Man berechne:
Partielle Integration
12∫dxsin2(x)cos2(x)={\displaystyle {\frac {1}{2}}\int {\frac {dx}{\sin ^{2}(x)\cos ^{2}(x)}}=}
12(tan(x)sin2(x)+2∫tan(x)cos(x)sin3(x)dx)={\displaystyle {\frac {1}{2}}({\frac {\tan(x)}{\sin ^{2}(x)}}+2\int \tan(x){\frac {\cos(x)}{\sin ^{3}(x)}}dx)=}
Tangens ausschreiben
12sin(x)cos(x)sin2(x)+∫sin(x)cos(x)cos(x)sin3(x)dx={\displaystyle {\frac {1}{2}}{\frac {\sin(x)}{\cos(x)\sin ^{2}(x)}}+\int {\frac {\sin(x)}{\cos(x)}}{\frac {\cos(x)}{\sin ^{3}(x)}}dx=}
Kürzen
121cos(x)sin(x)+∫1sin2(x)dx={\displaystyle {\frac {1}{2}}{\frac {1}{\cos(x)\sin(x)}}+\int {\frac {1}{\sin ^{2}(x)}}dx=}
12cos(x)sin(x)−cot(x)={\displaystyle {\frac {1}{2\cos(x)\sin(x)}}-cot(x)=}
Summensatz
1sin(2x)−cot(x){\displaystyle {\frac {1}{\sin(2x)}}-cot(x)}