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» How bugs come into being:

» Fault — cause of an error (e.g., mistake in coding)
» Error — incorrect state that may lead to failure
» Failure — deviation from desired behaviour

» We specified intended behaviour using assertions
» We proved our programs correct (inductive invariants).
» We learned how to test programs.

» We heard about logical formalisms:

» Propositional Logic
» First Order Logic
» Hoare Logic

» Last time we learned about Bounded Model Checking.



“Decision Procedures”
An Algorithmic Point of View
Daniel Kréning, Ofer Strichman

» Chapter 2.2:
SAT Solvers

Decision > Availablt_a iI.’]

Procedures “Hauptbibliothek”




Propositional Logic:

formula = formula N formula | formula \/ formula |
—~formula | (formula) | atom
atom = propositional identifier | constant
constant = true | false
» Goal:

» Find satisfying assignment or
» show unsatisfiability

» Soundness: Decision Procedure gives correct answer
» Completeness: Decision Procedure always finds an answer
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» SAT is the canonical NP-complete problem

» Other problems in NP can be reduced to SAT
» Unless P = NP, there is no efficient solution



» Test Case Generation
» Bounded Model Checking
» Equivalence Checking
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Show that, e.g., optimized circuit has the same functionality

C—& c

Ci=(anb)V(anc) C:=aA(bve)

Are C; and C» functionally equivalent?

Is =(Cy < C2) unsatisfiable?
There is no assignment to a, b, and ¢, such that C; and C> yield
different truth values.



» Inject bug in software (mutation) or fault in hardware
» e.g., variable or wire replaced with a constant

» Yields two versions of encoding of software/hardware:
» Original program/circuit C
» Faulty program/circuit C’

> If (C@ C') is satisfiable

» satisfying assignment corresponds to test inputs
» test inputs reveal fault (if present in program/circuit)



» CNF formula: A conjunction of clauses (product of sums)

AV,  tje{a~alac Variables}
i

e.g.,
—a A\ (31 V —laz) A (—|a1 \Y 32) N ai

» Remember:
> ol = false (we use O to denote the empty clause)

» Alternative (more compact) notation:

(a1) (a1 @) (a1 a) (a1)

» Obtained through Tseitin transformation (see lecture on logic)
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» |s there a satisfying assignment?
» Naive algorithm for n variables: O(2")

» Let’s look at a single variable y first:

Jy.(xVy) A (zV-y)
=((xVy) A (zV-y))ly/1]VI(EVy) A (zV-y)ly/0]
=((xV1) A (zv-1)V((xV0) A (zV—0))

=(xVz)



» Let C, D be clauses (disjunctions of literals)

(Cva) (DVa)
CVvD

[Res]

» For instance:
(a1) (a1 @) (a1 a) (a1)

aia, aijax a
~a o
a
“
a  a
A &7

O
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» In particular:
(CVa) (a)
C

[Res]

» “Unit Clause Rule”
» Example revisited:

(a1) (a1 @) (a1 a) (a1)

aiax aiax a1

"'
a
-~
a1 a
A &

O
» Unit clause propagation: Efficient
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» What if there are no unit clauses?
» Progress by making decisions about variables:

(a132)
{a1 — 1, }

» Partial assignment: Not all variables assigned

{X1'—>1,X2'—>0, X4'—>1}

> (x1V x3V —xq) is satisfied
One or more literal satisfied (clause can be ignored)

» (—x1 V xp)is conflicting:
All literals assigned but not satisfied

> (_\X1 V —xgq V X3) is unit:
All but one literal assigned, but not satisfied

> (—x1 Vx3V xs)lis unresolved



» Decision may result in unit clauses

{X1 —> 1, X4 > 1}
(—'X1 V x4 \/X3)

» Results in unit clause:
> {X1 =1, x4 — 1} AND (—|X1 V —xq V X3) implies x3
» Antecedent of x3 is (—x1 V —x4 V x3)
> Leads to unit propagation!

» Each decision is associated with a decision level

{X1i—>1, x4 — 1, }
1 2

» Implications of a decision associated with same decision level:

» x, and x3 above have decision level 2,
denoted by —x,02 and %302
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dl Assignment Clauses

0o - (§1 X4 X3)(§3f2)

1 {X1 — 1} (§1 X4 X3)(§3i2) x101
2 {xi—olxe1} (%1 %2 x3)(Xa%2) %402

{X1 — 1, x4 — 1,x3 — 1} (X3)(§3i2) x302



N = O

Assignment

{X1 — 1}

{X1 — 1,X4i—> 1}

{X1 — 1,X4i—> 1,X3I—> 1}

{X1 l—)1,X4r—> 1,X3r—>1,X2l—)0}

Clauses
(§1 X4 X3)(§3f2)
(%1 X4 x3)(X3%2)
(§1 X4 X3)(§3f2)
(x3)(%5%2)

(%2)

x101
x402
X3@2
—x502



dl Assignment Clauses

0o - (§1 X4 X3)(§3f2)

1 {X1 — 1} (§1 X4 X3)(i3i2) x101

2 {X1 —1,x4 — 1} (§1 X4 X3)(§3f2) x402
{X1 — 1, x4 — 1,x3 — 1} (X3)(§3i2) x302
{X1l—>1,X4r—>1,X3r—)1,X2f—)0} (fg) —x,02

> {x1— 1,x4+— 1,x3— 1,% — 0} satisfies (X4 X4 x3)(X3%o2)



Cl = (f1 X4 X3) , Co = (§3i2)

x101 x402 a x302 - —x,@2
O—O—O0—0O

» Nodes labelled with decisions
» Edges labelled with antecedents



What if a decision is wrong?

x101
2
~x401 ¢ (x2x3)
c3 Co (i1i4)
C3 (i2X4)
—x,01 Cy (§1X2§3)
1
x301
Ca



What if a decision is wrong?

x101

—x401 —x502 ci (x2%3)
a Co (i1 i4)
C3 (i2X4)

—x201 x302 cs  (X1x2%3)

x301 X1|—>0,xz»—>0,X3»—>1|




» Decide
Choose a variable and make a decision

» Propagate
Propagate implications

» Backtrack
“Undo” decisions which lead to conflict



» How can we do systematic backtracking?

Sub-graph of an implication graph illustrating binary constraint
propagation (BCP) at a specific implication level

An implication graph in which BCP has reached a conflict

¢1 = (x2x3), C2 = (X1X4), 03 = (X2x4), C4 = (X1x2%3)

x101 & —x401 cs —-x,01 o x301 ca

Q O———OQ——Q—0



¢y = (x2x3), G2 = (X1%4), 03 = (Xoxs), C4 = (X1%2X3)

x101 & —-x401 e —x,01 al x301 e -
O— OO0 —" QO ——

» Analyse conflict

» Add /earnt conflict clause  ((X1) in our example)
» Backtrack

» to highest decision level in conflict clause that’s not the current
decision level
» to 0, if we learnt a unit clause



C1
Co

Cs

g: 23(5)
(%2x4)
(X3%4)

x106

-x503

x,06




cf = (i1 Xg)
C = (21 X3X5)
3 = (f2X4)
Cy = (2324)

» Conflict clause: (X1 xs)

x206




C1
C2
C3
C4

» Conflict clause: (X1 xs)
» Backtracking level: 3

(x1%2)
(X1x3x5)
(X2x4)
(X3%4)

x206

x106

» Erase all decisions from decision level 4 onwards



cp = (§1 Xg)
C = (21 X3X5 )
3 = (%oxs)
Cy = (2334 )
C; = (21 X5 )

» We backtracked to decision level of x5
» Since x5 — 0, (X1 xs5) forces an immediate implication
» Such a clause is called asserting clause



-x1003

x106

—1x9@1

—-x1103



x106

—1x9@1

1.) (%10 X1 X9 X11)



x106

x606

—1x9@1

1.) (%10 %1 %9 X11) 2.) (x10%X4%11)



-x1003

x306

Cocccsscccccas

—x901 O
—-x1103

1.) (%10 X1 X9 X11) 2.) (x10 X4 %X11) 3.) (x10X2X3x11)



Any node (other than the conflict node) in the partial conflict graph
which is on all paths

» from the decision node
» to the conflict node

Note: The decision node is a UIP by definition.



—-x1103



The UIP that’s closest to the conflict node

» Choose conflict clause that contains First UIP as only literal at
the current decision level
» Advantages:

» Clause is an assertion clause
» Backtracks to lowest decision level
Why? Clause with First UIP “subsumes” other UIPs



—-x1103

1.) (x10X1 X9 X11) 2.) (x10Xax11)



cT = (X4 X2 X5)
2 = (Xax10xe)
3 = (X5X6%7)
Cs = (Xe X7)

s = (x2Xaxq0)




—x,03
cT = (X4 X2 X5)
C2c = (X4%10%s)
3 = (X5X6%7)
Cs = (Xe X7)
s = (x2Xax10)

Order: x4, x5, xg, X7

_ c
ti = Res(cs, Cc3,%7) = (X5 %6) 4
tp = Res(t, C2,x6) = (X4 %5x10)
t3 = Res(to, €1, x5) = (%2 %4%10)



vVvyyvVvyYyvyy

Start with currently conflicting clause (¢4 in example)
Choose last assigned literal (x7 in example)

x7 follows from ¢3

Phase of x7 in ¢4 differs from c3

ti = Res(cs, c3,%7)

Iterate until we reach UIP

(i.e., ti contains UIP as single literal at current decision level)
In our example:

ti = Res(cs, c3,%7) = (X5 %6)
tp = Res(t,C2,x6) = (X4 X5%10)

I3 = ReS(tQ, C1,X5) = (X2 X4 X10)



» Each conflict clause consequence

» of Fand
» previously derived conflict clauses

» Derived using resolution
» Therefore, conflict clause is implied by original CNF formula F
» Therefore, SAT-solver can be used to find resolution proofs!



@ If conflict at decision level 0 — UNSAT
@ Repeat:

if all variables assigned return SAT
Make decision

Propagate constraints

No conflict? Go to @

If decision level = 0 return UNSAT
Analyse conflict

Add conflict clause

Backtrack and go to ©®

00006000 eC



@ If conflict at decision level 0 — UNSAT
@ Repeat:

if all variables assigned return SAT
Make decision

Propagate constraints

No conflict? Go to @

If decision level = 0 return UNSAT
Analyse conflict

Add conflict clause

Backtrack and go to ©®

00006000 eC

Termination argument:

» Solver never enters same decision level with same partial
assignment



c A sample .cnf file
p cnf 3 2

1-30

23-10

DIMACS = Discrete Mathematics and Theoretical Computer Science,
a collaboration Rutgers & Princeton, to determine practical algorithm
performance on computationally hard problems



» [f instance unsatisfiable, SAT-solver derives O
» Follow resolution edges starting from O

» we obtain a resolution refutation proof
» does not necessarily contain all clauses visited during SAT-run
» represents unsatisfiable core

Any unsatisfiable subset of the original set of clauses



» Does the order in which we assign variables matter?
» How about the values we choose?
aiay aia2 ar
A &7
az
~
ai al
A &

O



» Does the order in which we assign variables matter?
» How about the values we choose?
aiay aia2 ar
A &7

as
~

a a
A &

O

Probably the most important element in SAT solving!



Dynamic Largest Individual Sum —

choose assignment s.t. number of satisfied clauses is maximised
> p, ...# of unresolved clauses containing x
» n, ...# of unresolved clauses containing x
» Let x be variable for which p, is maximal
» Let y be variable for which ny is maximal
» If px > ny choose x — 1

» Otherwise, choose y — 0

Disadvantage: High overhead



Variable State Independent Decaying Sum —
favour literals in recently added conflict clauses

» Each literal has counter initialised to 0

» When clause is added, literals in clause are boosted
» Periodically, all counters divided by constant

» Choose unassigned literal with highest counter

» Implemented in CHAFF

» Maintain list of unassigned literals sorted by counter
» Update list when adding conflict clauses
» Decision in O(1)

» Improved performance by order of magnitude



» Scales to hundreds of thousands of variables
» for “benign” problems
» challenges:

» pigeon hole problems (size of resolution proof exponential)
» chains of ®

1,000,000

100,000 -

10,000 -

1,000 -

100 -

T R

1960 1970 1980 1990 2000 2010



BDD SAT
Variables Hundreds hundreds of thousands
Complexity PSPACE-complete | NP-complete
Assignments O(n) SAT-run
Canonical Yes No
Equality check O(1) (hashing) SAT-run (F & G)
Quantifier elimination | Yes Co-Factoring




» Efficient SAT checking for propositional logic
» Next time: Satisfiability Modulo Theories (SMT)
» Theory-specific reasoning



