𝑙−1 +
66
7
0

Example: Convolutional Neural Network

• Consists of layers (structure reprented by
data flow graph)

14V1.0 ACA

Image to Column (Img2Col) Transformation

• For many targets there exist a very optimized implementation of matrix-matrix-
multiply computation e.g. accelerators, for CPUs with some SIMD support, GPUs, but
also single-issue CPUs

• Img2Col transforms a convolution operation into a matrix-matrix-multiply operation

• Img2Col requires to build up a batch matrix, which is larger than the original
activation tensor, because it holds duplicates of some values

➢ Usually Img2Col is not done on the full input activation tensor but inside the
convolution loop on some part of the tensor in order to avoid building up the full
batch matrix

15V1.0 ACA

a) Fully connected layers and convolution layers require to
multiply activation and weights and accumulate the
result, which basically results in many required MAC
operations.

Example for Img2Col (1/5)

• For reference: This is the Standard Convolution

16V1.0 ACA

a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

Example for Img2Col (2/5)

• Step 1 for Img2Col: Create col-based batch matrix

• Each line holds the activation values under one kernel position for all channels

Input channel 1

batch 1 batch 2

img2col

a0,0,1 a0,1,1 a0,2,1 a0,3,1

a1,0,1 a1,1,1 a1,2,1 a1,3,1

a2,0,1 a2,1,1 a2,2,1 a2,3,1

a3,0,1 a3,1,1 a3,2,1 a3,3,1

Input channel 0

a0,0,0 a0,1,0 a0,2,0 a0,3,0

a1,0,0 a1,1,0 a1,2,0 a1,3,0

a2,0,0 a2,1,0 a2,2,0 a2,3,0

a3,0,0 a3,1,0 a3,2,0 a3,3,0

17V1.0 ACA

Example for Img2Col (3/5)

• Step 2: Create a row-based filter matrix. (Can be done already offline, is already existing
with just storing weight tensor in ROM memory)

18

w0,0,0,0 w0,1,0,0 w1,0,0,0 w1,1,0,0 w0,0,1,0 w0,1,1,0 w1,0,1,0 w1,1,1,0

w0,0,0,1 w0,1,0,1 w1,0,0,1 w1,1,0,1 w0,0,1,1 w0,1,1,1 w1,0,1,1 w1,1,1,1

V1.0 ACA

Example for Img2Col (4/5)

• Step 3: Run a matrix-matrix multiplication with target-specific
optimized GEMM kernel

a0,0,0 a0,1,0
…

a0,1,0 a0,2,0
…

a1,0,0 a1,1,0
…

a1,1,0 a1,2,0
…

a0,0,1 a0,1,1
…

a0,1,1 a0,2,1
…

a1,0,1 a1,1,1
…

a1,1,1 a1,2,1
…

batch 1 batch 2

W

A

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1

+ w2,1,1,1 a2,1,1 + w2,2,1,1

a2,2,1 +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2

+ w2,1,2,1 a2,1,2 + w2,2,2,1

a2,2,2 +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3

+ w2,1,3,1 a2,3,1 + w2,2,3,1

a2,3,1

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1

+ w2,1,1,2 a2,1,1 + w2,2,1,2

a2,2,1 +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2

+ w2,1,2,2 a2,1,2 + w2,2,2,2

a2,2,2 +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3

+ w2,1,3,2 a2,3,1 + w2,2,3,2

a2,3,1

… …

Z

=

19V1.0 ACA

Example for Img2Col (5/5)

• Step 4: Reshape the output to recover the output feature maps using the inverse col2img
transformation.

w1,1,1,1 a1,1,1 + w1,2,1,1 a1,2,1 +
w2,1,1,1 a2,1,1 + w2,2,1,1 a2,2,1 +
w1,1,2,1 a1,1,2 + w1,2,2,1 a1,2,2 +
w2,1,2,1 a2,1,2 + w2,2,2,1 a2,2,2 +
w1,1,3,1 a1,1,3 + w1,2,3,1 a1,2,3 +
w2,1,3,1 a2,3,1 + w2,2,3,1 a2,3,1

… …

w1,1,1,2 a1,1,1 + w1,2,1,2 a1,2,1 +
w2,1,1,2 a2,1,1 + w2,2,1,2 a2,2,1 +
w1,1,2,2 a1,1,2 + w1,2,1,2 a1,2,2 +
w2,1,2,2 a2,1,2 + w2,2,2,2 a2,2,2 +
w1,1,3,2 a1,1,3 + w1,2,3,2 a1,2,3 +
w2,1,3,2 a2,3,1 + w2,2,3,2 a2,3,1

… …

20V1.0 ACA

GEMM Algorithm

• Basic linear algebra algorithm for matrix-matrix-multiply

• Optimized versions exist for many hardware platforms e.g.

• Considering block-wise computation depending on cache sizes

• Exploiting data-level parallelism (DLP)

•GEMM is seen as „at the heart of deep learning“ especially when acceleration is
considered.

Further reading:
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

21V1.0 ACA

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

General-Purpose Graphics Processor Units (GPGPUs)

Source

Inspired by:

• Book: Aamodt, Fung & Rogers – Generap-Purpose
Graphics Processor Architectures

• Book: Hennesy &Patterson: Computer
Architecture – A Qualitative Approach

• CA Course: Sophia Shao, UC Berkeley

23V1.0 ACA

GPUs

• GPUs were initially introduced for rendering in real time especially for video games.

• Nowadays GPUs can be found in many devices (Data Centers, PCs, Laptop, Phones,
Embedded GPUs...)

• General Purpose (GP-GPU): Programming Language CUDA from NVIDIA allowed to use
GPUs for other compute besides rendering (now especially used for ML)

24V1.0 ACA

GPU (Discrete vs. Integrated)

• GPUs are combined with a CPU either on a single chip or by inserting an additional card
(e.g. via PCIe).

• The CPU is responsible for initiating computation on the GPU and transferring data to and
from the GPU. The CPU is often called “the host”.

25

Host CPU GPU

Graphics
Memory

System
Memory

CPU GPU

System
Memory

Cache

Discrete GPU: Own memory

Integrated GPU:
Shared memory

V1.0 ACA

Basic Programming Model

• CPU (Example Code):

26

void saxpy_serial(int n, float a, float *x, float *y) {
for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];
}

…
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
…

V1.0 ACA

Basic Programming Model

27

…
float *d_x, *d_y;
int nblocks = (n + 255) / 256;
cudaMalloc(&d_x, n * sizeof(float));
cudaMalloc(&d_y, n * sizeof(float));
cudaMemcpy(d_x, h_x, n * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, n * sizeof(float), cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_x, d_x, n * sizeof(float), cudaMemcpyDeviceToHost);
...

__global__ void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<n)
y[i] = a*x[i] + y[i];
}

• GPU (CUDA):

Compute
Kernel

Setup and call kernel
from CPU program

V1.0 ACA

Threads, Warps, Thread block

• The threads that make up a compute kernel are organized into a hierarchy composed of a
grid of thread blocks consisting of warps.

• In the CUDA programming model, individual threads execute instructions whose
operands are scalar values (e.g., 32-bit floating-point).

• To improve efficiency typical GPU hardware executes groups of threads together in lock-
step (SIMD). These groups are called warps, which consist of 32 threads

• Warps are grouped into a larger unit called thread block by NVIDIA.

28V1.0 ACA

Thread Block 1

Example:

Wrap 0

Thread 0 y[0] = a*x[0] + y[0];

….

Thread 31 y[31] = a*x[31] * y[31];

29

Wrap 1

Thread 32 y[32] = a*x [32] * y[32];

….

Thread 63 y[63] = a*x [63] * y[63];

Wrap 7

Thread 224 y[244] = a*x [244] * y[244];

….

Thread 255 y[255] = a*x [255] * y[255];

…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Launch a single grid, consisting of nblocks thread blocks

• Each thread block contains 256 threads (8 warps).

…

nblock
Thread
blocks

GRID

V1.0 ACA

Thread Block L

Example:

Wrap K

Thread (n-2)*32 y[n-2] = a*x[n-2] + y[n-2];

Thread (n-1)*32 y[n-1] = a*x[n-1] + y[n-1];

….

….

30

…

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

• Threads with thread_idx.x > n are deactivated

…

nblock
Thread
blocks

GRID

Wrap K+1

….

….

….

….

Deactivated
(>n)

V1.0 ACA

Single Instruction, Multiple Thread (SIMT)

• GPUs uses the Single Instruction, Multiple Thread (SIMT) model

• Scalar instruction streams for each CUDA thread are grouped together for SIMD execution
on hardware

• Loads and stores are scatter-gather, as threads perform scalar loads and stores

31

Instr. 1 Instr. 2 Instr. 3 Instr. 4 Instr. 5Scalar instruction stream

SIMD
execution
across
warp

V1.0 ACA

Divergence and Reconvergence of Threads

• Warps execute in lock-step SIMD fashion

• Threads may diverge/reconverge due to control flow

• Simplified illustration (arrows are threads in a thread block):

32

doX();

doX();
if (threadIdx.x < 4) {
 doA();
} else {
 doB();
}
doY();

d
iv

er
ge doA();

doB();

re
co

n
ve

rg
e

doY();

Mask =
1 1 1 1 1 1 1 1

Mask =
1 1 1 1 0 0 0 0

Mask =
0 0 0 0 1 1 1 1

Mask =
1 1 1 1 1 1 1 1

V1.0 ACA

GPU

SIMD Core

Hardware Execution Model

• GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with
multiple lanes but with no scalar processor

• CPU sends whole “grid” over to GPU, which distributes thread blocks among cores
(each thread block executes on one core)

33

La
n

e
 0

La
n

e
 1

La
n

e
 2

…
.

SIMD Core

La
n

e
 0

La
n

e
 1

La
n

e
2

…

SIMD Core

La
n

e
 0

La
n

e
 1

La
n

e
 2

…
.

….

La
n

e
0

La
n

e
 1

La
n

e
 2

…
.

GPU Memory

Host CPU

System
Memory

V1.0 ACA

Multithreading on SIMD Processor

• SIMD cores execute instructions of independent warps in multithreaded fashion

• E.g. can hide memory latencies

34

Warp 1
Instr. 5Scalar instruction stream

SIMD
execution
across
warp

SIMD Core

La
n

e
0

La
n

e
 1

La
n

e
 2

…
.

SIMD Thread (Warp) Scheduler

Warp 1
Instr. 6

Warp 2
Instr. 8

Warp 3
Instr. 45

Warp 4
Instr. 15

V1.0 ACA

Multithreaded SIMD Processor

35

Source H&P: Computer
Architecture – A
Qualitative Approach

V1.0 ACA

Look at a Real GPU: A100

Optional, not relevant for exam

A100 GPU -128 Streaming Multiprocessor

37

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

NVIDEA calls
SIMD processors
Streaming Multiprocessors
(SMs)

V1.0 ACA

SM

• “A100 has four Tensor Cores per
SM, which together deliver 1024
dense FP16/FP32 FMA operations
per clock”

• “432 Third-generation Tensor Cores
per GPU” (108 SMs)

38
Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

V1.0 ACA

Accelerators - Systolic Array

Systolic Array

Concept:

• Functional Units (FUs) are chained to implement a fixed type of computation

• Flow inside systolic array needs to be carefully orchestrated

• Intermediate results are directly moved to next FU

• 2D systolic arrays often used for deep learning for Matrix-matrix multiply (GEMM),
called Tensor Cores, GEMM Core, Matrix Multiply Unit

• Systolic arrays can be designed for many other computations

40V1.0 ACA

Example: 1D Convolution

• Simple 1D convolution (A1x12)*(1x3):

41

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

w0 w1 w2

a0w0

+

a1w1

+

a2w2

a1w0

+

a2w1

+

a3w2

a2w0

+

a3w1

+

a4w2

a3w0

+

a4w1

+

a5w2

a4w0

+

a5w1

+

a6w2

a5w0

+

a6w1

+

a7w2

a6w0

+

a7w1

+

a8w2

a7w0

+

a8w1

+

a9w2

a8w0

+

a9w1

+

a10w2

a9w0

+

a10w1

+

a11w2

*

=

void conv1D_12_3(int* x, int* w, int* y) {
for (i=0; i<10;i++) {
y[i]=0;
for (j=0;j<3;j++) {
y[i] += x[i+j] * w[j];

}
}
}

y0
y9

Moving
window

…

V1.0 ACA

Example: 1D Convolution

• Code

42

void conv1D_12_3(int* x, int* w, int* y) {
for (i=0; i<10;i++) {

y[i]=0;
for (j=0;j<3;j++) {

y[i] += x[i+j] * w[j];
}

}
}

conv1D_12_3:
LW t1,0(a1) # w0
LW t2,4(a1) # w1
LW t3,8(a1) # w2
LI t4,0

conv1D_12_3_loop:
LW a4,0(a0) # x[i+0]
LW a4,4(a0) # x[i+1]
MUL a1,a4,t1 # x[i+0] * w[0]
MUL a4,a4,t2 # x[i+1] * w[1]
LW a5,8(a0) # x[i+2]
ADD a1,a1,a4
MUL a5,a5,t3 # x[i+2] * w[2]
ADD a1,a1,a5
SW a1,0(a2) # Store y[i]
ADDI a0,a0,4
ADDI a1,a1,4
ADDI t4,t4,1
BNE t4,10, conv1D_12_3_loop

RET

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Structure:

43

MUL MUL MUL

A
D
D

FIFO

FIFO

FIFO

A
D
D

MUL+ ADD FU is called
Multiply-Accumulate (MAC) Unit

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Step 1: Load Weights

44

MUL MUL MUL

A
D
D

FIFO

FIFO

FIFO

w1 w0

A
D
D

w2

x1 x0

x2

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 3:

45

MUL MUL MUL

A
D
D

FIFO

FIFO

FIFO

w2 w1 w0

A
D
D

x0x1x2

x3x4

x2w2

x5

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 4:

46

MUL MUL MUL

A
D
D

FIFO

FIFO

FIFO

w2 w1 w0

A
D
D

x0x1x2x3

x4

x2w2

x1w1 +
x2w2

x1w1

x3w2

x5

x6

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 5:

47

MUL MUL MUL

A
D
D

y0

FIFO

FIFO

FIFO

w2 w1 w0

A
D
D

x0x1x2x3x4

x3w2

x2w1 +
x3w2

x2w1

x4w2

x0w0 +
x1w1 +
x2w2

x0w0

x1w1 +
x2w2

x5

1st result

x6

x7

Latency=5

V1.0 ACA

Example: 1D Convolution - Systolic Array (1D) - Structure

• Clock cycle 6:

48

MUL MUL MUL

A
D
D

y1 y0

FIFO

FIFO

FIFO

w2 w1 w0

A
D
D

x1x2x3x4x5

x4w2

x3w1 +
x4w2

x3w1

x5w2

x1w0 +
x2w1 +
x3w2

x1w0

x2w1 +
x3w2

x6

2nd result

x7

x8

One result in each cycle
Only one load of data

(Initialization interval = 1)

V1.0 ACA

Systolic Arrays Pros-Cons

• Advantages:
• Move intermediate results between FUs to reduce memory access

• Balance between computation and memory bandwidth

• Simple design to exploit data-level parallelism (DLP)

• Different systolic arrays can be combined for multi-stage computations

• Disadvantage
• Specialized: computation needs to fit FU arrangement

49V1.0 ACA

A look at Real ML Accelerators

Google Tensor Processing Unit (TPU)

VTA Neural Processing Unit (NPU)

Optional, not relevant for exam

TPU V1: Tensor Processing Unit (2017)

• Application-specific Integrated Circuit (ASIC) – Chip from Google

• Specialized to accelerate Deep Neural Network (DNN) computations

• PCB board with PCIe Interface to Host processor

51

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en

V1.0 ACA

TPU Data Rates

52

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en

V1.0 ACA

Weight FIFO

DDR 3
Interface

TPU V1 Dataflow and ISA

Instructions:

• Read Weights
• Reads weights from the

DDR into the Weight FIFO

• Read from Host Memory:
• Reads data from the CPU

(Host) memory into the
unified TPU buffer

• Execute Matrix Matrix
Multiply for Convolution +
Activation + Pooling

• Write to Host Memory
• Writes data from unified

buffer into CPU memory

53

PCIe
PCIe

Interface
Unified
Buffer

Matrix
Multiply

Activations

Accumulators

Pooling

Control
(Instructions)

• Dataflow:

To Host
CPU

To DDR memory chips

D
D

R

V1.0 ACA

TPU: Matrix Matrix Multiply

• Core of the TPU is matrix-matrix-multiply

• 2D Systolic Array:
• Input 1: Matrix size Sx256 (Unified buffer)

• Input 2: Constant matrix 256x256 (Weight FIFO)

• Output: Input1 multiplied Input 2

• Latency: S cycles

• Initialization interval: 1

54V1.0 ACA

Google TPU V4 for Cloud

55

Source: https://cloud.google.com/tpu/docs/v4

Key specifications v4 Pod values

Peak compute per chip 275 teraflops (bf16 or int8)

HBM2 capacity and bandwidth 32 GiB, 1200 GBps

Measured min/mean/max power 90/170/192 W

TPU Pod size 4096 chips

Interconnect topology 3D mesh

Peak compute per Pod 1.1 exaflops (bf16 or int8)

All-reduce bandwidth per Pod 1.1 PB/s

Bisection bandwidth per Pod 24 TB/s

Chips can be arranged in Twisted Torus
interconnect

V1.0 ACA

Embedded NPU: Versatile Tensor Accelerator (VTA)

• Source: http://arxiv.org/pdf/1807.04188

• Open Source: https://github.com/apache/tvm-vta

56V1.0 ACA

http://arxiv.org/pdf/1807.04188
https://github.com/apache/tvm-vta
https://github.com/apache/tvm-vta
https://github.com/apache/tvm-vta

Summary

Covered Topics

• General-Purpose Processor Cores
• Pipelining

• Speculation and Branch Prediction

• Instruction-Level Parallelism: Superscalar, VLIW

• Thread-Level Parallelism: Multi-threading, Multi-Core

• Data-Level Parallelism: Vector

• Specialized Cores :
• GP-GPUs

• Domain Accelerators: TPU, NPU

• Application-specific Accelerators: HLS-generated

58V1.0 ACA

Thank you for your attention!

	Folie 1
	Folie 2: Content
	Folie 3: Motivation: Era of Deep Learning
	Folie 4: ML Plattforms are Heterogeneous
	Folie 5: Deep Learning Models are Heterogeneous
	Folie 6: Embedded ML Applications
	Folie 7: ANN Architectures
	Folie 8: Design of Neural Network Architecture & Automated Network Architecture Search
	Folie 9: Training
	Folie 10: Flow(2/2)
	Folie 11: Quantization
	Folie 12: Quantization Formats
	Folie 13: Pruning
	Folie 14: Example: Convolutional Neural Network
	Folie 15: Image to Column (Img2Col) Transformation
	Folie 16: Example for Img2Col (1/5)
	Folie 17: Example for Img2Col (2/5)
	Folie 18: Example for Img2Col (3/5)
	Folie 19: Example for Img2Col (4/5)
	Folie 20: Example for Img2Col (5/5)
	Folie 21: GEMM Algorithm
	Folie 22: General-Purpose Graphics Processor Units (GPGPUs)
	Folie 23: Source
	Folie 24: GPUs
	Folie 25: GPU (Discrete vs. Integrated)
	Folie 26: Basic Programming Model
	Folie 27: Basic Programming Model
	Folie 28: Threads, Warps, Thread block
	Folie 29: Example:
	Folie 30: Example:
	Folie 31: Single Instruction, Multiple Thread (SIMT)
	Folie 32: Divergence and Reconvergence of Threads
	Folie 33: Hardware Execution Model
	Folie 34: Multithreading on SIMD Processor
	Folie 35: Multithreaded SIMD Processor
	Folie 36: Look at a Real GPU: A100
	Folie 37: A100 GPU -128 Streaming Multiprocessor
	Folie 38: SM
	Folie 39: Accelerators - Systolic Array
	Folie 40: Systolic Array
	Folie 41: Example: 1D Convolution
	Folie 42: Example: 1D Convolution
	Folie 43: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 44: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 45: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 46: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 47: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 48: Example: 1D Convolution - Systolic Array (1D) - Structure
	Folie 49: Systolic Arrays Pros-Cons
	Folie 50: A look at Real ML Accelerators
	Folie 51: TPU V1: Tensor Processing Unit (2017)
	Folie 52: TPU Data Rates
	Folie 53: TPU V1 Dataflow and ISA
	Folie 54: TPU: Matrix Matrix Multiply
	Folie 55: Google TPU V4 for Cloud
	Folie 56: Embedded NPU: Versatile Tensor Accelerator (VTA)
	Folie 57: Summary
	Folie 58: Covered Topics
	Folie 59: Thank you for your attention!

