
Programm- & Systemverifikation
Satisfiability Checking

Georg Weissenbacher
(some slides from Josef Widder)

184.741

What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ We learned how to test programs.
▶ We heard about logical formalisms:

▶ Propositional Logic
▶ First Order Logic
▶ Hoare Logic

▶ Last time we learned about Bounded Model Checking.

Literature

“Decision Procedures”
An Algorithmic Point of View

Daniel Kröning, Ofer Strichman

▶ Chapter 2.2:
SAT Solvers

▶ Available in
“Hauptbibliothek”

Decision Procedures for Propositional Logic

Propositional Logic:

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= true | false

▶ Goal:
▶ Find satisfying assignment or
▶ show unsatisfiability

▶ Soundness: Decision Procedure gives correct answer
▶ Completeness: Decision Procedure always finds an answer

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b

UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b)

SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT

b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c)

SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT

b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c)

UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT

if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)

UNSAT . . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT

. . . contains all clauses of previous formula

Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula

Motivation: Why Do We Need SAT Solvers?

▶ SAT is the canonical NP-complete problem
▶ Other problems in NP can be reduced to SAT
▶ Unless P = NP, there is no efficient solution

Motivation: Applications of SAT Solvers in Verification

▶ Test Case Generation
▶ Bounded Model Checking
▶ Equivalence Checking

Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.

Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.

Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.

Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.

Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.

Test Case/Pattern Generation

▶ Inject bug in software (mutation) or fault in hardware
▶ e.g., variable or wire replaced with a constant

▶ Yields two versions of encoding of software/hardware:
▶ Original program/circuit C
▶ Faulty program/circuit C’

▶ If (C ⊕ C′) is satisfiable
▶ satisfying assignment corresponds to test inputs
▶ test inputs reveal fault (if present in program/circuit)

Conjunctive Normal Form

▶ CNF formula: A conjunction of clauses (product of sums)∧
i

∨
j

ℓi,j , ℓi,j ∈ {a,¬a | a ∈ Variables}

e.g.,
¬a1 ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ a2) ∧ a1

▶ Remember:
▶

∨
ℓ∈∅ ℓ ≡ false (we use 2 to denote the empty clause)

▶ Alternative (more compact) notation:

(a1) (a1 a2) (a1 a2) (a1)

▶ Obtained through Tseitin transformation (see lecture on logic)

Tseitin’s Algorithm Revisited: Example

(a ⇒ (c ∧ d)) ∨ (b ⇒ (c ∧ e))

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

Tseitin’s Algorithm Revisited: Example

(a ⇒ (c ∧ d)) ∨ (b ⇒ (c ∧ e))

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

Tseitin’s Algorithm Revisited: Example

(a ⇒ (c ∧ d)) ∨ (b ⇒ (c ∧ e))

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

Tseitin’s Algorithm Revisited: Example

(a ⇒ (c ∧ d)) ∨ (b ⇒ (c ∧ e))

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)
∧

(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)
∧

(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)
∧

(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4

f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)
∧

(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)
∧

(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)

∧
(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)
∧

(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)

∧
(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)

∧
(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2

f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)

∧
(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)

∧
(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)

∧
(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)

∧
(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)

∧
(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)

∧
(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)

∧
(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)
∧

(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)
∧

(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)
∧

(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)

Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

(x ∨ y) ∧ (z ∨ ¬y)

Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

∃y . (x ∨ y) ∧ (z ∨ ¬y)

Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

∃y . (x ∨ y) ∧ (z ∨ ¬y)
≡((x ∨ y) ∧ (z ∨ ¬y))[y/1] ∨ ((x ∨ y) ∧ (z ∨ ¬y))[y/0]

Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

∃y . (x ∨ y) ∧ (z ∨ ¬y)
≡((x ∨ y) ∧ (z ∨ ¬y))[y/1] ∨ ((x ∨ y) ∧ (z ∨ ¬y))[y/0]

≡((x ∨ 1)︸ ︷︷ ︸
1

∧ (z ∨ ¬1)︸ ︷︷ ︸
z

) ∨ ((x ∨ 0)︸ ︷︷ ︸
x

∧ (z ∨ ¬0)︸ ︷︷ ︸
1

)

Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

∃y . (x ∨ y) ∧ (z ∨ ¬y)
≡((x ∨ y) ∧ (z ∨ ¬y))[y/1] ∨ ((x ∨ y) ∧ (z ∨ ¬y))[y/0]

≡((x ∨ 1)︸ ︷︷ ︸
1

∧ (z ∨ ¬1)︸ ︷︷ ︸
z

) ∨ ((x ∨ 0)︸ ︷︷ ︸
x

∧ (z ∨ ¬0)︸ ︷︷ ︸
1

)

≡(x ∨ z)

Resolution Principle

▶ Let C, D be clauses (disjunctions of literals)

(C ∨ a) (D ∨ a)
C ∨ D

[Res]

▶ For instance:
(a1) (a1 a2) (a1 a2) (a1)

a1

a1a2 a1a2 a1

a2

a1

�

Unit Resolution

▶ In particular:
(C ∨ a) (a)

C
[Res]

▶ “Unit Clause Rule”
▶ Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1a1a2

a2

a1

a1a2

a1

�

▶ Unit clause propagation: Efficient

Unit Resolution

▶ In particular:
(C ∨ a) (a)

C
[Res]

▶ “Unit Clause Rule”
▶ Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1a1a2

a2

a1a2

a1a1

�

▶ Unit clause propagation: Efficient

Unit Resolution

▶ In particular:
(C ∨ a) (a)

C
[Res]

▶ “Unit Clause Rule”
▶ Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1

a1a2 a1a2 a1

a2

a1

�

▶ Unit clause propagation: Efficient

Unit Resolution

▶ In particular:
(C ∨ a) (a)

C
[Res]

▶ “Unit Clause Rule”
▶ Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1

a1a2 a1a2 a1

a2

a1

�

▶ Unit clause propagation: Efficient

Decision Making

▶ What if there are no unit clauses?
▶ Progress by making decisions about variables:

(a1 a2)
{a1 7→ 1, . . .}

▶ Partial assignment: Not all variables assigned

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

▶ (x1 ∨ x3 ∨ ¬x4) is satisfied
One or more literal satisfied (clause can be ignored)

▶ (¬x1 ∨ x2) is conflicting:
All literals assigned but not satisfied

▶ (¬x1 ∨ ¬x4 ∨ x3) is unit:
All but one literal assigned, but not satisfied

▶ (¬x1 ∨ x3 ∨ x5) is unresolved

Decision Making

▶ What if there are no unit clauses?
▶ Progress by making decisions about variables:

(a1 a2)
{a1 7→ 1, . . .}

▶ Partial assignment: Not all variables assigned

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

▶ (x1 ∨ x3 ∨ ¬x4) is satisfied
One or more literal satisfied (clause can be ignored)

▶ (¬x1 ∨ x2) is conflicting:
All literals assigned but not satisfied

▶ (¬x1 ∨ ¬x4 ∨ x3) is unit:
All but one literal assigned, but not satisfied

▶ (¬x1 ∨ x3 ∨ x5) is unresolved

Decision Levels

▶ Decision may result in unit clauses

{x1 7→ 1, x4 7→ 1}
(¬x1 ∨ ¬x4 ∨ x3)

▶ Results in unit clause:
▶ {x1 7→ 1, x4 7→ 1} AND (¬x1 ∨ ¬x4 ∨ x3) implies x3
▶ Antecedent of x3 is (¬x1 ∨ ¬x4 ∨ x3)
▶ Leads to unit propagation!

▶ Each decision is associated with a decision level

{x1 7→ 1︸ ︷︷ ︸
1

, x4 7→ 1︸ ︷︷ ︸
2

, . . .}

▶ Implications of a decision associated with same decision level:

▶ x4 and x3 above have decision level 2,
denoted by ¬x4@2 and x3@2

Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)

1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)

Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1

2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)

Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)

Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)

Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)

Boolean Constraint Propagation, Implication Graph

c1 ≡ (x1 x4 x3) , c2 ≡ (x3x2)

x1@1 x4@2 x3@2 ¬x2@2c1 c2

▶ Nodes labelled with decisions
▶ Edges labelled with antecedents

Backtracking

What if a decision is wrong?

x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)

Backtracking

What if a decision is wrong?

x1@1 ¬x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

¬x2@2

x3@2

c1

x1 7→ 0, x2 7→ 0, x3 7→ 1

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)

Davis-Putnam-Loveland-Logeman (DPLL)

▶ Decide
Choose a variable and make a decision

▶ Propagate
Propagate implications

▶ Backtrack
“Undo” decisions which lead to conflict

Conflict-Driven Backtracking

▶ How can we do systematic backtracking?

Definition (Partial Implication Graph)

Sub-graph of an implication graph illustrating binary constraint
propagation (BCP) at a specific implication level

Definition (Conflict Graph)

An implication graph in which BCP has reached a conflict

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�

Conflict-Driven Backtracking, Learning

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�

▶ Analyse conflict
▶ Add learnt conflict clause ((x1) in our example)
▶ Backtrack

▶ to highest decision level in conflict clause that’s not the current
decision level

▶ to 0, if we learnt a unit clause

Example: Learning Conflict Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

x1@6

x3@6

¬x5@3

x2@6

x4@6

c4

c4
�

c2

c2

c1 c3

▶ Conflict clause: (x1 x5)
▶ Backtracking level: 3

▶ Erase all decisions from decision level 4 onwards

Example: Learning Conflict Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

x1@6

x3@6

¬x5@3

x2@6

x4@6

c4

c4
�

c2

c2

c1 c3

▶ Conflict clause: (x1 x5)

▶ Backtracking level: 3
▶ Erase all decisions from decision level 4 onwards

Example: Learning Conflict Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

x1@6

x3@6

¬x5@3

x2@6

x4@6

c4

c4
�

c2

c2

c1 c3

▶ Conflict clause: (x1 x5)
▶ Backtracking level: 3

▶ Erase all decisions from decision level 4 onwards

Asserting Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

c5 = (x1 x5)

▶ We backtracked to decision level of x5

▶ Since x5 7→ 0, (x1 x5) forces an immediate implication
▶ Such a clause is called asserting clause

Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11) 3.) (x10 x2 x3 x11)

Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11)

2.) (x10 x4 x11) 3.) (x10 x2 x3 x11)

Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11)

3.) (x10 x2 x3 x11)

Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11) 3.) (x10 x2 x3 x11)

Conflict Clauses: Unique Implication Point

Definition (Unique Implication Point)

Any node (other than the conflict node) in the partial conflict graph
which is on all paths
▶ from the decision node
▶ to the conflict node

Note: The decision node is a UIP by definition.

Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP UIP

Conflict Clauses: Unique Implication Point (ctd.)

Definition (First Unique Implication Point)

The UIP that’s closest to the conflict node

▶ Choose conflict clause that contains First UIP as only literal at
the current decision level

▶ Advantages:
▶ Clause is an assertion clause
▶ Backtracks to lowest decision level

Why? Clause with First UIP “subsumes” other UIPs

Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP
UIP

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11)

Conflict Clauses and Resolution

c1 = (x4 x2 x5)
c2 = (x4 x10 x6)
c3 = (x5 x6 x7)
c4 = (x6 x7)

c5 = (x2 x4 x10)

Order: x4, x5, x6, x7

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

x4@5

x5@5

x6@5

¬x10@3

¬x2@3

¬x7@5

�c4

c4

c1

c2

c1

c2

c3

c3

UIP

Conflict Clauses and Resolution

c1 = (x4 x2 x5)
c2 = (x4 x10 x6)
c3 = (x5 x6 x7)
c4 = (x6 x7)

c5 = (x2 x4 x10)

Order: x4, x5, x6, x7

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

x4@5

x5@5

x6@5

¬x10@3

¬x2@3

¬x7@5

�c4

c4

c1

c2

c1

c2

c3

c3

UIP

Conflict Clauses and Resolution

▶ Start with currently conflicting clause (c4 in example)
▶ Choose last assigned literal (x7 in example)
▶ x7 follows from c3

▶ Phase of x7 in c4 differs from c3

▶ t1 = Res(c4, c3, x7)

▶ Iterate until we reach UIP
(i.e., ti contains UIP as single literal at current decision level)

In our example:

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

Conflict Clauses

▶ Each conflict clause consequence
▶ of F and
▶ previously derived conflict clauses

▶ Derived using resolution
▶ Therefore, conflict clause is implied by original CNF formula F
▶ Therefore, SAT-solver can be used to find resolution proofs!

DPLL Completed

➀ If conflict at decision level 0 → UNSAT

➁ Repeat:
➊ if all variables assigned return SAT

➋ Make decision
➌ Propagate constraints
➍ No conflict? Go to ➊
➎ If decision level = 0 return UNSAT

➏ Analyse conflict
➐ Add conflict clause
➑ Backtrack and go to ➌

Termination argument:
▶ Solver never enters same decision level with same partial

assignment

DPLL Completed

➀ If conflict at decision level 0 → UNSAT

➁ Repeat:
➊ if all variables assigned return SAT

➋ Make decision
➌ Propagate constraints
➍ No conflict? Go to ➊
➎ If decision level = 0 return UNSAT

➏ Analyse conflict
➐ Add conflict clause
➑ Backtrack and go to ➌

Termination argument:
▶ Solver never enters same decision level with same partial

assignment

DIMACS Format

c A sample .cnf file

p cnf 3 2

1 -3 0

2 3 -1 0

DIMACS = Discrete Mathematics and Theoretical Computer Science,

a collaboration Rutgers & Princeton, to determine practical algorithm

performance on computationally hard problems

Unsatisfiable Core

▶ If instance unsatisfiable, SAT-solver derives 2
▶ Follow resolution edges starting from 2

▶ we obtain a resolution refutation proof
▶ does not necessarily contain all clauses visited during SAT-run
▶ represents unsatisfiable core

Definition (Unsatisfiable Core)

Any unsatisfiable subset of the original set of clauses

Variable Order

▶ Does the order in which we assign variables matter?
▶ How about the values we choose?

a1

a1a2 a1a2 a1

a2

a1

�

Probably the most important element in SAT solving!

Variable Order

▶ Does the order in which we assign variables matter?
▶ How about the values we choose?

a1

a1a2 a1a2 a1

a2

a1

�

Probably the most important element in SAT solving!

Decision Heuristics: DLIS

Dynamic Largest Individual Sum –
choose assignment s.t. number of satisfied clauses is maximised
▶ px . . . # of unresolved clauses containing x

▶ nx . . . # of unresolved clauses containing x

▶ Let x be variable for which px is maximal
▶ Let y be variable for which ny is maximal
▶ If px > ny choose x 7→ 1
▶ Otherwise, choose y 7→ 0

Disadvantage: High overhead

Decision Heuristics: VSDIS

Variable State Independent Decaying Sum –
favour literals in recently added conflict clauses
▶ Each literal has counter initialised to 0
▶ When clause is added, literals in clause are boosted
▶ Periodically, all counters divided by constant
▶ Choose unassigned literal with highest counter

▶ Implemented in CHAFF
▶ Maintain list of unassigned literals sorted by counter
▶ Update list when adding conflict clauses
▶ Decision in O(1)

▶ Improved performance by order of magnitude

Performance of SAT Solvers

▶ Scales to hundreds of thousands of variables
▶ for “benign” problems
▶ challenges:

▶ pigeon hole problems (size of resolution proof exponential)
▶ chains of ⊕Enabling Technology: SAT

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

BMC is enabled by the
progress propositional SAT solvers have made

in the last 10 years.

V. D’Silva & D. Kroening: Software Verification 14

BDDs vs SAT

BDD SAT
Variables Hundreds hundreds of thousands

Complexity PSPACE-complete NP-complete

Assignments O(n) SAT-run

Canonical Yes No

Equality check O(1) (hashing) SAT-run (F ⊕ G)

Quantifier elimination Yes Co-Factoring

Summary

▶ Efficient SAT checking for propositional logic
▶ Next time: Satisfiability Modulo Theories (SMT)

▶ Theory-specific reasoning

