TU Wien:Machine Learning VU (Musliu)/Exam 2025-06-25

Aus VoWi
Zur Navigation springen Zur Suche springen

Part 1 (26pt)[Bearbeiten | Quelltext bearbeiten]

13 questions each when correct 2pt, when incorrect -1.pt, left empty 0pt

Part 2 (12pt)[Bearbeiten | Quelltext bearbeiten]

4 questions each when correct 3pt, when incorrect -1.5pt, left empty 0pt

  • From seven instances: Calculate/use Naive Bayesian to classify a new instance (binary)
  • From seven instances: Calculate/use a Decision Tree with entroy to classify a new instance (binary)
  • k bandit with sample averaging and Epsilon greedy: Given 8 periods with actions taken and gotten rewards, in which periods was a random action taken
  • Given a regression function with w0, w1, w2 and 4 instances: Calculate the mean absoulte error
    • 2.5
    • 2
    • 1.5
    • None of the above

Part 3 (12pt)[Bearbeiten | Quelltext bearbeiten]

  • What are methods to deal with vanishing gradient?
  • What has an effect on the size of the convolution layer in a CNN?
    • Increase padding, increases layer size
    • Decrease padding, increases layer size
    • Increase stride, increases layer size
    • Decrease stride, increases layer size
  • Which of these are CNNs?
    • ResNet
    • TeNet
    • LeNet
    • LSMT
    • Rec... [forgot]
    • All of the above
    • None of the above