TU Wien:Algebra und Diskrete Mathematik VO (Karigl)/Prüfung 2018-09-27

From VoWi
Jump to navigation Jump to search

Beispiel 1[edit]

Vollständige Induktion: Gaußsche Summenformel

Beispiel 2[edit]

Differenzengleichung 1. Ordnung mit konstanten Koeffizienten, aber angeschrieben als: Xn+1 - Axn = n + b (Trick ist, dass (n+b) das klassische b ist und das Axn noch auf die andere Seite gebracht werden muss, damit die Gleichung als Differenzengleichung 1. Ordnung mit konstanten Koeffizienten erkennbar ist!)

Beispiel 3[edit]

Permutationen von S4 als geometrische Operationen auf ein 4-Eck interpretieren, auf eine Gruppe prüfen und für eine Operation (die Beschriftungsrichtung der Ecken umdrehen = "inverses" bilden) den Unterraum zu S4 bilden

Beispiel 4[edit]

3 Grundsätzliche Formeln der Kombinatorik erklären und an einem konkreten selbstgewähltem Beispiel anwenden (Variantion mit Wiederholung, Permutation einer Multimenge und Kombination ohne Wiederholung)

Beispiel 5[edit]

true/false zu Matrizen: es musste eine Determinante berechnet werden, die ungleich 0 war und anhand dessen wurden aussagen über den rang, die invertierbarkeit etc. abgefragt.