TU Wien:Applied Deep Learning VU (Pacha)
Zur Navigation springen
Zur Suche springen
Ähnlich benannte LVAs (Materialien):
- Applied Deep Learning VU (Eidenberger) (TU Wien, 0 Materialien)
- Applied Deep Learning VU (Lukasiewicz) (TU Wien, 0 Materialien)
- Applied Deep Learning VU (Pacha) (TU Wien, 3 Materialien)
Daten[Bearbeiten | Quelltext bearbeiten]
Vortragende | Horst Eidenberger• Alexander Pacha |
---|---|
ECTS | 3 |
Letzte Abhaltung | 2021W |
Sprache | English |
Mattermost | applied-deep-learning • Register • Mattermost-Infos |
Links | tiss:194077, eLearning |
Bachelorstudium Medizinische Informatik | |
Masterstudium Data Science | |
Masterstudium Data Science | |
Masterstudium Visual Computing | |
Katalog Freie Wahlfächer |
Inhalt[Bearbeiten | Quelltext bearbeiten]
2024WS:
The course covers the following topics:
- Introduction to Deep Learning
- Neural Networks, Optimization, and Backpropagation
- Convolutional Neural Networks and Visual Computing
- Recurrent Neural Networks
- Deep Reinforcement Learning
- Autoencoders and Deep Generative Models
- Transformers
- Preprocessing, Data Augmentation, Regularization, and Visualization
- Explainable AI
- Graph Neural Networks
- Large Language Models (LLMs)
Ablauf[Bearbeiten | Quelltext bearbeiten]
2024WS:
- Lectures: Pre-recorded and uploaded to the ILEA platform.
- Q&A Sessions: Weekly live Zoom meetings for questions and discussions.
- Projects: Individual projects to be developed throughout the semester, with final presentations in the last two sessions.
Benötigte/Empfehlenswerte Vorkenntnisse[Bearbeiten | Quelltext bearbeiten]
- No strict prerequisites since students choose their own projects based on their skill level. However, basic programming skills are highly recommended.
Vortrag[Bearbeiten | Quelltext bearbeiten]
2024WS:
- Language: English
- Format: Pre-recorded lectures that can be watched at any time.
- One of the best aspects is that the lectures are recorded fresh every year, ensuring they are up-to-date with the latest deep learning advancements, rather than reusing outdated materials.
- Professor Pacha does a good job delivering the content with clear explanations, diagrams, and practical examples.
Übungen[Bearbeiten | Quelltext bearbeiten]
2024WS:
- Every student chooses their own project and works on it throughout the semester, creating a small demo at the end.
- Three main submission deadlines:
- Project Proposal – Short description of the idea.
- Project Submission – Upload code to GitHub.
- Final Demo & Report – Record a short YouTube video of presenting your demo and submit a 5-page report.
- The last two sessions are dedicated to watching and discussing the final presentations.
Prüfung, Benotung[Bearbeiten | Quelltext bearbeiten]
noch offen
Dauer der Zeugnisausstellung[Bearbeiten | Quelltext bearbeiten]
2024WS: Grades were posted on 20.02.2025
Zeitaufwand[Bearbeiten | Quelltext bearbeiten]
2024WS: I spent 61 hours in total. This includes working on the project and watching the weekly lectures. Grade obtained: 1
Unterlagen[Bearbeiten | Quelltext bearbeiten]
noch offen
Tipps[Bearbeiten | Quelltext bearbeiten]
Create a well-defined pipeline from the beginning to avoid last-minute struggles
Highlights / Lob[Bearbeiten | Quelltext bearbeiten]
👏 No group work
👏 Up-to-date lectures – Content is refreshed yearly.
👏 Custom projects – You can work on something that truly interests you.
Verbesserungsvorschläge / Kritik[Bearbeiten | Quelltext bearbeiten]
noch offen