Programm- & Systemverifikation

Satisfiability Checking

Georg Weissenbacher (some slides from Josef Widder) 184.741

How bugs come into being:

- ► Fault cause of an error (e.g., mistake in coding)
- Error incorrect state that may lead to failure
- Failure deviation from *desired* behaviour
- We specified intended behaviour using assertions
- ► We proved our programs correct (inductive invariants).
- ► We learned how to test programs.
- ► We heard about logical formalisms:
 - Propositional Logic
 - First Order Logic
 - Hoare Logic
- Last time we learned about Bounded Model Checking.

Literature

"Decision Procedures" An Algorithmic Point of View Daniel Kröning, Ofer Strichman

- Chapter 2.2: SAT Solvers
- Available in "Hauptbibliothek"

Propositional Logic:

formula	::=	formula \land formula \mid formula \lor formula \mid
		$ egthinspace{-1mm}{-1mm}$ formula (formula) atom
atom	::=	propositional identifier constant
oonstant		true folgo

constant ::= true | false

► Goal:

- Find satisfying assignment or
- show unsatisfiability
- Soundness: Decision Procedure gives correct answer
- ► Completeness: Decision Procedure always finds an answer

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor b) \land \neg a \land \neg b$$
 UNSAT

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land \neg a \land \neg b$$
 UNSAT
 $(a \lor \neg b) \lor (\neg a \land \neg b)$ SAT

$$(a \lor b) \land \neg a \land \neg b$$
 UNSAT
$$(a \lor \neg b) \lor (\neg a \land \neg b)$$
 SAT
$$b = false$$

$$(a \lor b) \land \neg a \land \neg b$$
UNSAT $(a \lor \neg b) \lor (\neg a \land \neg b)$ SAT
 $b = false$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$
SAT
$$b = false$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$
SAT

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$$

$$(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$$

$$(a \lor b) \land \neg a \land \neg b$$
UNSAT $(a \lor \neg b) \lor (\neg a \land \neg b)$ SAT
 $b = false$ $(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$ SAT
 $b = c = true$ $(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$ UNSAT

$$(a \lor b) \land \neg a \land \neg b$$
UNSAT $(a \lor \neg b) \lor (\neg a \land \neg b)$ SAT
 $b = false$ $(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$ SAT
 $b = c = true$ $(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$ UNSAT
 $if c = true, then a = false, b = false,$

then 1st clause false

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

 $(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$ UNSAT if c = true, then a = false, b = false, then 1st clause false

$$(d \lor \neg b) \land (\neg a \lor \neg c) \land (\neg d \lor e) \land (a \lor b) \land (e \lor c \lor \neg b) \land c \land (\neg b \lor \neg c) \land (a \lor b \lor c)$$

$$(a \lor b) \land \neg a \land \neg b$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor \neg b) \lor (\neg a \land \neg b)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

$$(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$$

 $(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$ UNSAT if c = true, then a = false, b = false, then 1st clause false

$$(d \lor \neg b) \land (\neg a \lor \neg c) \land (\neg d \lor e) \land (a \lor b) \land (e \lor c \lor \neg b) \land c \land (\neg b \lor \neg c) \land (a \lor b \lor c)$$

UNSAT

$$(a \lor b) \land \neg a \land \neg b$$
UNSAT $(a \lor \neg b) \lor (\neg a \land \neg b)$ SAT
 $b = false$ $(a \lor b) \land c \land (\neg a \lor b \lor \neg c) \land (a \lor c) \land (\neg b \lor c)$ SAT
 $b = c = true$

$$(a \lor b) \land c \land (a \lor b \lor c) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$$
 UNSAT
if $c =$ true, then $a =$ false, $b =$ false,
then 1st clause false

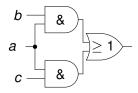
$$(d \lor \neg b) \land (\neg a \lor \neg c) \land (\neg d \lor e) \land (a \lor b) \land (e \lor c \lor \neg b) \land c \land (\neg b \lor \neg c) \land (a \lor b \lor c)$$

UNSAT ... contains all clauses of previous formula

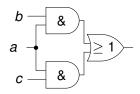
SAT is the canonical NP-complete problem

- Other problems in NP can be reduced to SAT
- Unless P = NP, there is no efficient solution

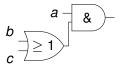
- Test Case Generation
- Bounded Model Checking
- Equivalence Checking



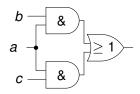
$$C_1 \equiv (a \wedge b) \lor (a \wedge c)$$



$$C_1 \equiv (a \wedge b) \lor (a \wedge c)$$



$$C_2 \equiv a \wedge (b \lor c)$$

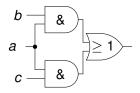


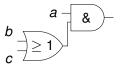
$$b \rightarrow b$$

$$C_2 \equiv a \wedge (b \lor c)$$

 $C_1 \equiv (a \wedge b) \lor (a \wedge c)$

Are C_1 and C_2 functionally equivalent?





$$C_2 \equiv a \wedge (b \lor c)$$

 $C_1 \equiv (a \wedge b) \lor (a \wedge c)$

Are C_1 and C_2 functionally equivalent?

Is \neg ($C_1 \Leftrightarrow C_2$) unsatisfiable? There is no assignment to *a*, *b*, and *c*, such that C_1 and C_2 yield different truth values. Inject bug in software (mutation) or fault in hardware

- e.g., variable or wire replaced with a constant
- Yields two versions of encoding of software/hardware:
 - Original program/circuit C
 - Faulty program/circuit C'
- If $(C \oplus C')$ is satisfiable
 - satisfying assignment corresponds to test inputs
 - test inputs reveal fault (if present in program/circuit)

CNF formula: A conjunction of clauses (product of sums)

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j}, \qquad \ell_{i,j} \in \{a, \neg a \mid a \in Variables\}$$

e.g.,

$$eg a_1 \wedge (a_1 \vee \neg a_2) \wedge (\neg a_1 \vee a_2) \wedge a_1$$

► Remember:

 $\blacktriangleright \ \bigvee_{\ell \in \emptyset} \ell \ \equiv \ \text{false} \qquad (\text{we use } \Box \text{ to denote the empty clause})$

Alternative (more compact) notation:

$$(\overline{a}_1)(a_1 \overline{a}_2)(\overline{a}_1 a_2)(a_1)$$

Obtained through Tseitin transformation (see lecture on logic)

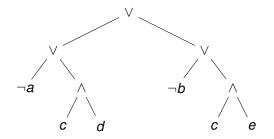
$$(a \Rightarrow (c \land d)) \lor (b \Rightarrow (c \land e))$$

$$(a \Rightarrow (c \land d)) \lor (b \Rightarrow (c \land e))$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$

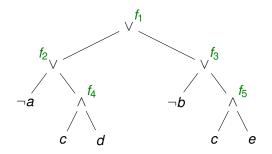
$$(a \Rightarrow (c \land d)) \lor (b \Rightarrow (c \land e))$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$

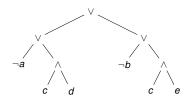


$$(a \Rightarrow (c \land d)) \lor (b \Rightarrow (c \land e))$$

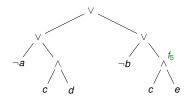
$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$

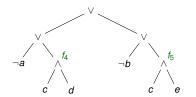


$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



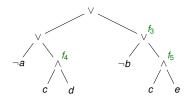
$$(\neg f_5 \lor c) \land (\neg f_5 \lor e) \land (\neg c \lor \neg e \lor f_5)$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



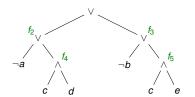
$$\begin{array}{c} & \land \\ (\neg f_4 \lor c) \land (\neg f_4 \lor d) \land (\neg c \lor \neg d \lor f_4) \\ & \land \\ (\neg f_5 \lor c) \land (\neg f_5 \lor e) \land (\neg c \lor \neg e \lor f_5) \end{array}$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



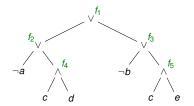
$$\begin{array}{c} \land \\ (f_3 \lor b) \land (f_3 \lor \neg f_5) \land (\neg b \lor f_5 \lor \neg f_3) \\ \land \\ (\neg f_4 \lor c) \land (\neg f_4 \lor d) \land (\neg c \lor \neg d \lor f_4) \\ \land \\ (\neg f_5 \lor c) \land (\neg f_5 \lor e) \land (\neg c \lor \neg e \lor f_5) \end{array}$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



$$\begin{array}{c} \wedge \\ (f_2 \lor a) \land (f_2 \lor \neg f_4) \land (\neg a \lor f_4 \lor \neg f_2) \\ \wedge \\ (f_3 \lor b) \land (f_3 \lor \neg f_5) \land (\neg b \lor f_5 \lor \neg f_3) \\ \wedge \\ (\neg f_4 \lor c) \land (\neg f_4 \lor d) \land (\neg c \lor \neg d \lor f_4) \\ \wedge \\ (\neg f_5 \lor c) \land (\neg f_5 \lor e) \land (\neg c \lor \neg e \lor f_5) \end{array}$$

$$(\neg a \lor (c \land d)) \lor (\neg b \lor (c \land e))$$



$$\begin{array}{c} f_1 \\ \land \\ (f_1 \lor \neg f_2) \land (f_1 \lor \neg f_3) \land (f_2 \lor f_3 \lor \neg f_1) \\ \land \\ (f_2 \lor a) \land (f_2 \lor \neg f_4) \land (\neg a \lor f_4 \lor \neg f_2) \\ \land \\ (f_3 \lor b) \land (f_3 \lor \neg f_5) \land (\neg b \lor f_5 \lor \neg f_3) \\ \land \\ (\neg f_4 \lor c) \land (\neg f_4 \lor d) \land (\neg c \lor \neg d \lor f_4) \\ \land \\ (\neg f_5 \lor c) \land (\neg f_5 \lor e) \land (\neg c \lor \neg e \lor f_5) \end{array}$$

• Naïve algorithm for *n* variables: $O(2^n)$

Let's look at a single variable y first:

 $(x \lor y) \ \land \ (z \lor \neg y)$

• Naïve algorithm for *n* variables: $O(2^n)$

$$\exists y . (x \lor y) \land (z \lor \neg y)$$

• Naïve algorithm for *n* variables: $O(2^n)$

$$\exists y . (x \lor y) \land (z \lor \neg y) \\ \equiv ((x \lor y) \land (z \lor \neg y))[y/1] \lor ((x \lor y) \land (z \lor \neg y))[y/0]$$

• Naïve algorithm for *n* variables: $O(2^n)$

$$\exists y . (x \lor y) \land (z \lor \neg y) \\ \equiv ((x \lor y) \land (z \lor \neg y))[y/1] \lor ((x \lor y) \land (z \lor \neg y))[y/0] \\ \equiv (\underbrace{(x \lor 1)}_{1} \land \underbrace{(z \lor \neg 1)}_{z}) \lor (\underbrace{(x \lor 0)}_{x} \land \underbrace{(z \lor \neg 0)}_{1})$$

• Naïve algorithm for *n* variables: $O(2^n)$

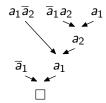
$$\exists y . (x \lor y) \land (z \lor \neg y) \\ \equiv ((x \lor y) \land (z \lor \neg y))[y/1] \lor ((x \lor y) \land (z \lor \neg y))[y/0] \\ \equiv (\underbrace{(x \lor 1)}_{1} \land \underbrace{(z \lor \neg 1)}_{z}) \lor (\underbrace{(x \lor 0)}_{x} \land \underbrace{(z \lor \neg 0)}_{1}) \\ \equiv (x \lor z)$$

► Let *C*, *D* be clauses (disjunctions of literals)

$$\frac{(C \lor a) \quad (D \lor \overline{a})}{C \lor D} \quad [\mathsf{Res}]$$

For instance:

 $(\overline{a}_1)(a_1 \,\overline{a}_2)(\overline{a}_1 \,a_2)(a_1)$



$$\frac{(C \lor a) \quad (\overline{a})}{C} \quad [\text{Res}]$$

- "Unit Clause Rule"
- ► Example revisited:

$$(\overline{a}_{1}) (a_{1} \overline{a}_{2}) (\overline{a}_{1} a_{2}) (a_{1})$$

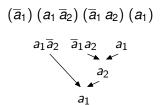
$$\overline{a}_{1} a_{2} a_{1}$$

$$a_{1}$$

$$a_{2}$$

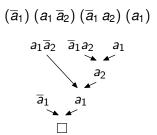
$$(C \lor a)$$
 (\overline{a}) [Res]

- "Unit Clause Rule"
- ► Example revisited:



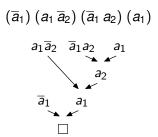
$$(C \lor a)$$
 (\overline{a}) [Res]

- "Unit Clause Rule"
- ► Example revisited:



$$(C \lor a)$$
 (\overline{a}) [Res]

- "Unit Clause Rule"
- ► Example revisited:



► Unit clause propagation: Efficient

What if there are no unit clauses?

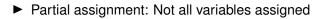
Progress by making decisions about variables:

 $\begin{array}{c} \left(a_1 \ \overline{a}_2\right) \\ \left\{a_1 \mapsto 1, \ \ldots \right\} \end{array}$

What if there are no unit clauses?

Progress by making decisions about variables:

```
\begin{array}{c} \left(a_1 \ \overline{a}_2\right) \\ \left\{a_1 \mapsto 1, \ \ldots\right\} \end{array}
```



$$\{\mathtt{x}_1\mapsto 1,\ \mathtt{x}_2\mapsto 0,\ \mathtt{x}_4\mapsto 1\}$$

- (x₁ ∨ x₃ ∨ ¬x₄) is *satisfied* One or more literal satisfied (clause can be ignored)
- (¬x₁ ∨ x₂) is *conflicting*: All literals assigned but not satisfied
- (¬x₁ ∨ ¬x₄ ∨ x₃) is *unit*: All but one literal assigned, but not satisfied
- $(\neg x_1 \lor x_3 \lor x_5)$ is unresolved

Decision may result in unit clauses

$$\begin{array}{l} \{ \mathtt{x}_1 \mapsto \mathtt{1}, \ \mathtt{x}_4 \mapsto \mathtt{1} \} \\ (\neg \mathtt{x}_1 \lor \neg \mathtt{x}_4 \lor \mathtt{x}_3) \end{array}$$

- Results in unit clause:
 - ${x_1 \mapsto 1, x_4 \mapsto 1}$ AND $(\neg x_1 \lor \neg x_4 \lor x_3)$ implies x_3
 - Antecedent of x_3 is $(\neg x_1 \lor \neg x_4 \lor x_3)$
 - Leads to unit propagation!
- Each decision is associated with a *decision level*

$$\{\underbrace{\underline{x_1\mapsto 1}}_1,\ \underbrace{\underline{x_4\mapsto 1}}_2,\ \ldots\}$$

- Implications of a decision associated with same decision level:
 - ► x₄ and x₃ above have decision level 2, denoted by ¬x₄@2 and x₃@2

dl Assignment 0 –

 $\begin{array}{c} \textbf{Clauses} \\ (\overline{\mathtt{x}}_1 \ \overline{\mathtt{x}}_4 \ \mathtt{x}_3) (\overline{\mathtt{x}}_3 \overline{\mathtt{x}}_2) \end{array}$

- dl Assignment
- 0 –
- $1 \quad \{\mathtt{x}_1 \mapsto 1\}$

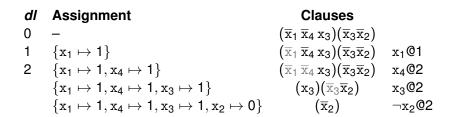
Clauses

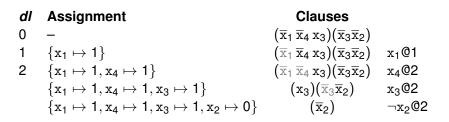
$$\begin{array}{l} (\overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_4 \ \mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) \\ (\overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_4 \ \mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) & \mathbf{x}_1 @ 1 \end{array}$$

$\begin{array}{ll} \textit{dl} & \textit{Assignment} \\ 0 & - \\ 1 & \{x_1 \mapsto 1\} \\ 2 & \{x_1 \mapsto 1, x_4 \mapsto 1\} \\ & \{x_1 \mapsto 1, x_4 \mapsto 1, x_3 \mapsto 1\} \end{array}$

Clauses

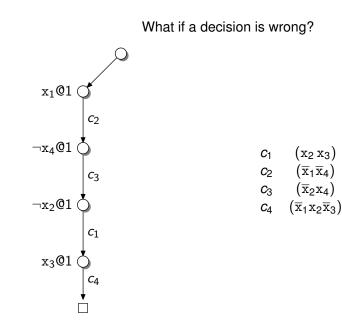
$$\begin{array}{ll} (\overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_4 \ \mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) \\ (\overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_4 \ \mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) & \mathbf{x}_1 @ 1 \\ (\overline{\mathbf{x}}_1 \ \overline{\mathbf{x}}_4 \ \mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) & \mathbf{x}_4 @ 2 \\ (\mathbf{x}_3)(\overline{\mathbf{x}}_3 \overline{\mathbf{x}}_2) & \mathbf{x}_3 @ 2 \end{array}$$

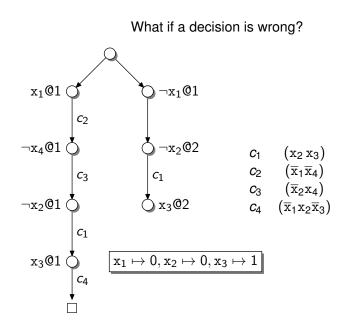




• $\{x_1 \mapsto 1, x_4 \mapsto 1, x_3 \mapsto 1, x_2 \mapsto 0\}$ satisfies $(\overline{x}_1 \ \overline{x}_4 \ x_3)(\overline{x}_3 \overline{x}_2)$

- Nodes labelled with *decisions*
- Edges labelled with antecedents





Decide

Choose a variable and make a decision

- Propagate
 Propagate implications
- Backtrack
 "Undo" decisions which lead to conflict

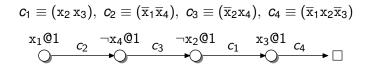
How can we do systematic backtracking?

Definition (Partial Implication Graph)

Sub-graph of an implication graph illustrating binary constraint propagation (BCP) at a specific implication level

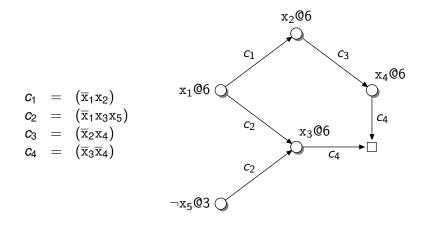
Definition (Conflict Graph)

An implication graph in which BCP has reached a conflict

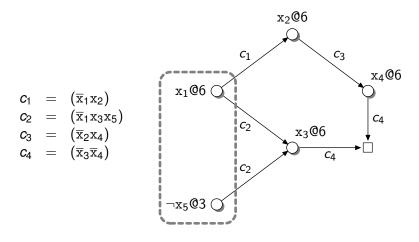


- Analyse conflict
- Add *learnt conflict clause* $((\overline{x}_1) \text{ in our example})$
- Backtrack
 - to highest decision level in conflict clause that's not the current decision level
 - to 0, if we learnt a unit clause

Example: Learning Conflict Clauses

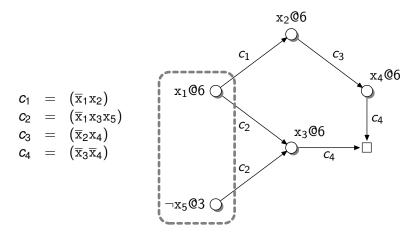


Example: Learning Conflict Clauses



• Conflict clause: $(\overline{x}_1 x_5)$

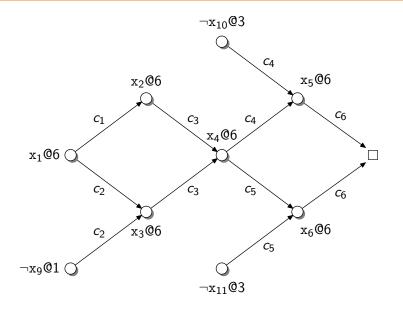
Example: Learning Conflict Clauses

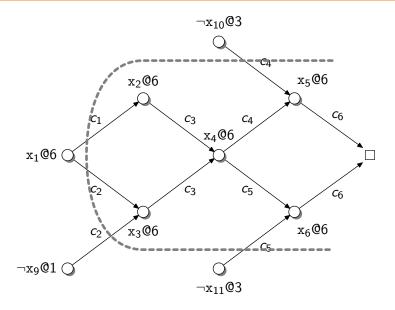


- ► Conflict clause: (x̄₁ x₅)
- Backtracking level: 3
 - Erase all decisions from decision level 4 onwards

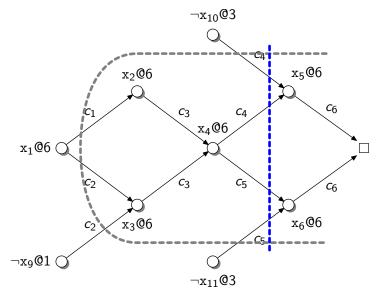
$$\begin{array}{rcl} c_1 & = & (\overline{x}_1 x_2) \\ c_2 & = & (\overline{x}_1 x_3 x_5) \\ c_3 & = & (\overline{x}_2 x_4) \\ c_4 & = & (\overline{x}_3 \overline{x}_4) \\ \hline c_5 & = & (\overline{x}_1 x_5) \end{array}$$

- We backtracked to decision level of x₅
- ▶ Since $x_5 \mapsto 0$, $(\overline{x}_1 x_5)$ forces an immediate implication
- Such a clause is called asserting clause

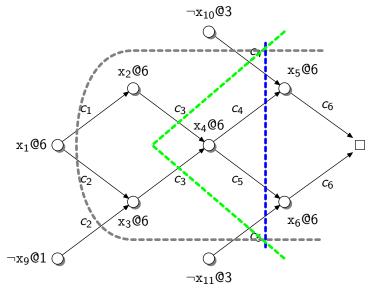




1.) $(x_{10} \overline{x}_1 x_9 x_{11})$



1.) $(x_{10} \overline{x}_1 x_9 x_{11})$ 2.) $(x_{10} \overline{x}_4 x_{11})$



1.) $(x_{10} \overline{x}_1 x_9 x_{11})$ 2.) $(x_{10} \overline{x}_4 x_{11})$ 3.) $(x_{10} \overline{x}_2 \overline{x}_3 x_{11})$

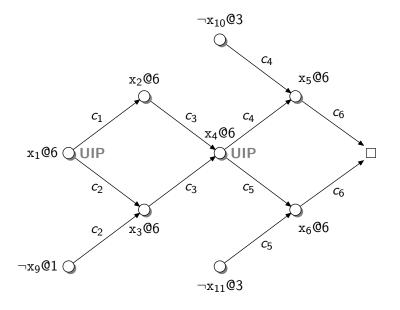
Definition (Unique Implication Point)

Any node (other than the conflict node) in the partial conflict graph which is on *all paths*

- from the decision node
- to the conflict node

Note: The decision node is a UIP by definition.

Conflict Clauses: Unique Implication Point (ctd.)

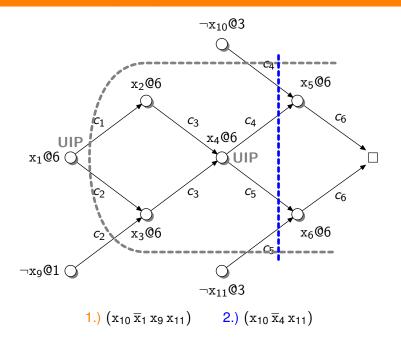


Definition (First Unique Implication Point)

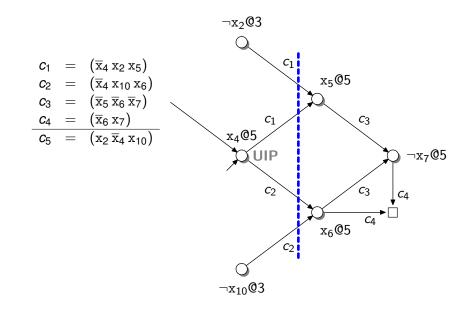
The UIP that's closest to the conflict node

- Choose conflict clause that contains *First UIP* as only literal at the current decision level
- ► Advantages:
 - Clause is an assertion clause
 - Backtracks to *lowest decision level* Why? Clause with First UIP "*subsumes*" other UIPs

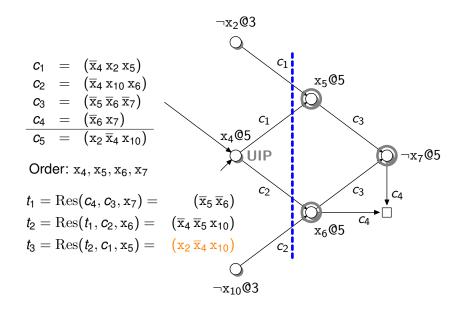
Conflict Clauses: Unique Implication Point (ctd.)



Conflict Clauses and Resolution



Conflict Clauses and Resolution



Conflict Clauses and Resolution

- ► Start with currently conflicting clause (*c*₄ in example)
- Choose last assigned literal (x₇ in example)
- ► x₇ follows from c₃
- Phase of x₇ in c₄ differs from c₃
- ► $t_1 = \operatorname{Res}(c_4, c_3, x_7)$
- Iterate until we reach UIP
 (i.e., t_i contains UIP as single literal at current decision level)
 In our example:

$$t_{1} = \operatorname{Res}(c_{4}, c_{3}, \mathbf{x}_{7}) = (\overline{\mathbf{x}}_{5} \, \overline{\mathbf{x}}_{6})$$

$$t_{2} = \operatorname{Res}(t_{1}, c_{2}, \mathbf{x}_{6}) = (\overline{\mathbf{x}}_{4} \, \overline{\mathbf{x}}_{5} \, \mathbf{x}_{10})$$

$$t_{3} = \operatorname{Res}(t_{2}, c_{1}, \mathbf{x}_{5}) = (\mathbf{x}_{2} \, \overline{\mathbf{x}}_{4} \, \mathbf{x}_{10})$$

Each conflict clause consequence

► of *F* and

previously derived conflict clauses

- Derived using resolution
- Therefore, conflict clause is implied by original CNF formula F
- ► Therefore, SAT-solver can be used to find resolution proofs!

- 1 If conflict at decision level $0 \rightarrow U\textsc{NSAT}$
- ② Repeat:
 - if all variables assigned return SAT
 - Ø Make decision
 - Propagate constraints
 - O No conflict? Go to O
 - If decision level = 0 return UNSAT
 - Analyse conflict
 - Add conflict clause
 - Backtrack and go to

- 1 If conflict at decision level $0 \rightarrow U\textsc{NSAT}$
- ② Repeat:
 - if all variables assigned return SAT
 - Ø Make decision
 - Propagate constraints
 - O No conflict? Go to O
 - If decision level = 0 return UNSAT
 - Analyse conflict
 - Add conflict clause
 - Backtrack and go to

Termination argument:

 Solver never enters same decision level with same partial assignment

```
c A sample .cnf file
p cnf 3 2
1 -3 0
2 3 -1 0
```

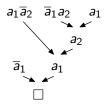
DIMACS = Discrete Mathematics and Theoretical Computer Science, a collaboration Rutgers & Princeton, to determine practical algorithm performance on computationally hard problems

- ► If instance unsatisfiable, SAT-solver derives □
- ► Follow resolution edges starting from □
 - we obtain a resolution refutation proof
 - does not necessarily contain all clauses visited during SAT-run
 - represents unsatisfiable core

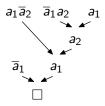
Definition (Unsatisfiable Core)

Any unsatisfiable subset of the original set of clauses

- Does the order in which we assign variables matter?
- How about the values we choose?



- Does the order in which we assign variables matter?
- How about the values we choose?



Probably the most important element in SAT solving!

Dynamic Largest Individual Sum -

choose assignment s.t. number of satisfied clauses is maximised

- ▶ p_x ... # of unresolved clauses containing x
- $n_x \dots \#$ of unresolved clauses containing \overline{x}
- Let x be variable for which p_x is maximal
- Let y be variable for which n_y is maximal
- If $p_x > n_y$ choose $x \mapsto 1$
- Otherwise, choose $y \mapsto 0$

Disadvantage: High overhead

Variable State Independent Decaying Sum –

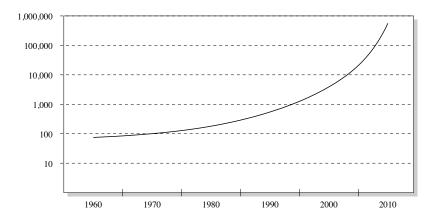
favour literals in recently added conflict clauses

- Each literal has counter initialised to 0
- ▶ When clause is added, literals in clause are boosted
- Periodically, all counters divided by constant
- Choose unassigned literal with highest counter
- Implemented in CHAFF
 - Maintain list of unassigned literals sorted by counter
 - Update list when adding conflict clauses
 - Decision in O(1)
- Improved performance by order of magnitude

- Scales to hundreds of thousands of variables
 - ► for "benign" problems

► chains of ⊕

- challenges:
 - pigeon hole problems (size of resolution proof exponential)



	BDD	SAT
Variables	Hundreds	hundreds of thousands
Complexity	PSPACE-complete	NP-complete
Assignments	<i>O</i> (<i>n</i>)	SAT-run
Canonical	Yes	No
Equality check	O(1) (hashing)	SAT-run (<i>F</i> ⊕ <i>G</i>)
Quantifier elimination	Yes	Co-Factoring

- ► Efficient SAT checking for propositional logic
- Next time: Satisfiability Modulo Theories (SMT)
 - Theory-specific reasoning