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Motivation: Era of Deep Learning

Use of Data-level Parallelism (DLP)



ML Plattforms are Heterogeneous

* Large computing continuum with possibly connectivity:

€ O L

Datacenter: Desktop/Workstation Edge/Mobile: Extreme Edge / TinyML:
Multi-S [Fog: Mobile Phone MCU
ulti-Servers _ lived |

with Multi-GPUs € With GPU Raspberry PI Specialized low-power 50C
Embedded GPU
Specialized SoCs

Hundreds of CPUs 2-128 CPUs 1-4 CPUs 1CPU

Hundreds of GBs of DRAM Tens of GBs of DRAM 1-4 GBs of DRAM Hundreds of kB to a few MB of

Several GPUs with 1-2 GPUs with Tens of GB of DRAM 1 GPUs with a few GB of DRAM embedded SRAM .

Tens of GB of DRAM A few TB of Storage Specialized Accelerators Low-power Acceleration / Co-proccesors

Several TB of Storage Tens to Hundreds of GB of Storage A few MB of Storage, e.g. embedded Flash

mem_ Embedded Machine Learning / Edge Al



Deep Learning Models are Heterogeneous

In type: Deep Neural Networks, Convolutional Neural Networks, Transformers, Graph
Neural Networks, Recursive Neural Networks

In computing demand: often measured in MAC operations

In size: often measured in number of parameters

Examples:

e Large Language Models (LLMs) -produces human-like text
e GPT-4: 170 trillion (10e12) parameters
* GPT-3: 175 billion (10e9) parameters

* ResNetl18 — 11 million (10e6) parameters — Image classification e.g. for
autonomous driving

 Keyword Spotting (KWS): 16k-300k (10e3) parameters — Detects keyword in an
audio stream, e.g. for Audio wakeup (TinyML)
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Embedded ML Applications

e Data is generated at the edge by several sensors.

* ML application is executed on an embedded device “close to” the sensor.

 Examples:
 Autonomous driving based on HD camera, Lidar and radar
 Wearable human activity tracking using Gyros, accelerometers
* Visual wake up from camera
* Audio wake up (keyword spotting) from microphone

e Gesture recognition from radar sensor



ANN Architectures

* Layered computation: al = fl(al—l))

at = fETCL () )

* Example Layer: Fully-connected
*  Weights: W al = fl(Wal—l) 4+ bl—l)
* Activations: a

» Activation function: /"
* Typical activation functions: RelLU, tanh, softmax



Design of Neural Network Architecture

& Automated Network Architecture Search

* Design of the ANN model architecture must consider target system
e  ROM/RAM Memory resources (weights, activations)
 Computational power: Operations (Support for nonlinear operations)
* Acceleration features (type of layers, layer configurations)

 Network Architecture Search (NAS)

e Algorithms that systematically explore different ANN model architectures in an automatic
way

 Computationally very expensive (training of many candidates to evaluate the accuracy)



* Training of the ANN model is done on a powerful machine (GPU)

* Trained model is deployed on the embedded device

Embedded device executes the trained model (inference task)

Training:
* Selection of the hyperparameters
* Optimization of the trainable parameters of the ANN model

e Using usually a backpropagation algorithm

. Preprocesse ANN Model
. d Dataset Architecture




Flow(2/2)

Trained NN Preprocessed
Model Dataset

Model Optimization Quantization-aware
(Quantization & Pruning) Training (QAT)

* Deployment Stage Quantized Trained NN
Model

ML Code Generator /Compiler Framework

b+ | :
NN Kernels Lib NN Code/File Preprocessing
Interpreter Code

Target Compiler



 Model are usually trained with floating-point (FP) precision (float, double).

* Inference (execution of trained model on embedded device)
e Full precision (FP) computation (multiplication, addition) expensive
HW Floating Point Units expensive (area, energy)

 Forinference the model is transferred to a quantized variant
* Integer computations (less expensive)

 Many challenges: Rounding, Overflow, Rescaling, Shifting
 Simple Example (8bit integer [-127 ... 128]):

=it 5o ) b e el

Quantization



Quantization Formats

*Many possible formats:
* Integer formats for weights/activations usually given by bit-width: x-bit

 On many embedded processors (byte-type quantization simplest 8bit, 16bit)
* Byte /uint8 (8bit) quantization range: [0 ... 255]

 Accumulation variables usually larger size

* Sub-byte integer quantization <8bit

* Binary quantization win {0,1}

e Ternary quantization win {-1,0,1}

* Also reduced-precision floating-point possible (many formats)



* Unstructured pruning: Small weight values are set to zero
e Skip computation with zero values (might require additional logic in program)
* Simple example:

Unstructured
155 1 38 661 Prunin 155 0 8 66
zl=[17 38 234]al‘1+ 7 4 zl=[17 38 234]al‘1+ 0
5 12 3 7 0 12 0 7

e Structured pruning: A column, row, kernel is removed from the operator
* Operator is modified

* Example: Structured 155 1 3 66

155 1 8 66 Pruning Zl — 17 38 234_ al—l + 7

7zl = [ 17 38 234] al=1+17 - [ 0 0 0 0
5 12 3 7

. [155 1 8] - [66]
»2_17 38 234]/% |7



Example: Convolutional Neural Network

e Consists of layers (structure reprented by

data flow graph)
A' = Conv2D(X.W'.b'.c!.c}.8!.8'.P',ReLu)
A? = maxpool(A'%n?, 72)
A® = Conv2D(A%2,W3 b’ 62 67,862,862, P°. ReLu)
A* = maxpool(A® x}, nd)
a’ = ﬂatt&n[h”']

a® = DEHSE[EE,WE,hE,SDfHHHK}
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Image to Column (Img2Col) Transformation

 For many targets there exist a very optimized implementation of matrix-matrix-
multiply computation e.g. accelerators, for CPUs with some SIMD support, GPUs, but
also single-issue CPUs

* |Img2Col transforms a convolution operation into a matrix-matrix-multiply operation

 |Img2Col requires to build up a batch matrix, which is larger than the original
activation tensor, because it holds duplicates of some values

» Usually Img2Col is not done on the full input activation tensor but inside the
convolution loop on some part of the tensor in order to avoid building up the full
batch matrix

V1.0 ACA 15



Example for Img2Col (1/5)

 For reference: This is the Standard Convolution

Ap,0,1 I Ap1.1 | 3021 |3031

000 | 2.1,0 | Q020 | 030

100 | 2110 | Q120 | 2130

200 | 2210 | A220 | A230

N

A300 | 2310 | 2320 | @330

Input channel 0

V1.0

Filter bank for output
feature map 1

Woo01.1 Wo.111

Wo,00,1 Wo.1,0.1 e
W100.1 W11401
Filter bank for output

feature map 0

Woo.10 Wg1.1.0

Wo000 Wo 1,00 QM

W1000 Wi100

ACA

Wip11 8101 T Wiq448111

Woo00.18000FWo1018010%F
Wi001 8100+t Wi1018110F
Woo.1.18001FWo1113011F

Woo0.18010FWo1018020%F
Wip01 8110t Wi101 3120 F
Woo.1.18011FWg1118021%F
Wip11 8111 T Wiq448121

Wo000 8000t Wo1008010 7T
W10,008100FWi1003110F
Wo 0,10 8001+t Wo1103011 F
Wio108101TWi1108111

Wo.0008010%TWo10080207F
W100038110FWs1008120 F
Wo0,108011FWg 1108021 %
Wip108111TWiq408121

Output feature map 0
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Example for Img2Col (2/5)

e Step 1 for Img2Col: Create col-based batch matrix

* Each line holds the activation values under one kernel position for all channels

batch 1 batch 2
a a
1
2001 | 2011 | 2021 | 2031 Input channel 1 0,0,0 0,1,0
] dp 1,0 d02,0

30,00 | 0,10 | Q20 | Q030 |,
[ img2col

d1 0,0 d110
91,00 [ 20 | 20 | 130 |,
— d110 d120

3,00 | 9210 | 220 | 230 |,

- ao'oll aO,l,l
330,0 9310 370 330 Input channel 0 ao 1.1 aO 21
d10,1 d1,1,1

1932 CEER]
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Example for Img2Col (3/5)

e Step 2: Create a row-based filter matrix. (Can be done already offline, is already existing
with just storing weight tensor in ROM memory)

Filter bank for output
feature map 1 (FM1)

Woo1.1

Wo 111

Woo001

Wo 101

|

Wi100.1

W1 101

Filter bank for output

feature map 0 (FMO)

Woo.1.0

Wo 110

Woooo0

Wo100

n.1.1.0

Wi000

Wi 100

V1.0

Img2col_weights

Wo0000 Wo100 Wi000 Wi1100 Woo010 Wo110 Wio010 Wi110

=)

Wo0001 Wo101 Wi001 Wi1101 Woo11 Wo111 @ Wio11 Wi111
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Example for Img2Col (4/5)

* Step 3: Run a matrix-matrix multiplication with target-specific

optimized GEMM kernel

V1.0

A

batch 1 batch 2
d0,0,0 d,1,0
do,1,0 d,2,0
d1,0,0 d1,1,0
d1,1,0 d1,2,0
d0,0,1 do,1,1
do,1,1 do,2,1
d1,0,1 d1,1,1
LElna 12,1

ACA

yA

Wi11,13111 T Wi2113121
TW51113211FTWo010
o1 T
Wi1213112FWi2213152
TW51213212FWo501
Ao T
Wi1313113%Wi2313123
TW51313231TWo531
93,1

Wi1123111%W12123121
tTWy1123211 W01
A1t
Wi11223112%W1212 3122
T W51223212% W50
22t
Wi13231131%W15323153
T W51323311Ws53)

-
73,1

19




Example for Img2Col (5/5)

* Step 4: Reshape the output to recover the output feature maps using the inverse col2img

transformation.

Wi1119111tWi2113121F
Wy11,1321,1tWa211321 F
Wi1213112%W12213125F
W1213212tWa221320 F
Wi1313113+%Wi5313123F
W5,13132311TWs2313231

Wi1123111tWi2123121 F
Wy1,1,23211 W12 321 F
Wi1223112%W12123122F
W51223212%Wa222 322 F
Wi1323113%Wi2323153F
W5,1323231%Ws2323231

V1.0

col2img

Wp,0,01 80.00% Wo,101 30,10 T
W10018100TWi1013110 F
Woo01.12001%FWp1113011 F
Wi01,18101FTWi1118111

Wop.0,01 80,10t Wp10180207F
Wi0018110tWi1018120 T
Wpo119011+tWp1118021F
Wio0118111FWiq118121

W0,0,00 @0,00% Wo,1003010 T
Wigo0@100t*Wi100a110 F
Wp.0,1.0 8001+t Wo 1108011 T
W10,1,0 81,011 W1.1,108111

W0.0,00 80,10t Wo,1003020 T
Wi0008110TWi100@120 F
Wp.0,1,0 8011 T Wo 1108021 T
W10,1,08111TWi1103121

ACA

Output feature map 0
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GEMM Algorithm

e Basic linear algebra algorithm for matrix-matrix-multiply

* Optimized versions exist for many hardware platforms e.g.
* Considering block-wise computation depending on cache sizes

* Exploiting data-level parallelism (DLP)

*GEMM is seen as ,,at the heart of deep learning” especially when acceleration is
considered.

Further reading:
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
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General-Purpose Graphics Processor Units (GPGPUs)




Source

Inspired by:

* Book: Aamodt, Fung & Rogers — Generap-Purpose
Graphics Processor Architectures

. .
geneﬁgl I;urpose | General-Purpose * Book: Hennesy &Patterson: Computer
rapnICs Frocessor Graphics Processor Architecture — A Qualitative Approach

Architectures Architecture |
* CA Course: Sophia Shao, UC Berkeley

Tor M. Aamodt
Wilson Wai Lun Fung
Timothy G. Rogers
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 GPUs were initially introduced for rendering in real time especially for video games.

* Nowadays GPUs can be found in many devices (Data Centers, PCs, Laptop, Phones,
Embedded GPUs...)

e General Purpose (GP-GPU): Programming Language CUDA from NVIDIA allowed to use
GPUs for other compute besides rendering (now especially used for ML)
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GPU (Discrete vs. Integrated)

* GPUs are combined with a CPU either on a single chip or by inserting an additional card
(e.g. via PCle).

 The CPU is responsible for initiating computation on the GPU and transferring data to and
from the GPU. The CPU is often called “the host”.

CPU
Host CPU  (ummm): t t
‘ t Cache Integrated GPU:
System Shared memory
Memory 1
Discrete GPU: Own memory System
Memory
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Basic Programming Model

 CPU (Example Code):

void saxpy_serial(int n, float a, float *x, float *y) {
for (inti=0;i<n; ++i)
ylil = a*x[i] + yl[i];

saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
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Basic Programming Model

« GPU (CUDA):

__global__ void saxpy(int n, float a, float *x, float *y)

{ Compute
int i = blockldx.x*blockDim.x + threadldx.x; Kernel
if(i<n)

ylil = a*x[i] + y[i];

}

Setup and call kernel

float *d_x, *d_y; from CPU program
int nblocks = (n + 255) / 256;

cudaMalloc( &d_x, n * sizeof(float) );

cudaMalloc( &d_y, n * sizeof(float) );

cudaMemcpy( d_x, h_x, n * sizeof(float), cudaMemcpyHostToDevice );
cudaMemcpy( d_y, h_y, n * sizeof(float), cudaMemcpyHostToDevice );
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

cudaMemcpy( h_x, d_x, n * sizeof(float), cudaMemcpyDeviceToHost );
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Threads, Warps, Thread block

* The threads that make up a compute kernel are organized into a hierarchy composed of a
grid of thread blocks consisting of warps.

* In the CUDA programming model, individual threads execute instructions whose
operands are scalar values (e.g., 32-bit floating-point).

* To improve efficiency typical GPU hardware executes groups of threads together in lock-
step (SIMD). These groups are called warps, which consist of 32 threads

* Warps are grouped into a larger unit called thread block by NVIDIA.
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Example:

saxpy<<<nblocks, 256>>>(n, 2.0,d_x, d_vy);
* Launch a single grid, consisting of nblocks thread blocks

* Each thread block contains 256 threads (8 warps).

Thread Block 1

Thread 0 y[0] = a*x[0] + y[O];
Thread 31 y[31] = a*x[31] * y[31];
Thread 32 v[32] = a*x [32] * y[32];
nblock
GRID Thread — Thread 63 y[63] = a*x [63] * y[63];
blocks

Thread 224 y[244] = a*x [244] * y[244];

Thread 255 y[255] = a*x [255] * y[255];
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Example:

saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);

* Threads with thread_idx.x > n are deactivated

Thread (n-2)*32 y[n-2] = a*x[n-2] + y[n-2]; Deactivated
Thread (n-1)*32 y[n-1] = a*x[n-1] + y[n-1]; (>n)

—_

—
—

nblock B
GRID Thread

blocks Thread Block L

Wrap K+1

V1.0 ACA 30



Single Instruction, Multiple Thread (SIMT)

 GPUs uses the Single Instruction, Multiple Thread (SIMT) model

 Scalar instruction streams for each CUDA thread are grouped together for SIMD execution
on hardware

* Loads and stores are scatter-gather, as threads perform scalar loads and stores

SIMD
execution
across
warp

o1 TRl da i aslela R tt=Flaml Instr. 1 | Instr. 2| Instr. 3 [ Instr. 4 | Instr. 5
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Divergence and Reconvergence of Threads

* Warps execute in lock-step SIMD fashion
* Threads may diverge/reconverge due to control flow

e Simplified illustration (arrows are threads in a thread block):

Mask = Mask = Mask = Mask =

doX(); 11111111 11110000 00001111 11111111
if (threadldx.x < 4) {

doA();
} else { @

doB(); o
}
doY(); S
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Hardware Execution Model

* GPU is built from multiple parallel cores, each core contains a multithreaded SIMD processor with
multiple lanes but with no scalar processor

* CPU sends whole “grid” over to GPU, which distributes thread blocks among cores
(each thread block executes on one core)

Host CPU

$

System

Memory ‘
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Multithreading on SIMD Processor

* SIMD cores execute instructions of independent warps in multithreaded fashion

* E.g. can hide memory latencies

SIMD
execution
across
warp

Scalar instruction stream

SIMD Thread (Warp) Scheduler
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Multithreaded SIMD Processor

Instruction Source H&P: Computer
Warp scheduler .
cache ° Architecture — A
Qualitative Approach

Y
Instruction register

| |
I T R S Sl R R R R TR B T S T A

% e e g g =

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters
1K %32 |1Kx32 |1Kx32 |1Kx32 |1Kx 32 |1Kx 32 [1Kx 32 [1Kx32 [1Kx32 [1Kx32 |1Kx32 |1Kx 32 | 1Kx 32 | 1Kx 32 | 1Kx 32 | 1Kx 32

Load | Load | Load | Load | Load Load | Load | Load | Load | Load | Load | Load | Load | Load | Load Load
store | store | store | store | store | store | store | store | store | store | store | store | store | store | store | store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

b ¢ [ ¢ [ ¢ [ ] ¢ [ 4[4[ 4474 [+ ¢[¢ [ ][4

/ A

| Address coalescing unit ‘ | Interconnection network |
3
i y v
Local To global
oca64mKeé*nory memory

Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. It has 16 SIMD Lanes. The SIMD Thread Scheduler
has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters (PCs). Note that each

lane has 1024 32-bit registers.
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Look at a Real GPU: A100

Optional, not relevant for exam




A100 GPU -128 Streaming Multiprocessor

PCI Expeess 4.0 Host merface

NVIDEA calls

SIMD processors
Streaming Multiprocessors
(SMs)

0HN0D MOWeN IO,

i

!

H
2
o
a
2
g
s
|
<
O
-]
2
El
-]

woy oweyy
e

B

2304

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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e “A100 has four Tensor Cores per
SM, which together deliver 1024

dense FP16/FP32 FMA operations
per clock”

e “432 Third-generation Tensor Cores
per GPU” (108 SMs)

Table 1. NVIDIA A100 Tensor Core GPU Performance Specs
Peak FP64! 8.7 TFLOPS
Peak FP64 Tensor Core? 19.5TFLOPS
Peak FP321 19.5 TFLOPS
Peak FP16! 78 TFLOPS
Peak BF16? 39 TFLOPS
Peak TF32 Tensor Core! 156 TFLOPS | 312 TFLOPS?
Peak FP16 Tensor Corel 312 TFLOPS | 624 TFLOPS?
Peak BF16 Tensor Core! 312 TFLOPS | 624 TFLOPS?
Peak INT8 Tensor Core! 624 TOPS | 1,248 TOPS?
Peak INT4 Tensor Core! 1,248 TOPS | 2,496 TOPS?

1 - Peak rates are based on GPU Boost Clock.
2 - Effective TFLOPS / TOPS using the new Sparsity feature

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT3Z INT32

Lo Lo
5T ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT3Z INT3Z

INT32 INT32

INT32 INT32

Lo/ Lo
ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FPa2 FPRG4
FP3z FPaz FP&4
FP32 FP32 FPa4

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FPG4
FP32 FP32 FPG4
FP32 FP32 FP&4

FP32 FP32 FPG4

Loy LoV Lo Lo Lo Lov
ST 3T 3T 5T 5T 5T

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32  FP&4
FP3Z FP32 FFG4
FP32 FP32  FPe4

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FPad4

FP32 FPa2 FP&4

FP32 FP32 FIFG4

FP32 FP32 FP&4

LDV LDV Loy Lo Ln/ L
ST ST ST ST 8T ST

SFU

INT3Z INT32

INT3Z INT32

INTI2 INT22

INTAZ INT32

INT3Z INT32

INT32 INT32

INT3Z INT32

INT32 INT32

Lod Loy
ST ST

INT3Z INTZ2

INT3Z INT32

INT32 INT32

INT3Z INT32

INT3Z INT32

INT3Z INT32

INT32 INT32

INT32 INT32

Loy Loy
3T ST

Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP3z FP32  FPo4
FP3z FP32  FPed
FP32 FP32  FPa4

FP32 FP32 FP&4

TENSOR CORE

FP32 FP32 FPE4
FP32 FPa2|  FPes4
FP32 FPazl  FPe4

FP32 FP32 FPE4

L L LY Lo Low
5T 5T 5T ST ST

Warp Scheduler (32 threadiclk)
Dispatch Unit {32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP3z|  FPe4
FP32 FPazl  Fres
FP32 FP32|  FPes

FP32 FP32 FP&4

SFU

TENSOR CORE

FP32 FP3z FPE4

FP32 FPaz  FPe4

FP3Z FP32 FPE4

FP32 FP32 FPE4

Lo/ Lor Loy
ST ST ST

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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Accelerators - Systolic Array




Systolic Array

Concept:

* Functional Units (FUs) are chained to implement a fixed type of computation

Flow inside systolic array needs to be carefully orchestrated

Intermediate results are directly moved to next FU

2D systolic arrays often used for deep learning for Matrix-matrix multiply (GEMM),
called Tensor Cores, GEMM Core, Matrix Multiply Unit

Systolic arrays can be designed for many other computations
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void convlD_12 3(int* x, int* w, int* y) {
for (i=0; i<10;i++) {
y[i]=0;
for (j=0;j<3;j++) {
yli] += x[i+j] * wij];

Example: 1D Convolution

}
e Simple 1D convolution (A1x12)*(1x3): i
Ch a, a, a3 d, dg Ch a, dg dg CET) CIT
——> i
M'ovmg W, W, w,
window
agW, | a,Wp | a,w, | a;w, | a,w, | aw, | agw, | a,w, | agw, agW,
+ + + + + + + + + +
a;w; | a,wW; | a;w; | a,W; | asW; | dgW,; | a;,w; | agW, dgW, a;0Wq
+ + + + + + + + + +
a,W, | azw, | a,w, | asW, | agw, | a;,W, | agW, | agW, | ad;4W, a;,W,
Yo Yo
ACA 41
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Example: 1D Convolution

convlD 12 3:
LW t1,0(al) # wO
 Code LW t2,4(al) #wl
LW t3,8(al) #w?2
void convlD_12_3(int* x, int* w, int* y) { LI t4,0
for (i=0; i<10;i++) { convlD_12 3 loop:
y[i]=0; LW a4,0(a0) # x[i+0]

LW a4,4(a0) # x[i+1]

for (j=0;j<3;j++) {
MUL al,a4,t1 # x[i+0] * w[O]

y[i] += x[i+j] * w(jl;

} MUL a4,a4,t2 # x[i+1] * w[1]
} LW a5,8(a0) # x[i+2]
} ADD al,al,a4
MUL a5,a5,t3 # x[i+2] * w[2]
ADD al,al,a5

SW al,0(a2) # Store y]i]

ADDI a0,a0,4

ADDI al,al,4

ADDI t4,t4,1

BNE t4,10, convliD 12 3 loop
RET

V1.0 ACA 42




Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO

e Structure:

FIFO
%

v

\

v

\ 4

MUL

FIFO

v

MUL+ ADD FU is called
Multiply-Accumulate (MAC) Unit
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO
* Step 1: Load Weights Wa_ W W
1 0
x, _FIFO V4 ‘ ‘ ‘
— X; | X > > g — g _l
MUL MUL MUL

FIFO

ADD

v
\
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO
. [
Clock cycle 3: W, ws W
X, X1 Xo
v, _FIFO V4 ‘ ‘ ‘
- Xg | %3 > > ] - . _l
MUL MUL MUL
FIFO
a
X,W; 2

V1.0 ACA 45



Example: 1D Convolution - Systolic Array (1D) - Structure

* Clock cycle 4:

x, _FIFO V4

x

Ul

X

I

\ 4

A 4
A 4
v

MUL MUL MUL

X1Wq X,W,; +
FIFO

X3W,

v
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO
* Clock cycle 5: N W W W
2 1 0
X, X3 Xy X1 Xo
FIFO
X7 N R . .
— Xg | Xs > > g — g _l
v v A 4 v A 4
MUL MUL MUL
XoW, +
X, W, +
X, W X W
2 W1 X5W, + oo X-W
272 FIFO
XqW, Yo
Latency=5 X Wy + 1st result

X;W,
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Example: 1D Convolution - Systolic Array (1D) - Structure

FIFO
* Clock cycle 6: I W W
2 1 0
Xc X4 X3 Xy X1
FIFO
Xg N/ . . R
—_— X; | Xg > > g — g _l
v v \ 4 \ 4 A 4
MUL MUL MUL
X, W, +
W X,Wq +
X, W
3W1 X3W, + 1YVo X, W
>72 FIFO
, X W Y1 [ Yo
One result in each cycle >72 R
Only one load of data X;Wq + 2nd result
(Initialization interval = 1) X3W,
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Systolic Arrays Pros-Cons

e Advantages:
* Move intermediate results between FUs to reduce memory access
* Balance between computation and memory bandwidth
* Simple design to exploit data-level parallelism (DLP)

* Different systolic arrays can be combined for multi-stage computations

* Disadvantage
» Specialized: computation needs to fit FU arrangement
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A look at Real ML Accelerators

Optional, not relevant for exam

Google Tensor Processing Unit (TPU)
VTA Neural Processing Unit (NPU)



TPU V1: Tensor Processing Unit (2017)

* Application-specific Integrated Circuit (ASIC) — Chip from Google
e Specialized to accelerate Deep Neural Network (DNN) computations

* PCB board with PCle Interface to Host processor

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu?hl=en
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TPU Data Rates

14 GiB/ ke 30 Gig/s
. r
DDR3 Woeight FIFO
[ Interfaces ] = | (Weight Fetcher) |
—-a|
(@ B\ (G )
=
2 100is | Batter el IO
i
14 GiBls § 14 GiBls % (Local Svcke (64K por cycio)
<:> <:> Activation Setup
§ § Storage)
@ =
t ' Activation |
E 167 Gig/s - ‘
N Normalize / Pool
[[] onchpro !i
[[] oata Butter
g U e—e—
[ contret
Not to Scale

Source: https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu?hl=en
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To DDR memory chips

TPU V1 Dataflow and ISA

Instructions:

e Dataflow: | [t)DF; = . Read Weights )
nter
SHiate * Reads weights from the

DDR into the Weight FIFO

e Read from Host Memory: .
e Reads data from the CPU

Weight FIFO

Control
(Instructions)

To Host -
CPU (Host) memory into the
PCle Unified Matrix unified TPU buffer
Interface Buffer Multiply e« Execute Matrix Matrix
Multiply for Convolution +
< = Activation + Pooling D
Accumulators « Write to Host Memory -
* Writes data from unified
Activations buffer into CPU memory
Pooling
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TPU: Matrix Matrix Multiply

e Core of the TPU is matrix-matrix-multiply
e 2D Systolic Array: -_’ A

* Input 1: Matrix size Sx256 (Unified buffer) ;
* Input 2: Constant matrix 256x256 (Weight FIFO)
e Qutput: Inputl multiplied Input 2

* Latency: S cycles R
* Initialization interval: 1 i |

Data

Partial sums

©[2[2 [@

—= Done
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Google TPU V4 for Cloud

Key specifications v4 Pod values

Peak compute per chip 275 teraflops (bf16 or int8)

HBM2 capacity and bandwidth 32 GiB, 1200 GBps

Measured min/mean/max power 90/170/192 W

TPU Pod size 4096 chips

Interconnect topology 3D mesh

Peak compute per Pod 1.1 exaflops (bf16 or int8) Fhips can be arranged in Twisted Torus

All-reduce bandwidth per Pod 1.1 PB/s interconnect

Bisection bandwidth per Pod 24TB/s [ .
== == ] e

Source: https://cloud.google.com/tpu/docs/v4
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Embedded NPU: Versatile Tensor Accelerator (VTA)

—

INSTRUCTION FETCH MODULE

v 1
LOAD COMPUTE STORE
CMD Q CMD Q CMD Q

LD—-CMP Q ! CMP—ST Q
(OG- [covPuTEMonULE | TTTTTTIH
\ L

REGISTER || MICRO-OP
FILE CACHE

v

LOAD STORE
MODULE MODULE
CMP-=LD Q ST—-CMP Q
Lm —~|m|j
[ WEIGHT BUFFER |

 Source: http://arxiv.org/pdf/1807.04188
* Open Source: https://github.com/apache/tvm-vta
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Covered Topics

* General-Purpose Processor Cores

* Pipelining
Speculation and Branch Prediction
Instruction-Level Parallelism: Superscalar, VLIW
Thread-Level Parallelism: Multi-threading, Multi-Core
Data-Level Parallelism: Vector

 Specialized Cores :

* GP-GPUs
* Domain Accelerators: TPU, NPU
* Application-specific Accelerators: HLS-generated
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Thank you for your attention!
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