

	
	

	
	

	

	Datei:TU Wien-Parallel Computing VU (Träff) - Zusammenfassung Skriptum (V 0.6, 29. Juni).pdf

	
		Aus VoWi

		

		

		
		

		Zur Navigation springen
		Zur Suche springen
			Datei
	Dateiversionen
	Dateiverwendung

[image:]

TU_Wien-Parallel_Computing_VU_(Träff)_-_Zusammenfassung_Skriptum_(V_0.6,_29._Juni).pdf (Dateigröße: 273 KB, MIME-Typ: application/pdf)

Beschreibung[Bearbeiten | Quelltext bearbeiten]

Parallel Computing Zusammenfassung
Version 0.6, 29. Juni 2020

1 Introduction

Performance of Processors
- *nominal processor performance* is often measured in FLOPS (maximum number of Floating Point Operations per Second)
- performance measured as clock frequency and number of instructions completable per clock cycle (e.g. number of FLOP/cycle)
- number of instructions per cycle determined by architecture
- processor with smaller number of cores is called *multi-core*
 - nominal performance is then nominal performance of one core times the number of cores

Parallel vs Distributed Computing
- *parallel computing*: efficiently utilizing *parallel* resources to solve computational problems
 - deals with algorithms, their implementations and the structure of the computer architecture
- *distributed computing*: make *independent*, non-dedicated resources available to solve specific problem complexes
- *concurrent computing*: manage resources and processes that may or may not progress at the same time
- parallel computing problems often require a lot of interaction
- distributed resources may not be directly available, be distributed over a large area, may fail or change

Sample computational problems
- matrix multiplications
- sequence merging
- graph problems
- sorting problems
- reduction problems (summing or finding maxima...)
- etc.

The PRAM Model
- stands for *Parallel Random Access Machine*
- unrealistic model (but useful)
- processors are strictly synchronized (lockstep)
- memory may be accessed simultaneously, three variants
 - *EREW* (Exclusive Read Exclusive Write), memory cant be accessed simultaneously
 - *CREW* (Concurrent Read Exclusive Write), memory cant be written simultaneously
 - *CRCW* (Concurrent Read Concurrent Write)
 - in *Arbitrary CRCW PRAM* either simultaneous written value may be kept
 - in *Priority CRCW PRAM* processors have priority, the highest priority processor writes

Flynns Taxonomy
- differentiate machines based on instructions and data
- *SISD* (Single-Instruction, Single-Data), sequential computer
- *SIMD* (Single-Instruction, Multiple-Data), single instruction can operate on bigger amount of data (e.g. arrays), vector instructions are example of SIMD
- *MIMD* (Multiple-Instruction, Multiple-Data), general PRAM machine, each processor has own instructions and own data
- *MISD* (Multiple-Instruction, Single-Data), may be a pipline-like system where single data stream passses through different stages

Sequential and Parallel Time
- *Seq* for sequential algorithms, *Par* for parallel
- $T_{seq}(n)$ is sequential running time in amount of steps, $T_{par}(p, n)$ is parallel time with p processors

Speed-up
- Absolute speedup: $S_p(n)=\frac{T_{seq}(n)}{T_{par}(n)}$
 - measures gain of parallel algorithm over sequential

Linear speed-up is best possible
- parallel algorithm with p cores can be simulated on single core in $pT_{par}(p, n)$
- if speed-up would be non-linear, the simulation could run faster than the best known sequential algorithm (which would make the algorithm the best known)
- in practice *super-linear speed-up* may happen when work of sequential and parallel algorithms is not the same, e.g. randomized algorithms
 - also possible for search algorithms

Cost and Work
- cost is time of p processor cores occupied with Par
 - equals $pT_{par}(p, n)$
- work $W_par(p, n)$ is number of operations of algorithm
 - for sequential algorithms, work is same as time
 - for parallel algorithms work is total work of all processors
- algorithm is *Cost-optimal* if cost $pT_{par}(p, n)$ is $O(T_{seq}(n))$ (for a best known sequential algorithm)
- algorithm is *Work-optimal* if $W_par(p, n)$ is $O(T_{seq}(n))$ (for a best known *Seq*)
- cost optimal algorithms have linear speed-ups

Relative Speed-up and Scalability
- relative speed-up is ratio of parallel running time with one processor to running time with p processors
- $\text{SRel}_p(n) = \frac{T_{par}(1, n)}{T_{par}(p, n)}$
- fastest possible running time is $T\infty (n)$
- parallelism: $\frac{T(1,n)}{T\infty(n)}=\frac{T(1, n)}{T(\infty, n)}$
 - denotes the largest possible speed up

Overhead and Load Balance
- parallel algorithms often perform more work than best sequential ones
- excess work is called *overhead*
- can occur through communication, synchronization or extra preprocessing
- if overheads are in bounds of sequential work $O(T_{seq}(n))$ the algorithm can still be work-optimal
- communication intervals of algorithms are called *granularity*
 - rare communication: *coarse grained* algorithm
 - frequent communication: *fine grained* algorithm
- processors may have different amounts of work
- if $T_{par}(i, n)$ is the time a processor i takes, the *load imbalance* is the biggest difference between the times of two processors, over all processors
- *load balancing* is the problem of making sure the times of all processors are about the same
- *static load balancing* is when the amount of work is divided up front between processors
 - *oblivious static load balancing* is the subdivision of the problem only by input size and structure, regardles of actual input
 - *adaptive, problem-dependent load balancing* is load balancing where the input itself is taken into consideration
- *dynamic load balancing* is the exchange of work during execution of the algorithm
- problems where input can be statically distributed and no further interaction is needed are called *embarrassingly* or *trivially* or *pleasantly parallel*

Amdahls Law
- assuming algorithm can be subdivided into a sequential fraction s and a perfectly parallelizable fraction $r = (1-s)$
 - maximum speed up by parallelization is $\frac{1}{s+\frac{1-s}{p}}=1/s$, if $p \rightarrow \infty$
- problems with parallel algorithms:
 - input, output
 - sequential preprocessing
 - sequential data structures
 - operations that have to be performed sequentially
- good algorithms have the parallel part not be a constant fraction but decrease with n

Efficiency and Weak Scaling
- *scaled speed up* is when the faster $\frac{T(n)}{t(n)}$ converges, the faster the speed up converges
 - with $T(n)$ as the parallelizable term and $t(n)=T\infty(n)$ as the non parallelizable term
- efficiency is the comparison of *Par* against the best possible parallelization of *Seq*
- parallel efficiency: $E_p(n) = \frac{T_{seq}(n)}{pT_{par(p, n)}}=\frac{S_p(n)}{p}$
 - linear speed up if $E_p(n)=e$ for some e
- iso-efficiency: when efficiency is not constant (constant means it does not change with n) then we have to calculate n as a function of p
 - do this by calculating e as a function of n and p and then changing the formula for n
- *Weak Scalability* is when you want to achieve an efficiency $E_p(n) = e$ there is a function $f(p)$ so that n is in $\Omega(f(p))$
 - so the efficiency varies with the number of processors if the problem size remains constant
 - so a problem may be more efficiently solved with fewer processors
- other definition: if the average work per processor $T_{seq}(n)/p$ is constant at w the running time of the algorithm is constant at $T_{par}(p, n)$
- $f(p)$ is called the iso-efficiency function
 - says how n should grow as a function of p, so efficiency remains constant

Scalability Analysis
- *Strong Scaling* analysis, n is constant, if run time decreases proportionally to p (linear speed up) the algorithm is *strongly scalable*
- *Weak Scaling* analysis, work per processor is constant (through bigger n), if parallel running time is also constant algorithm is *weakly scalable*

[rest skipped]

2 Shared Memory

Caches
- three different types:
 - directly mapped: each block mapped to one distinct position in cache
 - fully associative: each block can go anywhere
 - (k-way) set associative: like directly mapped cache but space for multiple blocks per position
- chache misses
 - cold (compulsory) miss: no data in the cache line where you would look for it (i think)
 - capacity miss: all lines are full, one line has to be evicted (only fully associative)
 - conflict miss: already element in line (only directly and set associative)
- replacement strategies
 - LRU: least recently used
 - LFU: least frequently used
- on write either:
 - block already in cache: block is updated
 - block not in cache: block is allocated (called write-allocate) (may create conflict miss) or memory is written directly (write non-allocate)
- if block is updated:
 - write-through cache: block updated and value is written directly to memory too
 - write back: written to memory when line is evicted
- locality of access (for applications and algorithms)
 - temporal locality: memory address is reused frequently (will not be evicted)
 - spatial locality: addresses of the same block are also used

Matrix-Matrix Multiplication and Cache Performance
- $n\times l$ Matrix A multiplied with $l\times m$ Matrix B
- sequential algorithm in $O(nml)$ or $O(n^3)$ (for squares)
- three loops (for n, m, l) can be parallelized, order of parallelization matters
 - differences because matrices are accessable in row order
 - different index order causes more or fewer cache misses

Recursive Matrix-Matrix Multiplication Algorithm
- recursively split A and B in smaller submatrices until very small then iterative solution

Blocked Matrix-Matrix Multiplication
- split matrices into blocks at start
- then multiply with 6 nested loops
- block size can be chosen depending on cache size
 - called *cache-aware algorithm* (opposite is *cache-oblivious*)

Multi-core Caches
- cache system has several dimensions
- L1 (lowest level) to L3 (or more)
 - L1 is closest to processor, smallest (few KB) and fastest
 - L3 is *Last Level Cache* LLC, several MB big
 - L1 has data and instruction cache
- *Translation Lookaside Buffer* for memory management (pages)
- lowest level caches are private (only for one processor)
- higher level caches are shared
- *cache coherence problem* when one block is updated in one cache and also stored in another cache of another processor
 - *coherent* cache system if line of other cache will be updated at some point in time (can also just mean it is invalidated in the cache)
 - *non coherent* if it will never be updated
- problem solved through *cache coherence protocol*
 - may cause a lot of *cache coherence traffic*
- *false sharing* is when two caches have the same blocks of memory stored
 - update to one adress of block will cause the whole line of other to be replaced

The Memory System
- cache system part of *memory hierarchy*
 - from fast low levels (caches) to slower bigger higher levels
- *write buffer* for memory writes (FIFO)
- for multi-core CPUs not every processor has direct connection to main memory
 - instead connected to *memory controller*
- some processors closer to memory controller than others \rightarrow address access times are not uniform

Super-linear Speed-up through the Memory System
- through memory hierarchy of large caches, working sets of each processor get smaller and eventually can fit into the fastest caches

Application Performance and the Memory Hierarchy
- *memory-bound*: when execution (and associated reading and writing from memory) of instructions is faster than reading or writing the instruction in memory
- *compute-bound*: other way around, intructions are read faster than they are executed

Memory Consistency
- when process 1 sets a certain flag in memory and process 2 checks if that flag is set it may happen that the flag is still in the write buffer and process 2 may read a wrong value
- frameworks like `pthreads` or `OpenMP` help

$\texttt{pthreads}$
- *thread* is smallest execution unit that can be scheduled

Thread Characteristics
- fork-join parallelism: thread can spawn new threads
- are symmetric peers, thread can wait for any other thread to complete
- have same program (SPMD) but can have different traces (MIMD)
- are scheduled by the OS
- no implicit synchronisation of threads, they progress independently from each other
- share the same memory
- constructs for coordination and synchronization are provided

`pthreads` in C
- use `#include <pthread.h>`

Race Conditions
- when two threads update variable at same time, outcome may be write of either thread
 - result is *non-deterministic*
- special race condition is called *data race*
 - two ore more threads access shared memory, one of accesses is a write

Critical Sections, MutEx, Locks
- lock is programming model to guarantee mutual exclusion on a critical section
- threads try to acquire lock, if granted they enter critical section, release lock when done
 - threads are blocked till lock is acquired
- locks have to be deadlock free
- lock is starvation free if thread will not be starved
- threads at lock will *serialize*, one thread after another will pass critical section
- locks where many threads are competing are called *contended*
- *try-locks* allow execution of some code when lock could not be acquired
- in *spin-locks* threads test by busy waiting
- in *blocking-locks* waiting threads are blocked and freed by the OS
- condition variables are associated with mutex
 - thread waits on variable till a *signal* occurs
 - a thread can *signal* one (maybe arbitrary) thread only
 - a *broadcast* signals all threads at once
- concepts with conditions with signals and waits are called *monitor*
- *barriers* are similar to mutex with conditions
- *concurrent initialization* is where first thread executes initialization code before other threads begin

Locks in data structures
- trivially make data structures work with parallel algorithms by using a single lock for all operations on structures
- other way is to construct *concurrent data structures*

Problems with Locks
- deadlocks can happen easily with locks
 - can also happen when the same thread tries to acquire same lock again
- locks around long critical section cause harmful serialization
- threads crashing during critical section also cause deadlocks
- threads can starve
- priority threads and locks can lead to lower priority threads preventing higher priority threads from continuing

Atomic Operations
- atomic instruction carry out instructions that cannot be interfered with by other threads
- `a = a+27` can be implemented as atomic instruction through `fetch-and-add`
- crashing threads during atomic instructions will not cause deadlocks
- instructions are *wait-free* because they always execute in $O(1)$
- instructions are *lock-free* if any thread will be able to execute instruction in a bounded amount of time (not always given)

OpenMP

Programming Model
- fork-join thread model
 - master thread forks and creates working threads
 - when finished working threads join again back to master thread
- all threads execute same program (SPMD)
- each thread has uníque id
- more threads than processors are possible
- shared and private variables in threads are possible
- synchronization constructs to prevent race conditions

OpenMP in C
- has to be compiled in gcc with `-fopenmp`
- has to be included with `#include <omp.h>`

Parallel Regions
- forking starts at parallel region
- designated by `#pragma omp parallel [...]`
- number of threads in parallel region cannot be changed after start
- thread number set by the runtime environment or library call or `num_threads()` pragma

Library Calls
- `omp_get_thread_num(void)` returns thread id
- `omp_get_num_threads(void)` returns number of threads
- `omp_get_max_threads(void)` returns maximum possible threads
- `omp_set_num_threads(int num_threads)` sets maximum

- `omp_get_wtime(void)` returns wall clock time in seconds
- `omp_get_wtick(void)` returns tick resolution of timer

Sharing variables
- default is all vairables before region are shared, all variables declared in region are private
- sharing of variables set by clause in pragma
 - `private(vars...)` makes uninitialized copies of variables
 - `firstprivate(varis...)` makes copies and initializes value to value before parallel region
 - `shared(vars...)` declares variables as globally shared
 - `default(shared|none)` makes variables shared or not shared by default
- use like `#pragma omp parallel private(a, b, c) shared(d) default(none)`
- good practice to set no variables to shared per default (none)
- shared variables make *data races* possible

Work Sharing: Master and Single
`#pragma omp master`
- declares statement to be executed by master thread only (thread id of 0)
 - other threads will simply skip

`#pragma omp single`
- statement is executed by either one of the threads
 - other threads will wait at end of statement until all threads have reached end
 - can be eliminated by `nowait` clause after `single`
 - might cause race conditions
 - allows making variables private or firstprivate (unlike master construct)

explicit Barrier
`#pragma omp barrier`
- no thread can continue until all threads have reached barrier

Sections
- code is split into small pieces that can be executed in parallel by available threads

`#pragma omp sections`
- outer structure
- end of block is implicit barriers
 - nowait possible
- variables can be designated (first)private

`#pragma omp section`
- marks an independent code section
- which thread executes which section is designated by runtime system
- best case: each thread executes a section, all threads run in parallel

Loops of Independent Iterations
- *loop scheduling* is assignment of iteration blocks to threads
- each iteration has to be executed exactly once
- data races have to be avoided

`#pragma omp for [clauses...] for (loop range...)`
- all threads must have same start and end values for i and same step
- loop ranges have to be finite and determined (no while loops possible)
- end condition has to be in the form of: `i<n, i<=n, i>n, i>=n, i!=n`, with n as an expression or value
- steps have to be in form of `i++, i--, i+=inc, i=i+inc, i-=inc, i=i-inc`
- these kinds of loops are in *canonical form*

`#pragma omp parallel for [clauses...]`
- shorthand for parallel region with one loop
- next statement is for loop
- always barrier after

Loop Scheduling
- how is each thread assigned to each iteration
- loop range is divided in consecutive chunks
- static schedule: chunks have same size and are assigned like round-robin (each thread gets chunk one after another)
 - computation of chunk assignments is very fast (low overhead)
- dynamic: each thread dynamically grabs next chunk it can
- guided: dynamic assignment but chunk size changes, determined by number of iterations divided by threads
- set like `schedule(static|dynamic|guided[, chunksize])`
 - for guided `chunksize` is minimum size
 - if no size given then default size is used
- also possible `schedule(auto|runtime)`
 - runtime: scheduling is set at runtime
 - auto: OpenMP compiler determines

Collapsing nested loops
- transform multiple loops into one

`#pragma omp parallel for collapse(depth) [clauses...]`
- depth is the amount of nested loops to be parallelized

Reductions
`#pragma omp for reduction(operator: variables)`
- is clause of `for`
- operators are `+ - * & | ^ && || min max`

Tasks and Task Graphs
`#pragma omp task [clauses...]`
- task is like a function call
- completion of task may not happen immediately
 - at latest when completion is requested (e.g. at end of parallel region)
- tasks can access any variables of the thread
 - if those variables are changed in the task data races may occur
- task can be designated final and thus not generate any additional tasks

`#pragma omp taskwait [depend(...)]`
- wait for completion of generated tasks
- only dependency clause allowed

Mutual Exclusion Constructs
`pragma omp critical [(name)]`
- threads will wait and only one thread will execute code of critical section
- section can have name
- shared variables can be updated by task in critical region

`#pragma omp atomic [read|write|update|capture]`
- for simple critical sections
- allow fetch and add (FAA) atomic operations
- update is `x++, x = x op ..., ...`
- capture is `y = x++, ...`

Locks
- locks don't have condition variables
- recursive (nested) locks are possible in OMP

Special Loops
- OMP can try to utilize vector operations (SIMD)

`#pragma omp simd [clauses...]`
- followed by canonical for loop
- one thread executes loop but with SIMD instructions

`#pragma omp for simd [clauses...]`
- followed by canonical for loop
- loop executed by multiple threads
- each chunk executed with SIMD instructions

`#pragma omp parallel for simd [clauses...]`
- same as previous but with parallel region declared

`#pragma omp taskloop [clauses...]`
- recursively break iteration range into smaller ranges
- smaller ranges are then executed as tasks
- should be initiated by a single thread
- size of range can be adjusted by `grainsize()`

Loops with Hopeless Dependencies
`#pragma omp ordered`
- loops with dependency patterns that cannot be handled normally can be marked as ordered
- only one possible ordered block in a parallel loop
- other parts of iteration can still be performed in parallel

Cilk
- OMP inspired by Cilk
- since 2018 not supported anymore
- supports constructs `cilk_spawn` (like task), `cilk_sync` (like taskwait) and `cilk_for` (like taskloop)
- executes threads through *work-stealing algorithm*
 - each thread has local task queue
 - when threads run out of local tasks, they steal tasks from other threads until there are no more tasks to steal

3 Distributed Memory Parallel Systems and MPI

Network Properties: Structure and Topology
- distributed memory introduces interconnection network (or *interconnect*)
- entities (cores, multi-core CPUs or larger systems) are connected through *links* (in any form)
 - some entities are simply switches
- interconnect where processors are also communication elements (and without switches) is called *direct network*
- interconnect with switches is called *indirect network*
- *topology* of network can be modeled as an unweighted graph
 - each vertice is an network communication element
 - each arc denotes a direct link between two elements
- graphs are mostly undirected
- $\text{diam}(G)$ graph *diameter* is longest shortest path between two nodes
 - is a lower bound on communication steps between two elements
- $\text{degree}(G)$ graph *degree* is maximum degree of all nodes
- $\text{bisec}(G)$ *bisection width* is minimum number of edges to remove so that graph is partitioned into two equally large subsets
- worst possible networks are *linear processor array* and *processor ring*
- *tree networks* are binary or k-ary trees
 - have $\text{bisec}(T)=1$
- *d-dimensional mesh networks*
 - processors are identified by their integer vectors
 - special case is *torus network* where edges wrap around
- *hypercube network* is special case of torus network
- modern systems often built as torus networks with 3 to 6 dimensions, called *multi-stage networks*

Communication algorithms in networks
- *unidirectional* communication if only one direction
- *bidirectional* if in both directions can be communicated
 - most modern systems
- broadcast problem: how to transmit data from root to every other node in minimal communication steps
 - lower bound is $\lceil\log_{k+1}(p)\rceil$ in k-degree, network with p nodes
 - algorithm to solve partitions network in $k+1$ smaller networks, root sends data to "virtual roots" of these networks, solve problem for smaller subnetworks

Communication costs
- linear transmission cost assumes time of $\alpha+\beta m$, where α is start up latency and β is time per unit of data

Routing and Switching
- if network is not fully connected, routs make path between two nodes possible

Hierarchical, Distributed Memory Systems
- communication networks with different levels
- processors may have different characteristics and thus live on different compute nodes

Programming Models
- concrete network properties are abstracted
 - model of fully connected network
- processes are not synchronized and communicate with others through explicit or implicit transmission
 - message transmission is assumed to be deadlock free and correct
- distributed system programming models either:
 - *data distribution* centric: data structures distributed according to rules, if one processes changes data structure of another process then through communication
 - *communication* centric: focuses on explicit communication and synchronisation instead of data structures (MPI)

Message-passing Interface (MPI)
- message-passing programming model is to structure parallel processes through sending and receiving messages
- proccesses are *Communicating Sequential Processes*
 - cannot have data races
- MPI characteristics:
 - finite processes
 - each process identified by rank in domain
 - more than one domain possible
 - data is local
 - communication is reliable

MPI in C
- header `#include <mpi.h>`
- functions in `MPI_` "name space" (illegal and punishable by law to use prefix for own functions)
- `MPI_SUCCESS` return value for success (obviously)
- `mpicc` compiler to compile programs

Initializing MPI
- `MPI_Init` to initialize
- end with `MPI_Finalize`
 - `MPI_Abort` forces termination

Error Checking
- MPI only has limited error checking because it is expensive

Communicators
- `MPI_Comm_size` to get amount of processes in communicator
- `MPI_Comm_rank` to get rank in communicator
- all processes are in communication domain `MPI_COMM_WORLD`
 - data type `MPI_COMM`
- `MPI_Comm_split` splits processes of communicator into smaller groups with own communicators
- `MPI_Comm_create` also creates new communicators
- both functions are *collective* (have to be called by all processes)
- `MPI_Comm_free` to free communicators

Organizing Processes
- communicator with grid structure is called *Cartesian communicator*
- created through `MPI_Cart_create`
 - `reorder` flag to reorder ranks so neighboring processes are close on grid
- `MPI_Cart_coords` translate rank to coordinate vector
 - `MPI_Cart_rank` vice versa

Objects and Handles
- a *distributed object* is an object for which all processes that reference it can access it
- distributed objects
 - `MPI_Comm` for communicator object
 - `MPI_Win` for cummincation windows
- local objects
 - `MPI_Datatype` for local layout and structure of data
 - `MPI_Group` for ordered sets of processes
 - `MPI_Status` for communication
 - `MPI_Request` for open (not yet completed) communication
 - `MPI_Op` for binary operators
 - `MPI_Info` for additional info when creating objects

Process Groups
- objects of type `MP_Group`
- groups used locally by processes to order processes
- `MPI_Comm_group` returns an ordered group from a communicator
- `MPI_Group_(size|rank)` like `MPI_Comm_(size|rank)`
- set-like operations on groups possible, `MPI_Group_(union|intersection|difference|incl|excl...)`

Point-to-point Communication
- `MPI_Send` to send data from process to `dest`
- `MPI_Recv` to receive data from `source`
- combined operations `MPI_Sendrecv[_replace]` have argument for `source` and `dest`
- `MPI_Get_(count|elements)` to figure how much data was sent

Semantic terms
- *blocking* operations when function call returns when operation has been locally completed (irregardless of success of if data has been sent out etc.)
- *non-blocking* when function call returns immediately (specified by capital `I` in function name, e.g. `MPI_Irecv`)

Specifying Data
- `buffer` specifies starting adress
- `count` specifies number of elements
- `datatype` specifies MPI type
 - e.g. `MPI_(CHAR|INT|LONG|FLOAT|DOUBLE)`

One-sided Communication
- one process alone initiates communication
 - also specifies actions on both ends
- involved processes are called *origin* and *target*

Collective Communication
- processes communicating collectively
- `MPI_Barrier` blocks until all have reached routine
- `MPI_Bcast` to send data from `root` to all nodes
- `MPI_Scatter` distributes data from process `root` evenly to all other
 - `MPI_Scatterv` if data is not distributed evenly
- `MPI_Gather` gathers data from all other processes in `root`
 - `MPI_Gatherv` if not receiving the same number of elements from each process
- `MPI_Allgather` like Gather but all processes have all data
 - `MPI_Allgatherv` similar to `MPI_Gatherv`
- `MPI_Reduce` reduction of data in `root` with operator `MPI_Op op`
 - operations are assumed to be associative and commutative
- `MPI_Allreduce` like reduce but all processes receive reduction
- `MPI_Reduce_Scatter` first reduce vector in processes, then scatter vector in segments across processes
- `MPI_Alltoall` (could be named `Allscatter`) every process scatters their data to all other
- `MPI_Scan` performs a reduction over a group, where each subsequent process stores the result of the reduction of the current value and the previous values
 - e.g. Scan with SUM reduction
 processes with values in brackets: 1(1), 2(2), 3(3), 4(4)
 after Scan: 1(1), 2(3), 3(6), 4(10)
- `MPI_Exscan` like Scan but value of process is not used in reduction
 - same example with Exscan: 1(0), 2(1), 3(3), 4(6)

	angehängt an TU Wien:Parallel Computing VU (Träff)

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

		Version vom	Maße	Benutzer	Kommentar
	aktuell	13:02, 13. Jul. 2020	 (273 KB)	Richie (Diskussion | Beiträge)	
	zurücksetzen	12:58, 13. Jul. 2020	 (273 KB)	0.0.0.0 (Diskussion)	# Parallel Computing # 1 Introduction ## Performance of Processors - *nominal processor performance* is often measured in FLOPS (maximum number of Floating Point Operations per Second) - performance measured as clock frequency and number of instructions completable per clock cycle (e.g. number of FLOP/cycle) - number of instructions per cycle determined by architecture - processor with smaller number of cores is called *multi-core* - nominal performance is then nominal performance of one co…

Eine neue Version dieser Datei hochladen

Dateiverwendung

Keine Seiten verwenden diese Datei.

Abgerufen von „https://vowi.fsinf.at/index.php?title=Datei:TU_Wien-Parallel_Computing_VU_(Träff)_-_Zusammenfassung_Skriptum_(V_0.6,_29._Juni).pdf&oldid=135845“

		Kategorie: 	⧼attachments-category-attached-files⧽

	

	Navigationsmenü

	
		

	
		Meine Werkzeuge
	

	
		
			Nicht angemeldet
	Diskussionsseite
	Beiträge
	Benutzerkonto erstellen
	Anmelden

		
	

		
			

	
		Namensräume
	

	
		
			Datei
	Diskussion

		
	

			

	
	
		Deutsch
	
	
		
		

		
	

		

		
			

	
		Ansichten
	

	
		
			Lesen
	Bearbeiten
	Quelltext bearbeiten
	Versionsgeschichte

		
	

			

	
	
		Weitere
	
	
		
		

		
	

			

	
		
			
				
				
				
				
			

		

	

		

	

	

	
		
	

	

	
		Navigation
	

	
		
			Studiengänge
	Mitmachen
	Beispielseiten
	Mission
	FAQ
	Moderation
	Letzte Änderungen

		
	

	

	
		Andere FSInf Wikis
	

	
		
			wiki.fsinf.at

		
	

	
		Werkzeuge
	

	
		
			Links auf diese Seite
	Änderungen an verlinkten Seiten
	Hochladen
	Spezialseiten
	Druckversion
	Permanenter Link
	Seiteninformationen
	Attribute anzeigen

		
	

	

		 Diese Seite wurde zuletzt am 13. Juli 2020 um 13:07 Uhr bearbeitet.
	Der Inhalt ist verfügbar unter der Lizenz GNU Free Documentation License 1.3 (GFDL), sofern nicht anders angegeben.

		Datenschutz
	Über VoWi
	Haftungsausschluss
	Mobile Ansicht

		[image: GNU Free Documentation License 1.3 (GFDL)]
	[image: Powered by MediaWiki][image: Powered by Semantic MediaWiki]

