TU Wien:Diskrete Mathematik für Informatik UE (Gittenberger)/Übungen WS13/Beispiel 11

Aus VoWi
Zur Navigation springen Zur Suche springen
Use the matrix tree theorem to compute the number of spanning forests of the graph below!

Theory[Bearbeiten | Quelltext bearbeiten]

Solution[Bearbeiten | Quelltext bearbeiten]

Step 1: Compute the number of spanning trees for component 1 (left).

Remove any row and any column and calculate the determinant. I remove row 1 and column 1.

Step 2: Compute the number of spanning trees for component 2 (right).

Remove any row and any column and calculate the determinant. I remove row 5 and column 5 because it contains a lot of non-zero values. (Many zeros make it easier to calculate)

I use the Laplace expansion along the second row to solve his. The second row has only 1 non-zero value and so it's fearly easy to calculate:







Step 3: Multiply the results to get the total number of possible spanning forests: