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What happened so far

▶ How bugs come into being:
▶ Fault – cause of an error (e.g., mistake in coding)
▶ Error – incorrect state that may lead to failure
▶ Failure – deviation from desired behaviour

▶ We specified intended behaviour using assertions
▶ We proved our programs correct (inductive invariants).
▶ We learned how to test programs.
▶ We heard about logical formalisms:

▶ Propositional Logic
▶ First Order Logic
▶ Hoare Logic

▶ Last time we learned about Bounded Model Checking.



Literature

“Decision Procedures”
An Algorithmic Point of View

Daniel Kröning, Ofer Strichman

▶ Chapter 2.2:
SAT Solvers

▶ Available in
“Hauptbibliothek”



Decision Procedures for Propositional Logic

Propositional Logic:

formula ::= formula ∧ formula | formula ∨ formula |
¬formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= true | false

▶ Goal:
▶ Find satisfying assignment or
▶ show unsatisfiability

▶ Soundness: Decision Procedure gives correct answer
▶ Completeness: Decision Procedure always finds an answer



Warm-up: SAT or UNSAT?

(a ∨ b) ∧ ¬a ∧ ¬b

UNSAT

(a ∨ ¬b) ∨ (¬a ∧ ¬b) SAT
b = false

(a ∨ b) ∧ c ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (¬b ∨ c) SAT
b = c = true

(a ∨ b) ∧ c ∧ (a ∨ b ∨ c) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c) UNSAT
if c = true, then a = false, b = false,
then 1st clause false

(d ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬d ∨ e) ∧ (a ∨ b) ∧ (e ∨ c ∨ ¬b) ∧ c ∧
(¬b ∨ ¬c) ∧ (a ∨ b ∨ c)
UNSAT . . . contains all clauses of previous formula
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Motivation: Why Do We Need SAT Solvers?

▶ SAT is the canonical NP-complete problem
▶ Other problems in NP can be reduced to SAT
▶ Unless P = NP, there is no efficient solution



Motivation: Applications of SAT Solvers in Verification

▶ Test Case Generation
▶ Bounded Model Checking
▶ Equivalence Checking



Checking Equivalence of Circuits

Show that, e.g., optimized circuit has the same functionality

&

≥ 1

&

a

b

c

C1 ≡ (a ∧ b) ∨ (a ∧ c)

&

≥ 1

a
b

c

C2 ≡ a ∧ (b ∨ c)

Are C1 and C2 functionally equivalent?

Is ¬(C1 ⇔ C2) unsatisfiable?
There is no assignment to a, b, and c, such that C1 and C2 yield
different truth values.
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Test Case/Pattern Generation

▶ Inject bug in software (mutation) or fault in hardware
▶ e.g., variable or wire replaced with a constant

▶ Yields two versions of encoding of software/hardware:
▶ Original program/circuit C
▶ Faulty program/circuit C’

▶ If (C ⊕ C′) is satisfiable
▶ satisfying assignment corresponds to test inputs
▶ test inputs reveal fault (if present in program/circuit)



Conjunctive Normal Form

▶ CNF formula: A conjunction of clauses (product of sums)∧
i

∨
j

ℓi,j , ℓi,j ∈ {a,¬a | a ∈ Variables}

e.g.,
¬a1 ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ a2) ∧ a1

▶ Remember:
▶

∨
ℓ∈∅ ℓ ≡ false (we use 2 to denote the empty clause)

▶ Alternative (more compact) notation:

(a1) (a1 a2) (a1 a2) (a1)

▶ Obtained through Tseitin transformation (see lecture on logic)



Tseitin’s Algorithm Revisited: Example

(a ⇒ (c ∧ d)) ∨ (b ⇒ (c ∧ e))

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5
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Example for Tseitin continued

(¬a ∨ (c ∧ d)) ∨ (¬b ∨ (c ∧ e))

∨

∨ ∨

¬a ∧

c d

¬b ∧

c e

f1

f2 f3

f4 f5

f1
∧

(f1∨¬f2)∧(f1∨¬f3)∧(f2∨f3∨¬f1)
∧

(f2∨a)∧(f2∨¬f4)∧(¬a∨ f4∨¬f2)
∧

(f3∨b)∧(f3∨¬f5)∧(¬b∨ f5∨¬f3)
∧

(¬f4∨c)∧(¬f4∨d)∧(¬c∨¬d∨f4)
∧

(¬f5∨c)∧(¬f5∨e)∧(¬c∨¬e∨f5)
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Example for Tseitin continued
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Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

(x ∨ y) ∧ (z ∨ ¬y)
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Quantifier Expansion

▶ Is there a satisfying assignment?
▶ Naı̈ve algorithm for n variables: O(2n)

▶ Let’s look at a single variable y first:

∃y . (x ∨ y) ∧ (z ∨ ¬y)
≡((x ∨ y) ∧ (z ∨ ¬y))[y/1] ∨ ((x ∨ y) ∧ (z ∨ ¬y))[y/0]

≡((x ∨ 1)︸ ︷︷ ︸
1

∧ (z ∨ ¬1)︸ ︷︷ ︸
z

) ∨ ((x ∨ 0)︸ ︷︷ ︸
x

∧ (z ∨ ¬0)︸ ︷︷ ︸
1

)

≡(x ∨ z)



Resolution Principle

▶ Let C, D be clauses (disjunctions of literals)

(C ∨ a) (D ∨ a)
C ∨ D

[Res]

▶ For instance:
(a1) (a1 a2) (a1 a2) (a1)

a1

a1a2 a1a2 a1

a2

a1

�



Unit Resolution

▶ In particular:
(C ∨ a) (a)

C
[Res]

▶ “Unit Clause Rule”
▶ Example revisited:

(a1) (a1 a2) (a1 a2) (a1)

a1a1a2

a2

a1

a1a2

a1

�

▶ Unit clause propagation: Efficient
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▶ Unit clause propagation: Efficient



Decision Making

▶ What if there are no unit clauses?
▶ Progress by making decisions about variables:

(a1 a2)
{a1 7→ 1, . . .}

▶ Partial assignment: Not all variables assigned

{x1 7→ 1, x2 7→ 0, x4 7→ 1}

▶ (x1 ∨ x3 ∨ ¬x4) is satisfied
One or more literal satisfied (clause can be ignored)

▶ (¬x1 ∨ x2) is conflicting:
All literals assigned but not satisfied

▶ (¬x1 ∨ ¬x4 ∨ x3) is unit:
All but one literal assigned, but not satisfied

▶ (¬x1 ∨ x3 ∨ x5) is unresolved
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Decision Levels

▶ Decision may result in unit clauses

{x1 7→ 1, x4 7→ 1}
(¬x1 ∨ ¬x4 ∨ x3)

▶ Results in unit clause:
▶ {x1 7→ 1, x4 7→ 1} AND (¬x1 ∨ ¬x4 ∨ x3) implies x3
▶ Antecedent of x3 is (¬x1 ∨ ¬x4 ∨ x3)
▶ Leads to unit propagation!

▶ Each decision is associated with a decision level

{x1 7→ 1︸ ︷︷ ︸
1

, x4 7→ 1︸ ︷︷ ︸
2

, . . .}

▶ Implications of a decision associated with same decision level:

▶ x4 and x3 above have decision level 2,
denoted by ¬x4@2 and x3@2



Decision Levels (continued)

dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)

1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)
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dl Assignment Clauses
0 – (x1 x4 x3)(x3x2)
1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1@1
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4@2

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3@2
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) ¬x2@2

▶ {x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} satisfies (x1 x4 x3)(x3x2)



Boolean Constraint Propagation, Implication Graph

c1 ≡ (x1 x4 x3) , c2 ≡ (x3x2)

x1@1 x4@2 x3@2 ¬x2@2c1 c2

▶ Nodes labelled with decisions
▶ Edges labelled with antecedents



Backtracking

What if a decision is wrong?

x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)



Backtracking

What if a decision is wrong?

x1@1 ¬x1@1

¬x4@1

¬x2@1

x3@1

c2

c3

c1

c4

�

¬x2@2

x3@2

c1

x1 7→ 0, x2 7→ 0, x3 7→ 1

c1 (x2 x3)
c2 (x1x4)
c3 (x2x4)
c4 (x1x2x3)



Davis-Putnam-Loveland-Logeman (DPLL)

▶ Decide
Choose a variable and make a decision

▶ Propagate
Propagate implications

▶ Backtrack
“Undo” decisions which lead to conflict



Conflict-Driven Backtracking

▶ How can we do systematic backtracking?

Definition (Partial Implication Graph)

Sub-graph of an implication graph illustrating binary constraint
propagation (BCP) at a specific implication level

Definition (Conflict Graph)

An implication graph in which BCP has reached a conflict

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�



Conflict-Driven Backtracking, Learning

c1 ≡ (x2 x3), c2 ≡ (x1x4), c3 ≡ (x2x4), c4 ≡ (x1x2x3)

x1@1 ¬x4@1 ¬x2@1 x3@1c2 c3 c1 c4
�

▶ Analyse conflict
▶ Add learnt conflict clause ((x1) in our example)
▶ Backtrack

▶ to highest decision level in conflict clause that’s not the current
decision level

▶ to 0, if we learnt a unit clause



Example: Learning Conflict Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

x1@6

x3@6

¬x5@3

x2@6

x4@6

c4

c4
�

c2

c2

c1 c3

▶ Conflict clause: (x1 x5)
▶ Backtracking level: 3

▶ Erase all decisions from decision level 4 onwards
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Asserting Clauses

c1 = (x1x2)
c2 = (x1x3x5)
c3 = (x2x4)
c4 = (x3x4)

c5 = (x1 x5)

▶ We backtracked to decision level of x5

▶ Since x5 7→ 0, (x1 x5) forces an immediate implication
▶ Such a clause is called asserting clause



Choosing Conflict Clauses

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11) 3.) (x10 x2 x3 x11)
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Choosing Conflict Clauses
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Conflict Clauses: Unique Implication Point

Definition (Unique Implication Point)

Any node (other than the conflict node) in the partial conflict graph
which is on all paths
▶ from the decision node
▶ to the conflict node

Note: The decision node is a UIP by definition.



Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP UIP



Conflict Clauses: Unique Implication Point (ctd.)

Definition (First Unique Implication Point)

The UIP that’s closest to the conflict node

▶ Choose conflict clause that contains First UIP as only literal at
the current decision level

▶ Advantages:
▶ Clause is an assertion clause
▶ Backtracks to lowest decision level

Why? Clause with First UIP “subsumes” other UIPs



Conflict Clauses: Unique Implication Point (ctd.)

x1@6

x3@6

¬x9@1

x2@6

x4@6

x5@6

x6@6

¬x11@3

¬x10@3

c3

�

c2

c2

c1 c3 c4

c5

c4

c5

c6

c6

UIP
UIP

1.) (x10 x1 x9 x11) 2.) (x10 x4 x11)



Conflict Clauses and Resolution

c1 = (x4 x2 x5)
c2 = (x4 x10 x6)
c3 = (x5 x6 x7)
c4 = (x6 x7)

c5 = (x2 x4 x10)

Order: x4, x5, x6, x7

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

x4@5

x5@5

x6@5

¬x10@3

¬x2@3

¬x7@5

�c4

c4

c1

c2

c1

c2

c3

c3

UIP



Conflict Clauses and Resolution

c1 = (x4 x2 x5)
c2 = (x4 x10 x6)
c3 = (x5 x6 x7)
c4 = (x6 x7)

c5 = (x2 x4 x10)

Order: x4, x5, x6, x7

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)

x4@5

x5@5

x6@5

¬x10@3

¬x2@3

¬x7@5

�c4

c4

c1

c2

c1

c2

c3

c3

UIP



Conflict Clauses and Resolution

▶ Start with currently conflicting clause (c4 in example)
▶ Choose last assigned literal (x7 in example)
▶ x7 follows from c3

▶ Phase of x7 in c4 differs from c3

▶ t1 = Res(c4, c3, x7)

▶ Iterate until we reach UIP
(i.e., ti contains UIP as single literal at current decision level)

In our example:

t1 = Res(c4, c3, x7) = (x5 x6)

t2 = Res(t1, c2, x6) = (x4 x5 x10)

t3 = Res(t2, c1, x5) = (x2 x4 x10)



Conflict Clauses

▶ Each conflict clause consequence
▶ of F and
▶ previously derived conflict clauses

▶ Derived using resolution
▶ Therefore, conflict clause is implied by original CNF formula F
▶ Therefore, SAT-solver can be used to find resolution proofs!



DPLL Completed

➀ If conflict at decision level 0 → UNSAT

➁ Repeat:
➊ if all variables assigned return SAT

➋ Make decision
➌ Propagate constraints
➍ No conflict? Go to ➊
➎ If decision level = 0 return UNSAT

➏ Analyse conflict
➐ Add conflict clause
➑ Backtrack and go to ➌

Termination argument:
▶ Solver never enters same decision level with same partial

assignment
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DIMACS Format

c A sample .cnf file

p cnf 3 2

1 -3 0

2 3 -1 0

DIMACS = Discrete Mathematics and Theoretical Computer Science,

a collaboration Rutgers & Princeton, to determine practical algorithm

performance on computationally hard problems



Unsatisfiable Core

▶ If instance unsatisfiable, SAT-solver derives 2
▶ Follow resolution edges starting from 2

▶ we obtain a resolution refutation proof
▶ does not necessarily contain all clauses visited during SAT-run
▶ represents unsatisfiable core

Definition (Unsatisfiable Core)

Any unsatisfiable subset of the original set of clauses



Variable Order

▶ Does the order in which we assign variables matter?
▶ How about the values we choose?

a1

a1a2 a1a2 a1

a2

a1

�

Probably the most important element in SAT solving!
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Decision Heuristics: DLIS

Dynamic Largest Individual Sum –
choose assignment s.t. number of satisfied clauses is maximised
▶ px . . . # of unresolved clauses containing x

▶ nx . . . # of unresolved clauses containing x

▶ Let x be variable for which px is maximal
▶ Let y be variable for which ny is maximal
▶ If px > ny choose x 7→ 1
▶ Otherwise, choose y 7→ 0

Disadvantage: High overhead



Decision Heuristics: VSDIS

Variable State Independent Decaying Sum –
favour literals in recently added conflict clauses
▶ Each literal has counter initialised to 0
▶ When clause is added, literals in clause are boosted
▶ Periodically, all counters divided by constant
▶ Choose unassigned literal with highest counter

▶ Implemented in CHAFF
▶ Maintain list of unassigned literals sorted by counter
▶ Update list when adding conflict clauses
▶ Decision in O(1)

▶ Improved performance by order of magnitude



Performance of SAT Solvers

▶ Scales to hundreds of thousands of variables
▶ for “benign” problems
▶ challenges:

▶ pigeon hole problems (size of resolution proof exponential)
▶ chains of ⊕Enabling Technology: SAT

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

BMC is enabled by the
progress propositional SAT solvers have made

in the last 10 years.
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BDDs vs SAT

BDD SAT
Variables Hundreds hundreds of thousands

Complexity PSPACE-complete NP-complete

Assignments O(n) SAT-run

Canonical Yes No

Equality check O(1) (hashing) SAT-run (F ⊕ G)

Quantifier elimination Yes Co-Factoring



Summary

▶ Efficient SAT checking for propositional logic
▶ Next time: Satisfiability Modulo Theories (SMT)

▶ Theory-specific reasoning


