TU Wien:Discrete Mathematics VO (Gittenberger)/Written Exam 2024-11-08
Zur Navigation springen
Zur Suche springen
Exersice 1[Bearbeiten | Quelltext bearbeiten]
Is $\mathbb{Z}_5[x]/x^4+x^2+1$ a field? List all members of it. Is $x+2$ a unit in it? If so, find its multiplicative inverse.
Exersice 2[Bearbeiten | Quelltext bearbeiten]
Determine the number of spanning trees for a given graph (consisting of two connected components and 8 total vertices) using the matrix-tree-theorem.
Exersice 3[Bearbeiten | Quelltext bearbeiten]
Let $\phi$ be a ring homomorphism and $R,S$ two rings. Let $I$ be an ideal of $S$. Proof that $\phi^{1} = \{ x \in R | \phi(x) \in I \}$ is an ideal as well.
Exersice 4[Bearbeiten | Quelltext bearbeiten]
A Hasse diagram of a post was given. Determine the value of the Möbius function $\mu(0,1)$.