TU Wien:Analysis VU (diverse)/Übungen 2024S/Beispiel 67
Seien und beliebige Punkte der Zahlengeraden. Man halbiere fortgesetzt die Strecke in , die Strecke in , in , usw. und bestimme die Lage von für .
{{Beispiel|1= Angabetext }}
oder
{{Beispiel| Angabetext }}
zu (im Falle einer korrekten, unverifizierten Lösung "solved". Auch möglich "unsolved", "wrong", "verified_by_tutor". Alle möglichen Werte sind hier: Vorlage:Beispiel dokumentiert.)
{{Beispiel|status=solved|1= Angabetext }}
Hilfreiches[Bearbeiten | Quelltext bearbeiten]
Mathematik für Informatik, Seite 165, Beispiel 4.37:
Unter einer geometrischen Reihe versteht man eine Reihe der Form
[...](Beweis im Buch oder bei Wikipedia)
Im Fall |q| < 1 folgt daraus die Konvergenz der geometrischen Reihe:
Lösungsvorschlag von Fabs[Bearbeiten | Quelltext bearbeiten]
Als erstes schauen wir uns einmal an, wie sich das Ganze entwickelt. Wir können o.B.d.A sagen, dass und ist, weil wir ja abhängig von ihnen die Position von für suchen. Also ist , , und .
Wenn wir uns die Strecken, also die Unterschiede zwischen den Werten ansehen, dann ist , , , und . Das Ganze setzt sich in diesem Muster fort.
Wir haben hier also eine geometrische Reihe vorliegen. Unser q ist offensichtlich (wer will, kann das durch Einsetzen überprüfen...). Da , ist die Reihe konvergent und wir verwenden die entsprechende Formel:
Der Grenzwert ist also , geht für also gegen
[Bearbeiten | Quelltext bearbeiten]
Hier noch eine Erklärung aus dem infoforum