TU Wien:Statistik und Wahrscheinlichkeitstheorie UE (Bura)/Übungen 2019W/5.2: Unterschied zwischen den Versionen

Aus VoWi
Zur Navigation springen Zur Suche springen
K (→‎Lösungsvorschlag von Draggy: improve formatting, fix typo)
Zeile 28: Zeile 28:
 
(b)  
 
(b)  
  
::(a) The first quartile of the times in A was about? <math>\rightarrow 20 </math>  
+
:(a) The first quartile of the times in A was about?
::(b) the interquartile range of the times in B is about trice the interquartile range of A <math>\rightarrow</math> ich würde sagen eher doppelt so groß statt drei mal so groß  
+
::<math>20</math>  
::(c) Is n = 100? <math>\rightarrow</math> Der Boyplot gibt keine auskunft über die größe der Datenmenge  
+
:(b) the interquartile range of the times in B is about trice the interquartile range of A
::(d) More than half of the running times in B were faster than 3/4 of the running times in A <math>\rightarrow</math> Stimmt , der Median von B liegt tiefer als das 1. Quantil von A
+
::ich würde sagen eher doppelt so groß statt drei mal so groß  
::(e) At least 50% in A were faster than the 25% slowest in B <math>\rightarrow</math> Stimmt , da das 3. Quantil von B höher liegt als der Median von A  
+
:(c) Is n = 100?
::(f) At least 60% in A were faster than the 25% slowest in B <math>\rightarrow</math> Kann durch den Boxplot nicht gezeigt werden.
+
::Der Boxplot gibt keine Auskunft über die Größe der Datenmenge.
 +
:(d) More than half of the running times in B were faster than 3/4 of the running times in A
 +
::Stimmt, der Median von B liegt tiefer als das 1. Quantil von A.
 +
:(e) At least 50% in A were faster than the 25% slowest in B
 +
::Stimmt, da das 3. Quantil von B höher liegt als der Median von A.
 +
:(f) At least 60% in A were faster than the 25% slowest in B.
 +
::Kann durch den Boxplot nicht gezeigt werden.

Version vom 10. November 2019, 06:34 Uhr

(2) Boxplot

Two novel randomized algorithms (A and B) are to be compared regarding their running time. Both algorithms were executed n times. The running times (in seconds) are stored in the file algorithms.Rdata

(a) Set the working directory and load the data using load(). Create a boxplot to compare the running times. Color the boxes and add proper notations (axes notations, title etc.). More info via ?boxplot
(b) Comment on the following statements / questions only using the graphic
(a) The first quartile of the times in A was about?
(b) the interquartile range of the times in B is about trice the interquartile range of A
(c) Is n = 100?
(d) More than half of the running times in B were faster than 3/4 of the running times in A
(e) At least 50% in A were faster than the 25% slowest in B
(f) At least 60% in A were faster than the 25% slowest in B

Lösungsvorschlag von Draggy

(a) Laden des Datasets :

setwd(dir ="/YourMama/TU-WIEN/ws-2019/statistik-und-wahrschienlichkeitstheorie/")
load("Übung/HW5/algorithms.Rdata")

Boxplot erstellen:

boxplot(runningtimes,ylab = "Runtime")

(b)

(a) The first quartile of the times in A was about?
20
(b) the interquartile range of the times in B is about trice the interquartile range of A
ich würde sagen eher doppelt so groß statt drei mal so groß
(c) Is n = 100?
Der Boxplot gibt keine Auskunft über die Größe der Datenmenge.
(d) More than half of the running times in B were faster than 3/4 of the running times in A
Stimmt, der Median von B liegt tiefer als das 1. Quantil von A.
(e) At least 50% in A were faster than the 25% slowest in B
Stimmt, da das 3. Quantil von B höher liegt als der Median von A.
(f) At least 60% in A were faster than the 25% slowest in B.
Kann durch den Boxplot nicht gezeigt werden.