TU Wien:Discrete Mathematics VO (Gittenberger)/Written Exam 2024-11-08

Aus VoWi
Zur Navigation springen Zur Suche springen

Exersice 1[Bearbeiten | Quelltext bearbeiten]

Is $\mathbb{Z}_5[x]/x^4+x^2+1$ a field? List all members of it. Is $x+2$ a unit in it? If so, find its multiplicative inverse.

Exersice 2[Bearbeiten | Quelltext bearbeiten]

Determine the number of spanning trees for a given graph (consisting of two connected components and 8 total vertices) using the matrix-tree-theorem.

Exersice 3[Bearbeiten | Quelltext bearbeiten]

Let $\phi$ be a ring homomorphism and $R,S$ two rings. Let $I$ be an ideal of $S$. Proof that $\phi^{1} = \{ x \in R | \phi(x) \in I \}$ is an ideal as well.

Exersice 4[Bearbeiten | Quelltext bearbeiten]

A Hasse diagram of a post was given. Determine the value of the Möbius function $\mu(0,1)$.