Man bestimme die Größenordnungen von
(a) 3.9n2−n+0.1{\displaystyle 3.9n^{2}-n+0.1}
(b) 3.9⋅2n+n5{\displaystyle 3.9\cdot 2^{n}+n^{5}}
(c) 1+2.3n2{\displaystyle {\sqrt {1+2.3n^{2}}}}.
Ferner zeige man, dass
(d) an=O(1)⇔(an){\displaystyle a_{n}=O(1)\Leftrightarrow (a_{n})} beschränkt, und
(e) an=o(1)⇔(an){\displaystyle a_{n}=o(1)\Leftrightarrow (a_{n})} Nullfolge.
3.9n2−n+0.1=n2⋅(3.9−1n+0.1n2)≤C⋅n2{\displaystyle 3.9n^{2}-n+0.1=n^{2}\cdot (3.9-{\frac {1}{n}}+{\frac {0.1}{n^{2}}})\leq C\cdot n^{2}} mit C=3.9{\displaystyle C=3.9}
⇒O(n2){\displaystyle \Rightarrow O(n^{2})}
3.9n−1n2+0.1n3→0{\displaystyle {\frac {3.9}{n}}-{\frac {1}{n^{2}}}+{\frac {0.1}{n^{3}}}\to 0} für n→∞{\displaystyle n\to \infty }
⇒o(n3){\displaystyle \Rightarrow o(n^{3})}
limn→∞3.9n2−n+0.13.9n2=1−13.9n+139n2→1{\displaystyle lim_{n\to \infty }{\frac {3.9n^{2}-n+0.1}{3.9n^{2}}}=1-{\frac {1}{3.9n}}+{\frac {1}{39n^{2}}}\to 1}
⇒∼3.9n2{\displaystyle \Rightarrow \sim 3.9n^{2}}
3.9⋅2n+n52n→3.9{\displaystyle {\frac {3.9\cdot 2^{n}+n^{5}}{2^{n}}}\to 3.9}
⇒O(2n){\displaystyle \Rightarrow O(2^{n})}
Anmerkung: 2n{\displaystyle 2^{n}} wächst schneller als n5{\displaystyle n^{5}}
Anmerkung: a+bc=ac+bc{\displaystyle {\frac {a+b}{c}}={\frac {a}{c}}+{\frac {b}{c}}}, anschließend analog zu (a)
1+2.3n2=n⋅1n2+2.3→O(n){\displaystyle {\sqrt {1+2.3n^{2}}}=n\cdot {\sqrt {{\frac {1}{n^{2}}}+2.3}}\to O(n)}
oder ∼2.3n{\displaystyle \sim {\sqrt {2.3}}n}
Definition: |anbn|≤C⇒an=O(bn){\displaystyle |{\frac {a_{n}}{b_{n}}}|\leq C\Rightarrow a_{n}=O(b_{n})}
⇒|an1|≤C{\displaystyle \Rightarrow |{\frac {a_{n}}{1}}|\leq C} = beschränkt mit C
Definition: limn→∞anbn→0⇒an=o(bn){\displaystyle lim_{n\to \infty }{\frac {a_{n}}{b_{n}}}\to 0\Rightarrow a_{n}=o(b_{n})}
⇒limn→∞an1→0{\displaystyle \Rightarrow lim_{n\to \infty }{\frac {a_{n}}{1}}\to 0} = Nullfolge