TU Wien:Analysis UE (diverse)/Übungen WS12/Beispiel 26

From VoWi
Jump to navigation Jump to search

Man untersuche, wo die Funktion f(x) differenzierbar ist und bestimme dort ihre Ableitung

Lösungsvorschlag (absolut ohne Gewähr, und das meine ich ernst)[edit]

Zuerst aufteilen um die Produktregel und die Kettenregel anzuwenden:

Ebenso aufteilen (Hier jetzt Kettenregel):

Als Zwischenrechnung die Ableitungen von allen Teilfunktionen:

Ich vermute das die Funktion überall differenzierbar ist, besonders da die ungültige Stelle schon als ausname deffiniert ist.


Externe Lösung:[edit]

Die Funktion ist überall differenzierbar, aber nicht stetig differenzierbar. Das Beispiel wird z.B. hier besprochen: Stetig differenzierbar

Hier ist auch noch ein Video dass das Beispiel sehr gut erklärt.